View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-37

1990-10-01

DNA Mapping Algorithms: The DNA Simulator

Will Gillet and John Heidemann

This report documents the intent and use of a suite of programs for simulating the production
of DNA restriction fragment data, as might come from the biological laboratory doing work in
DNA mapping. This suite includes programs for (a) creating a random strand of DNA, (b)
creating random clones given a strand of DNA, (c) taking a clone and applying a restriction
enzyme to create restriction fragments, and (d) creating a nucleotide map of how the clones
relate to one another within the original DNA strand. Besides this fundamental software, there
are a number of a programs for introducing... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Gillet, Will and Heidemann, John, "DNA Mapping Algorithms: The DNA Simulator" Report Number:
WUCS-90-37 (1990). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/710

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/710?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/710

DNA Mapping Algorithms: The DNA Simulator

Will Gillet and John Heidemann

Complete Abstract:

This report documents the intent and use of a suite of programs for simulating the production of DNA
restriction fragment data, as might come from the biological laboratory doing work in DNA mapping. This
suite includes programs for (a) creating a random strand of DNA, (b) creating random clones given a
strand of DNA, (c) taking a clone and applying a restriction enzyme to create restriction fragments, and
(d) creating a nucleotide map of how the clones relate to one another within the original DNA strand.
Besides this fundamental software, there are a number of a programs for introducing different forms of
random error (nre, nce) intro the restriction fragments produced, and aggregating and "filtering" the clones
in different ways to select those with appropriate properties.

https://openscholarship.wustl.edu/cse_research/710?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/710?utm_source=openscholarship.wustl.edu%2Fcse_research%2F710&utm_medium=PDF&utm_campaign=PDFCoverPages

DNA MAPPING ALGORITHMS:
THE DNA SIMULATOR

Will Gillett and John Heidemann

WUCS-90-37

October 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This work was supported by the James S. McDonnell Foundation under Grant 87-24.

ABSTRACT

This report documents the intent and use of a suite of programs for simulating the production
of DNA restriction fragment data, as might come from a biological laboratory doing work in
DNA mapping. This suite includes programs for (a) creating a random strand of DNA, (b)
creating random clones given a strand of DNA, (¢) taking a clone and applying a restriction
enzyme to create restriction fragments, and (d) creating a nucleotide map of how the clones
relate to one another within the original DNA strand. Besides this fundamental software, there
are a number of programs for introducing different forms of random error (nre., nce)into the
restriction fragments produced, and aggregating and “filtering” the clones in different ways to
select those with appropriate properties.

TABLE OF CONTENTS

1. Introductionovu..n. JOORN ,

SEddsererrerrarrEEELIaaE B T T T DT T T T TP e B T T +

2. Basic Simulationccorerenen.n, e e e A R I "
2.1. Dnamake T ——— e —— e L R R i b e e ek
2.2. Dnacloneocovevenne e A A T R G

2‘3‘ Dl]a-f]‘a.g """" b Al L S dreddsras it s R R EaRsE A e s drepdrimrrraansiiatiansaas AmtEtdeERserrar T ra R R raanRRaan
2.4. Dnamap and Dnamapcomp T e T ARG e E TR e

3. Fragment Manipulationcccc...... bt —————— ettt et enaes e s
4.1. Addnums and Addnums_and_sort SR Rt n e R S
3.2. Introducing Errorcoevvveenn, TN] rmeamsanmtems e ane g R R ———— P e e bl

4. Clone Manipulationcccoerreverieersens R W PRETL Y, TR R R A P
4.1. Separate_clones i e e s g ettt s
4.2, Sort_elones ... B L e R S T e e R S b
4.3. Dnaszubelone ... T S i L Tt et b T T R
4.4 Dnamergeclone ...veerevnnes T —— PR b e SRR T U e

5. Seenarios ...ccoeeeceisninnn T L e e AT I s S

LIST OF FIGURES

Figure 1: Example Output [rom dnamapc..... R P R L AR AN R AR e
Figure 2: Example Output {rom dnamapeomp Sa RN i v S TR s T g £ RS
Pigure 8 Good CLonen: s i s st T AL R T
Figure 4: Sorted Good Clonescceeevvvveercireens SRR v e i R S iR S
Figure 5: Superclones SR L R R S N ORI e
Figure 8: Subelonesoccovvrvcvsesrricee s 8 5 i i B e 4 b R NS T SR T
Figure 7: Portion of an Aggregated File P e e S S

© O o NN

11
12
13

15
16
16
18
20

22

10
11
17
18
19
20
21

DNA Mapping ~1- Simulator

1. Introduction

This report documents the intent and use of a suite of programs for simulating the produc-
tion of DNA restriction fragment data, as might come from a biclogical laboratory doing work
in DNA mapping. This suite includes programs for (a) creating a random strand of DNA
(dnamake), (b) creating random clones given a strand of DNA (dnaclone), (¢) taking a clone
and applying a restriction enzyme to create restriction fragments (dnafrag}), and (d) creating a
nucleotide map of how the clones relate to one another within the original DNA strand
(dnamap). Besides this fundamental software, there are a number of programs for introducing
different forms of random error (nre, nce) into the restriction fragments produced, and aggre-

gating and "filtering” the clones in different ways to select those with appropriate properties.

