
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2002-24 

2002-08-14 

Implementation of a Pipelined Control Cell Processor Implementation of a Pipelined Control Cell Processor 

Michael Attig and John W. Lockwood 

A fast control cell processor (CCP) has been designed and implemented in order to process 

control cells as they enter the module. This fast CCP is capable of receiving back-to-back 

control cells, processing them, and sending them out in back-to-back fashion. The fast CCP 

comes equipped with a SRAM interface and a statistics interface. Currently, the fast CCP uses 

the Statistics Counter Plus to count the number of control cells on each VCI, the number of 

SRAM reads on each VCI, the number of SRAM writes on each VCI, and the total number of 

control cells that pass through... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Attig, Michael and Lockwood, John W., "Implementation of a Pipelined Control Cell Processor" Report 
Number: WUCSE-2002-24 (2002). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1142 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1142 

Implementation of a Pipelined Control Cell Processor Implementation of a Pipelined Control Cell Processor 

Michael Attig and John W. Lockwood 

Complete Abstract: Complete Abstract: 

A fast control cell processor (CCP) has been designed and implemented in order to process control cells 
as they enter the module. This fast CCP is capable of receiving back-to-back control cells, processing 
them, and sending them out in back-to-back fashion. The fast CCP comes equipped with a SRAM 
interface and a statistics interface. Currently, the fast CCP uses the Statistics Counter Plus to count the 
number of control cells on each VCI, the number of SRAM reads on each VCI, the number of SRAM writes 
on each VCI, and the total number of control cells that pass through the module. 

https://openscholarship.wustl.edu/cse_research/1142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1142&utm_medium=PDF&utm_campaign=PDFCoverPages




Implementation of a Pipelined Control Cell Processor

Michael Attig
John W. Lockwood

Department of Computer Science
Applied Research Lab
Washington University

1 Brookings Drive, Box 1045
Saint Louis, MO 63130

WUCS-2002-24
http://www.arl.wustl.edu/arl/projects/fpx

August 14, 2002

Abstract

A fast control cell processor (CCP) has been designed and implemented in order to process control
cells as they enter the module. This fast CCP is capable of receiving back-to-back control cells, process-
ing them, and sending them out in back-to-back fashion. The fast CCP comes equipped with a SRAM
interface and a statistics interface. Currently, the fast CCP uses the Statistics Counter Plus to count the
number of control cells on each VCI, the number of SRAM reads on each VCI, the number of SRAM
writes on each VCI, and the total number of control cells that pass through the module.

1



1 Introduction

The Field programmable Port Extender (FPX) [1][2] is a reconfigurable network platform that uses control

cells to read and write to memory. These control cells are generally generated in software, but can also

be generated in hardware [3]. Many applications in networking hardware send and receive control cells in

back-to-back fashion. In such cases, a control cell processor (CCP) capable of sending and receiving back-

to-back control cells is a valuable commodity. The fast CCP has been designed in order to process incoming

back-to-back control cells and to send them out back-to-back. When control cells exit back-to-back, the

separation from start-of-cell to start-of-cell (SOC) is fourteen clock cycles.

The first implementation of the CCP required nearly four times as many clock cycles to process control

cells. For example, when back-to-back control cells of four SRAM memory writes were processed, the

delay from SOC to SOC was 52 clock cycles. When four SRAM memory reads were performed, the delay

rose to 80 clock cycles. The fast CCP has been designed to perform two main functions: allow control cells

to read/write to SRAM and maintain statistics of incoming control cells on each virtual circuit identifier

(VCI), the number of reads on each VCI, the number of writes on each VCI, and the total number of control

cells. The fast CCP is loaded into the reprogrammable application device (RAD) field programmable gate

array (FPGA). Refer to Figure 1 for a view of how the fast CCP is arranged in the RAD FPGA.

SR
A

M
 I

nt
er

fa
ce

D
ev

ic
e 

0
SR

A
M

 Interface
D

evice 1

CCP Module

CCP FSM

CCP_stat_int

CCP_sram_int

RAD FPGA

data
addr

rw rw
reqreq

gr gr

SRAM
Device

0

SRAM
Device

1

Figure 1: Two modules can be placed within the RAD FPGA. This diagram shows only the fast CCP in the
RAD FPGA.

2



2 Functions

The fast CCP responds to control cells arriving on 17 different VCIs: x0023 and x0040 through x004F.

Control cells arriving on other VCIs will be passed through. Currently, the fast CCP uses three different

operation codes (opcode): x12, x14, and x18.

Opcode x12 allows the user to change one of the VCIs that the fast CCP responds to. This opcode

changes a VCI storage register, which upon restart holds x0023. In order to change the VCI, place x12 in

the opcode field and place the new VCI in bits 31 down to 16 of the first payload field.

Opcode x14 is used to perform SRAM reads and writes. The control cell format for SRAM memory

operations [4] allows variable burst length reads or writes, and it allows the user to specify which SRAM

device to use.

Opcode x18 is used to perform statistics reads. The fast CCP currently tracks four different types of

events: the number of cells arriving on each VCI, the number of SRAM reads on each VCI, the number of

SRAM writes on each VCI, and the total number of cells that have passed through the module. In order

to read the number of events, a control cell format similar to that of a SRAM operation is used. Refer to

Figure 2 for the cell format used for statistics operations.

OpCode
PL 1
PL 2
PL 3
PL 4
PL 5
PL 6

PL 9
PL 10

PL 7

HEC

PL 8

PL 11

VCI VPI VCI
PADHEC

OpC ModID

CM Data
Seq # CRC

Counter Data

Counter Data

Addr

Addr

31 16 14 12 10
111315 9

AddrV

Figure 2: Addresses can be placed in bits 16 down to 9 of payloads 1 and 5. When performing a statistics
read, set bit 31 of the corresponding address field. The value of the specified 32-bit counter will be returned
in payloads 2 or 6.

2.1 Obtaining the Counter Address

The fast CCP determines the event number in a specific way. First, only the lower 6 bits of the VCI are

used. To count an incoming cell on a specific VCI, 00b is appended to the front of these 6 bits. In the case

of a SRAM read, 01b is appended, and in the case of a SRAM write, 10b is appended. Refer to Figure 3 for

an example. If the user wishes to read the total number of cells that have passed through the module, use

11000000b as the event number.

3



16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9

Count Cell

Count Reads

Count Writes

VCI = x0045VCI = x0023

1 0 0 0