This software is decomposed into a number of stand-alone programs so that each can be
used separately, or in concert with one another. For example, the standard scenario is to create
a random DNA strand (dnamake), produce random clones (dnaclone), produce fragments for
those clones (dnafrag), introduce random error into the fragments of the clones (nre), and
then supply that fragment information to whatever mapping activities are applicable. However,
the DNA used to produce clones need not have been produced by dnamake. For instance, it
may have been produced by hand or supplied by any other external means, such as extraction
from a database. Before the fragment information is produced for the clones, the user can
apply a number of different "filters” for extracting the clones desired. It may also be that nor-
mal random error is desired (nre) in a specific situation or that normal correlated error (nce) is

desired. All of these programs can be applied independently as desired.

The general style used by the software is somewhat eclectic; this is caused by the histori-
cal evolution of the software. Specifically, input to most of the programs can be done interac-
tively at the keyboard, or the input can be supplied by command line arguments. In the com-

mand line form, the standard ~letter notation is used to supply the values of the parametric

DNA Simulation -2- Section 1.

input. This form of input is most often used when the software is being used in a batch environ-
ment, e.g., in a long script of activities. For any required input arguments that are not supplied
on the command line, the software will interactively request the input from the user. In this

interaction, a line is printed requesting the desired information (along with a default). The user

may either enter the information, or enter RETURN (in which case the default is used).

In most cases a file is written, indicating the values of the input arguments which were
used. This file is useful for at least two reasons. First, it documents the parameters from which
the software produced its output. Second, the file is written in such a format that it can be
used as direct input (using the command < filename option) if exactly the same parameters

are desired in a subsequent application of the software.

The remainder of this report will present the intent and use of each of the specific pro-
grams available. A running example is used throughout the report to supply continuity for com-

parison across different forms of processing.

2. Basic Simulation

2.1. Dnamake

The program dnamake creates a random strand of DNA of a specific length and a specific
ratio of A-T/C-G base pairs. Obviously, an underlying random number generator is used. Its
original seed can be set (via a command line argument) or the seed can be randomly selected

based on the state of the operating system (the default if not supplied on the command line).

The command line arguments are as follows:

DNA Simulation - 8- Section 2.1.

Command Line Options:

-s <int> set random number generator seed
-1 <int> length of dna strand to be created
-r <string> rootfilename

~p <int> percentage

The above presentation was created by executing dnamake -h. Each of the programs for
which command line arguments are applicable has a -h (help) argument which prints out a

legend of what command line arguments are available.

An interactive session might look something like the following:

dna¥% dnamake

Starting dnamake

Root filename (DNA/test)? YAC/yac

DNA length (10000)? 100000

Percent of DNA that is A or T (50)? 35
Generating DNA of length 100000...done,
Ending dnamake

dnay

Any argument supplied on the command line will not be interactively requested from the
user; any required argument not supplied on the command line will be interactively requested
from the user. The standard mode of using this software is to be either completely command

line driven or completely interactive; however, it is possible to mix the two modes.

The file produced echoing the parametric inputs will be (in this case)

YAC/yac.dnamake. input. Its content is:

YAC/yac
100000
35

The DNA strand of 100000 base pairs is placed in the file (in this case) YAC/yac.dna. In
general the rootfilename is used as a base name in all of the software. Different .extensions

are appended to this name and used as the file name for different output data.

DNA Simulation -4 - Section 2.1.

2.2. Dnaclone

The program dnaclone is used to create a set of random clones from a strand of DNA.
This is done by simulating a partial digestion of the original DNA strand with a restriction
enzyme, usually one which recognizes a short sequence (often 4 base pairs long). A partial diges-
tion of a DNA strand means that when the DNA is digested, the restriction enzyme is not
allowed to cleave the DNA at every restriction site, but instead it is only allowed to cleave at a
small percentage of the restriction sites (randomly selected). In the biological world, this is
achieved by limiting the time that the restriction enzyme is allowed to interact with the DNA

and chemical inhibitors.

After the DNA has been randomly cleaved, specific substrands of the DNA (called clones)
are randomly selected for fragmentation. In the biological world, this essentially is done by
dilution. In the simulation, a random number generator is used to select random restriction
sites {(at which the cloning restriction enzyme is allowed to cleave the DNA) and then randomly
select a clone which corresponds to the substrand of DNA occurring between two randomly

selected restriction sites,

In the biological world, the clone selection process puts certain restrictions on the size of
the clones that can be produced. This is caused by the packaging mechanism used by the \-
vector, by which the clones are reproduced, In the simulation, all clones are produced whether
or not they fall within these bounds; however, they are "marked" (good, long, and short) to indi-

cate whether or not they are appropriate to use.

In general, in the activity of DNA mapping, there must be enough clones present in the
clone pool so that the entire original DNA strand (or at least most of it) is "covered” by the
clones. Since the mapping is performed by discovering overlap between the clones, it is actually
necessary to have enough clones to "cover” the original strand several times, and because of the

statistical possibility of having many clones cluster from one region and only a few from another

DNA Simulation -5 Section 2.2.

region, it is desirable to have a high redundancy factor for the clones, usually in the range of 5
to 10. The redundancy factor is the average depth of coverage of the clones over the original
strand. Specifically, if the original DNA strand to be mapped has X base pairs, a redundancy
factor of 5 implies that the sum of the lengths of all clones must be approximately 5X. Some-
times it is known what minimal number of clones is desired; other times only a general redun-

dancy factor is known. The software allows both of these requirements to be input.

The command line arguments are as follows:

Command Line Options:
-s <int> set random number generator seed
-r <string> rootfilename
-e <string> cloning enzyme sequence

-m <int> minimum number of clones to generate

-f <int> redundancy factor

-n <int> numerator of chance of clone site being cleaved
-d <int> denominator of chance of clone site being cleaved
-1 <int> lower limit on clone length to be produced

-u <int> upper limit on clone length to be produced

“a process both orig and like clones in redun anal
-0 process all clones as if they were original

An interactive session might look something like the following:

Starting dnaclone

Root filename (DNA/test)? YAC/yac

Clone restriction enzyme (atat)? aatt

Minimum number of clones to generate (25)? 32
Minimum redundancy factor (an integer) (5)? 7
Clone cleavage chance (15/1000)7?

Minimum clone length (in base pairs) (0)? 10000
Maximum clone length (in base pairs) (+inf)? 22000
Examining dna...length 100000.

Locating clone cleavage sites...84 sites.
Generating at least 32 clones., redundancy at least 7x...289 are unique.
Ending dnaclone

The input DNA is extracted from the file rootfilename.dna, and the output (a description
of the clones} is placed in the file rootfilename.clones. The positions of the clone sites are writ-

ten into the file rootfileneame.clone.sites. A sample of the output placed in the file

DNA Simulation =8- Section 2.2,

YAC/yac.clones is shown below:

83810 96893 69 80 original 0 good
o 1625 -1 o ocriginal 1000000 short
22926 92897 24 74 original 1000001 long
10839 16545 14 17 original 1000002 short
0 95554 -1 78 original 1000003 long
0 25369 -1 28 original 1000004 long
59922 52082 53 72 original 1000005 long
61284 100000 54 84 original 1000006 1long
21774 100000 22 84 original 1000007 long
0 21774 -1 22 original 1l good
29349 49484 30 42 original 2 good
0 19221 -1 20 original 3 good
61284 100000 54 84 like 1000006 1leng
50268 100000 45 84 original 1000008 1long

As can be seen, the data in this file are organized into 7 columns, one row for each clone.
The first two columns specify the start and end position of the clone in terms of the index into
the base pair sequence of the original DNA strand. The third and fourth columns specify the
same information, but the index used indicates the index of the restriction site (defined by the
cloning restriction enzyme). The fifth column indicates whether or not the clone produced is an
original clone (never before produced by the simulation) or one which has been previously gen-
erated. The sixth column is essentially a unique name (or identifier) for the clone. Note that
original, good clones are numbered sequentially starting at 0. Like clones "point" to their prede-
cessor. Bad clones (i.e., fong and short clones) are numbered sequentially starting at a very large
number (1,000,000). The seventh column indicates whether the clone falls into the length
specifications given as input parameters. In this running example, 388 clones were produced.

287 of these clones were unique, and only 43 of these were good (i.e., neither short nor long).

2.3. Dnafrag

The program dnafrag is used to produce the restriction fragment lists that would be
produced by applying a set of restriction enzymes to a clone in a complete digestion (i.e., a

digestion where all restriction sites are cleaved). The set of clones to which this complete

DNA Simulation -7- Section 2.3.

digestion is applied are the good, original clones found in the .clones file, "Partial® fragments
(those which are on the end of the clone and do not actually occur between two restriction sites)

are not reflected.

In the bioclogical world, the lengths of the fragments are determined by a process known as
electrophoresis. In this process, the information for fragments of length less than 400 base pairs
and longer than 8000 base pairs is effectively lost. The simulator allows the specification of

upper and lower fragment length boundaries.

This software is somewhat primitive, and does not recognize that DNA consists of comple-
mentary strands. Thus, in order to specify one conceptual restriction enzyme, two physical res-
triction enzymes must be specified to the software (one being the complement of the other). For
instance, in order to specify one restriction enzyme, say HindIIl, the two restriction enzymes, say

aagett and ttcgaa, must be input.

The command line arguments are as follows:

Command Line Options:
-r <string> rootfilename
-@ <int> # of enzymes to use
-0 <string> first restriction enzyme
-1 <string> second restriction enzyme

-9 <string> tenth restriction enzyme

-1 <int> lower limit on clone length to be produced
-u <int> upper limit on clone length to be produced
-a process both (all) orig and like clones

An interactive session might look something like the following:

DNA Simulation - 8- Section 2.3.

dnay dnafrag

Root filename (DNA/test)? YAC/yac

Number of fragment restriction enzymes (1)? 2
Fragment restriction enzyme #1 (aaattt)? aagctt
Fragment restriction enzyme #2 (cccggg)? ttcgaa
Minimum fragment size (0)? 400

Maximum fragment size (+inf)? 8000

Examining dna...length 100000.

Locating frag cleavage sites...l2 sites.
Locating frag cleavage sites...12 sites.
Reading clone information...done.

Determining fragment lists for 43 unique clones...decne.

The input for dnafrag is extracted for the file rootfilename.clones, and the output is
placed in files of the form rootfilename.frag.n, where N is the "name" of the clone extracted
from the rootfilename.clones file. The positions of the restriction sites are written into a file
named rootfilename.frag.sites. A sample of the output placed in YAC/yac.frag.lis

shown below:

2022 513
2318 2535
3738 4853
1972 8591
1377 10563

Note that there are two columns in this file. The first column indicates the length of the restric-
tion fragment; the second column indicates the position of the start of the fragment (in terms of
the index of the base pair). This second column can be used in two ways. First, it gives each
fragment in the original DNA strand a unique "name" so that the same fragment occurring in
different clones can be determined uniquely. Second, it orders the fragments (for instance, when
the fragments are sorted in some other order than they actually appear in the clones) within the

original DNA strand.

DNA Simulation -9 Section 2.3.

2.4. Dnamap and Dnamapcomp

The program dnamap is used to print a nucleotide map of how the clones relate to one
another and the original DNA strand. The restriction sites associated with (potential) clone

ends and (potential) fragment ends within the clone are marked.

The command line arguments are as follows:

Command Line Options:
-r <string> rootfilename
-c <string> clonefilename (full name)

An interactive session might look something like the following:

dna¥ dnamap
Root filename (DNA/test)? YAC/yac

A portion of the output produced by dnamap is shown in Figure 1. Note that in this par-
tial output, one clone end (designated by the C) and one restriction fragment end {designated by
the F) occur. The number to the left is the index of the nucleotide; the letter after the colon (:)
indicates which nucleotide is present; the vertical lines with numbers interspersed represent the
presence of a clone. The number interspersed in the line is the clone number extracted from the

.clones file. Note that clones 27 and 32 start in this region of the map.

Input to dnamap comes from a variety of files. The base pair sequence comes from the
file rootfilename.dna. The (potential) clone end information comes from the file
rootfileneme.clone.sites (this is a file produced by dnaclone behind the scenes). (The -c
option is used to eliminate some of the restriction sites marked as potential clone ends. Instead
of all potential clone ends being marked, only those which actually occur as clone ends in the
designated clone file are marked.) The extent of each clone is extracted from the file
rootfilename.clones. The (potential) fragment end information comes from the file

rootfilename.frag.sites (this is a file produced by dnafrag behind the scenes). Qutput from

DNA Simulation

2525:
2526:
2527:
2528:
2529:
2530:
2531:
2532:
2533:
2534:
2535:
2536:
2537:
2538:
2539:
2540:
2541:
2542:
2543:
2544;
2545:
2546:
2547:
2548;:
2549;

00000 0 RPO D PO OO0 0Q D

—_——— e e e P e e e H

|
i
I
I
1z

!
I
I
I
12
1
1

I
I
|
I
2
!
|
I
I
2
I
I
!
I
2

1

dnamap goes to stdout.

I
I
!
29

I
I
I
I
29
2

!
I
I
|
9
I
I
f
I
29
I
!
I
|
29
I

—_ W e W W — e W — o —) — —

=10 -

I
8
I
I
I
I
8
I
I
|
|
8
I
I
|
I
8
I
!
I
I
8
!
I
I

———— e ——— g — P P ——— —

|
!
|
I
16

[
|
I
I
16
|
I
[

I
16
I

I

|

I
16
I

l

I

I

6

1

b 8]
—_ N —_——— == —— 3

[%)

Figure 1: Example Qutput from dnamap

w
— e N o e B — — —

W

Section 2.4.

The output from dnamap is extremely voluminous; one line is printed for each nucleotide

in the original DNA strand. Thus, if there are 100,000 base pairs in the DNA strand to be

mapped, there are 100,000 lines in the output; it is very difficult to extract useful information

from such a detailed map. Thus, a second piece of software {dnamapcomp) has been produced

to compress this type of map.

The program dnamapcomp is used to compress this large base pair map by selecting and

retaining only those lines (and a small region around them) which constitute a “significant

change” in the map, i.e., a clone end or a fragment end. A portion of a compressed map, in the

same region as that shown is Figure 1, is shown in Figure 2. Note the large gaps in index

number at the left. Only regions of interest (change) are retained. The uncompressed map of

DNA Simulation -11- Section 2.4.

2533:
2534:
2535:
2536:
2537:
2538;
2539:
2540:
2898;
2899:
2900:
2901:
2902:
3329:

29

(=3
N —

[
12

b

2
1

=

1

[
P N —— 0 — — — —
)
—_————d—_-—a

42

PO o0 oo g O
—_— 0 — e — — — — —) — — —

i I
I f
! 9
I |
3 I
I !
I I
| 9
i [
I I
| 9
! I
3 |
I I

—_—— e e P

I
I I
! I
I I
| 9
2 I
I I
| 29
2 |
I I
| I
I !
2 I

[
e e e S —

1
Figure 2: Example Output from dnamapcomp

this DNA strand contains 100,000 lines. The compressed map contains only 538 lines.

The command line arguments for dnamapcomp are as follows:

Command line options:
-¢[number] print number lines around each line that marks a
clone boundary. Default is 2.
-f[number] print number lines around each line that marks a
fragment boundary. Default is 2.
-m[number] search for clone or fragment boundary marker up
to the numberth column. Default is 16.

The program dnamapcomp is a filter in the classical UNIX sense. Input comes from stdin;

output goes to stdout.

3. Fragment Manipulation

There are a number of programs available for massaging the . frag files and the frag-
ments in them. In the activity of extracting the data during the process of electrophoresis, the
fragments become sorted by their length. Since this is the normal way that data will be
obtained, it is not appropriate for the mapping software to know what the actual order of the

fragments is in the clone. Thus, there is software to sort the simulated restriction fragments by

length.

DNA Simulation -12 - Section 3.

In measuring the length of the restriction fragments after electrophoresis has taken place,
the standard problem of measurement error is introduced into the data. There is software for

introducing such measurement error to the simulated lengths in several different ways.

3.1. Addnums and Addnums_and sort

In general, most of the software requires a header line in the .frag files indicating how
many fragments are present. Sorting can also be performed during this process. The shell file
addnums simply adds a header line to the file indicating the number of fragments present. The

shell file addnums_and_sort, in addition, performs a sort during the process.

There is no command line mode for this software. An interactive session might look some-

thing like the following:

dnay addnums_and_sort
starting addnums_and_sort
root pathname?YAC

YAC

run id?yac

yac

filetype?frag

frag

YAC/yac. frag.0
changing YAC/yac.frag.0
changing YAC/yac. frag.l
changing YAC/yac.frag.2
changing YAC/yac.frag.3

changing YAC/yac. frag.40
changing YAC/yac. frag.41
changing YAC/yac.frag.42
ending addnums_and_sort

This software concatenates together the three arguments of rootpathname, runid, and
filetype. To this it appends an integer, starting at 0, and uses this as the name of a file to be

manipulated. Output is returned in the same file from which the input was extracted. The

DNA Simulation - 13 - Section 3.1.

integer is incremented by one (1) and the process is attempted again. The process ends when

the file corresponding to the file name constructed does not exist.

An example of the output produced by addnums_and_sort is the new content of the file

YAC/yac. frag.l, shown below.

N= 5

3738 4853
2318 2535
2022 513
1972 8521
1377 10563

Note the new header line (N= 5) and that the restriction fragments are sorted in descending

order, by length.

3.2. Introducing Error

There are two programs which allow the introduction of measurement error: nre {normal
random error) and nce (normal correlated error). Each introduces errors, based on a normal
distribution, into the fragments of a . frag file. Each can be used independently of the other

or in concert with the other.

The command line arguments for nre are as follows:

Command Line Options:
-s <int> set random number generator seed
-r <string> rootdirectory
-i <string> runid
-p <float> percent spread

An interactive session of nre might look something like the following:

DNA Simulation -14 - Section 3.2.

dna¥ nre
Root directory (DNA)? YAC
Run id (test)? vyac
Percent (1.000000)? .75
root_runid is YAC/vac
NOTE: Can't open old frag file YAC/yac.frag.43
sdl,2,3 and frag_cnt_tot are 89.000000, 127.000000, 132.000000, 132
STAT: Errors falling within 1, 2 and 3 sd's:
67.424240, 96.212120, 100.000000
DONE

The program nre introduces normal random error into the fragments with a standard
deviation which is a percentage of the length of the specific fragment; this percentage is an
input parameter. The program nce introduces error across all the fragments of the clone in a
correlated way. Specifically whatever normal error is selected for insertion is introduced to all

of the fragments of the clone (as a multiplicative factor).

Input to nre come from the .frag files. Again, numbering starts at 0, and processing
ends when the file corresponding to the generated file name does not exit. Output from nre is

placed into corresponding .r frag files.

Alfter applying nre to the data previously presented, the file YAC/vac.rfrag.1 might

contain the following.

N=5

3733 4853
2315 2535
2043 513
1978 8591
1362 10563

The command line arguments for nce are as follows:

Command Line Options:
-s <int> set random number generator seed
-r <string> rootdirectory
-i <string> runid
-p <float> percent spread of corr error

DNA Simulation - 15 - Section 3.2.

An interactive session of nce might look something like the following:

dna¥ nce
Root directory (DNA)? YAC
Run id (test)? vac
Percent spread of correlated error {1.000000} 7 .75
root_runid is YAC/yac
NOTE: Can't open old frag file YAC/yac.frag.43
sdl, 2,3 and clone_cnt_tot are 33.000000, 43.000000, 43.000000, 43
STAT: Errors falling within 1, 2 and 3 sd's:
76.744186, 100,000000, 100.000000
DONE

Input to nce comes from the .frag files. Again, numbering starts at 0, and processing
ends when the file corresponding to the generated file name does not exit. Quiput from nce is

placed into corresponding .crfrag files.

After applying nce to the data previously presented, the file YAC/yac.erfrag.l might

contain the following.

N=5

3749 4853
2324 2535
2027 513
1977 8591
1381 10563

4. Clone Manipulation

There are a number of programs for manipulating the .clones file and aggregating the
- frag files to which the remaining clones correspond. Specifically, some important activities
are to: (a) separate clones into good clones and bad (i.e., long and ghort) clones
(separate_clones), (b) sort the clones in terms of their occurrence in the original DNA
strand (sort_clones), (c) determine which of the clones are subclones of one another
(dnasubclone), and (d) concatenate . frag files together based on a specific set of clones of

interest (dnamergeclone).

DNA Simulation - 16 - Section 4.

4.1. Separate_clones

The shell script separate_clones separates the clones in a .clones file into good

clones and bad clones.

There is no command line mode for separate_clones. An interactive session of

separate_clones might look something like the following:

dna}, separate_clones
Starting separate_clones
filename?YAC/yac.clones
YAC/yac.clones

Ending separate_clones

Input comes from the file filename. OQutput is placed in two files: filename.good and
filenamebad. Given the data of the running example, the 43 good clones will be placed in the
file YAC/yac.clones.good, and the 345 bad clones will be placed in the file

YAC/yac.clones.bad. The content of YAC/yac.clones.good is shown in Figure 3.

4.2, Sort_clones

The shell script sort_clones sorts the clones in the order in which they appear in the

original DNA strand.
There is no command line mode for sort_clones. An interactive session of
sort_clones might look something like the following:

dnay, sort_clones
filename?YAC/yac.clones.good

Input comes from the file filename. Output is placed in filename.sorted. The content of

YAC/yac.clones.good.sorted is shown in Figure 4.

DNA Simulation

83810

29349

5436
3546
42599
61284
O

0
22739
45852
0
39489
55012
23609
1625
2900
82348
75924
83810
35971
30503
5423
16429
86960
4986
2538
16977
o
50268
44698
2538
5436
3331
74449
22926
23609
42599
77243
82509
7441
2900

96893
21774
49484
19221
26786
22739
59922
82948
21182
10839
36437
64187
16977
55012
72281
36437
16429
16977
100000
95622
100000
55266
49484
19059
29349
100000
16429
16429
30503
15041
64441
59922
19059
21182
19059
92311
44698
39489
53524
93497
100000
29349
21774

80
22
42
20
29
23
53
68
21
14
36
56
18
48
60
36
16
18
84
79
84
49
42
19
30
84
16
16
31
15
57
53
19
21
19
73
39
37
47
75
84
30
22

Figure 3: Good Clones

o

original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original

CwOwRdIh b wioH O

1

good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
gocod
good
good
good
good
good
good
good
good
gcod
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good

Section 4.2.

DNA Simulation

COO0CO0O0OO0

1625
2538
2538
2900
2900
3331
3546
4986
5423
5436
5436
7441
16429
16977
22739
22926
23609
23609
29349
30503
35971
39489
42599
42599
44698
45852
50268
55012
61284
74449
75924
77243
82348
82509
83810
83810
86960

21774
21182
19221
16977
15041
10839
16429
19059
16429
21774
16977
19059
22739
16429
1905%
26786
21182
29349
29349
30503
36437
44658
39489
36437
49484
49484
55266
55012
59922
53524
59922
64187
64441
72281
82948
92311
95622
93497
100000
100000
100000
96893
100000

4.3. Dnasubclone

22
21
20
18
15
14
16
13
16
22
18
19
23
16
19
29
21
30
3C
31
36
39
37
36
42
42
49
48
53
47
53
56
57
60
68
73
79
75
84
84
84
80
84

- 18 -

original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
ocriginal
original
original
original
original
original
criginal
original

Figure 4: Sorted Good Clones

good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
gocod
good
good
good
good
good
good
good
good
good
good

Section 4.2.

The program dnasubclone determines which clones are superclones {i.e., are not con-

tained in any other clone of the set of clones being considered) and which are subclones.

DNA Sirmulation

=19 =

The command line arguments for dnasubclone are as follows:

Command Line Options:

-r <string> rootfilename

Section 4.3.

An interactive session of dnasubclone might look something like the following:

dnay dnasubclone

Starting dnasubclone

Root filename (DNA/test.clones)? YAC/yac.clones.good
Sorting clone information..
Ending dnasubclone

.done.

Input is taken from the file rootfilename. Output is placed in two files: rootfilename.super

and rootfilename.sub. The content of YAC/yac.clones .good.super is shown in Figure 5,

and the content of YAC/yac.clones.good.sub is shown in Figure 6.

0O
3546
5436
7441

16977
22739
22926
29349
35971
42599
45852
50268
55012
61284
74449
75924
82348

21774
22739
26786
29349
30503
36437
44698
49484
55266
59922
64187
64441
72281
82948
92311
95622
100000

10
11
18
23
24
30
35
38
40
45
48
54
62
63
66

22
23
29
3¢
31
36
39
42
49
53
56
57
60
68
73
79
84

Figure 5: Superclones

original
original
original
original
criginal
original
original
original
original
original
original
original
original
original
criginal
original
original

(AN S

4

10
36

21

11
30
14

35
19
18

good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good

DNA Simulation

Q00O 0CCO

1625
2538
2538
2900
2900
3331
4986
5423
5436
16429
23609
23609
30503
39489
42599
44698
77243
82509
83810
83810
86960

21182
19221
16977
15041
10839
16429
19059
16429
21774
16977
19059
16429
19059
21182
29349
39489
36437
43484
55012
53524
59922
93497
100000
100000
96893
100000

4.4. Dnamergeclone

-1
-1
-1
-1

1
WO R

1
1

OO WU b bW

26
31
37
38
39
65
67
69
69
70

21
20
18
15
14
16
19
16
22
18
1%
16
19
21
30
37
36
42
48
47
53
75
84
84
80
84

Figure 6: Subclones

- 20 -

original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original
original

12
29

16
32
27
42
17
34
26
23
33
24
37
15
22
13
38
31
39
40
20

25

good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good

Section 4.3.

The program dnamergeclone is used to aggregate a set of . frag files (specified by a

specific .clones file) into a single file,

The command line arguments for dnamergeclone are as follows:

Command Line Options:

-¢ <string> clonefllename
-f <string> fragmentfilename

An interactive session of dnamergeclone might lock something like the following:

DNA Simulation

-21- Section 4.4,

dna¥ dnamergeclone

Starting dnamergeclone

Clone filename (DNA/test)? YAC/yac.clones. good.super
Fragment filename (DNA/test.frag)? YAC/yac.frag
Ending dnamergeclone

All the fragmentfilenames corresponding to clones present in the file clonefilename are

aggregated into the file fragmentfilename.aggreg. This file can be used by DNA. mapping

software for defining the set of clones (and their fragments) to be processed. A portion of the

file YAC/yac.frag.aggreg is shown in Figure 7.

N= 5,clone=cll
3738 4853

2318 2535

2022 513

1972 8591

1377 10563

N= 3,clone=cl5s
3738 4853
1972 8591
1377 10563

N= 2.clone=cl4
1972 8591
1377 10563

N= 3,clone=cl4l
4618 24238
1972 8591
1377 10563

N= 1,clone=clz8
4618 24238

N= 4,clone=cll0
4618 24238
3855 30935
1809 28856
1343 34790

Figure 7: Portion of an Aggregated File

DNA Simulation -22- Section 4.4.

5. Scenarios

This suite of programs can be used in a variety of ways, For instance, it may be desirable
to create a DNA strand, create random clones, and then perform complete digestions of these
clones in 3 different ways (first using HindIII, second using FEecoRI, and third using a combination
of both, referred to as RH). This might be achieved by creating a directory into which all map-
ping data is to be deposited (e.g., CL32). This directory might have three different subdirec-
tories (HINDIII, ECORI, and RH) intended to contain the .f rag files for each of the separate
digestions. A scenario for obtaining these results might be achieved by executing the following

UNIX shell seript.

DNA. Simulation -23- Section 5.

Make the DNA itself

dnamake -s32 -1100000 ~rCL32/cl32 -p50

Make the clones from the DNA

dnaclone -s32 -rCL32/cl32 -eatat -m32 -f10 -nl5 -d1000 -114000 -u25000
Separate the good and bad clones from each other
separate_clones <<END

CL32/¢cl32.clones

END

Find the superclones of the good clones
dnasubclone -r CL32/cl32.clones.good

Do detailed stuff for HINDIII

create frag files

dnafrag -rCL32/cl32 -e2 -Qaagctt -lttcgaa -1400 -u8000
sort the fragments and add numbers
addnums_and_sort <<END

CL32

cl32

frag

END

introduce normal randem error into the frag files
nre -s32 -r CL32 -i ¢l132 -p 0.75

move the results to the subdirectory

mv CL32/cl32.dnafrag.input CL32/HINDIII
mv CL32/cl32.frag.* CL32/HINDIII

mv CL32/¢l32.rfrag.* CL32/HINDIII

Do detailed stuff for ECORI

create frag files

dnafrag -rCL32/cl32 -e2 -Ogaattc -lcttaag -1400 -u8000
sort the fragments and add numbers
addnums_and_sort <<END

CL32

cl3z

frag

END

introduce normal random error into the frag files
nre -s32 -r CL32 -i <132 -p 0.75

move the results to the subdirectory

mv CL32/cl32.dnafrag.input CL32/ECORI
mv CL32/cl132.frag.* CL32/ECORI

mv CL32/cl32.rfrag.* CL32/ECORI

Do detailed stuff for RH

create frag files

dnafrag -rCL32/cl32 -e4 -Oaagctt -lttcgaa -2gaattc -3cttaag -1400 -u8000
sort the fragments and add numbers
addnums_and_sort <<END

CL32

cl32

frag

END

introduce normal random error into the frag files
nre -s32 -r CL32 -i cl32 -p 0.75

#* move the results to the subdirectory

mv CL32/cl3Z.dnafrag.input CL32/RH

DNA Simulation

- 24 - Section 5.

mv CL32/cl32.frag.* CL32/RH
mv CL32/cl32.rfrag.* CL32/RH

make an
dnamergeclone
make an
dnamergeclone
make an
dnamergeclone
make an
dnamergeclone
make an
dnamergeclone
make an
dnamergeclone

aggregate frag file for the good superclones for ECORI

¢ CL32/cl32.clones,good.super -f CL32/ECORI/cl32. frag
aggregate rfrag file for the good superclones for ECORI
-c CL32/cl32.clones.good.super -f CL32/ECORI/cl32.rfrag
aggregate frag file for the good superclones for HINDIII
-¢ CL32/cl32.clones.good.super -f CL32/HINDIII/cl32.frag
aggregate rfrag file for the good superclones for HINDIII
-c CL32/cl32.clones.good.super -f CL32/HINDIII/cl32.rfrag
aggregate frag file for the good superclones for RH

-c CL32/cl32.clones.good.super -f CL32/RH/cl32.frag
aggregate rfrag file for the good superclones for RH

-c CL32/cl32.clones.good.super -f CL32/RH/cl32.rfrag

Note that in this scenario all the DNA strand and clone information remains in the top-

level directory (CL32), while all the fragment information is transferred to the appropriate

directory (HINDIII, ECORI, or RH) corresponding to the particular restriction enzyme used.

	DNA Mapping Algorithms: The DNA Simulator
	Recommended Citation
	DNA Mapping Algorithms: The DNA Simulator

	tmp.1456444019.pdf.KiII3

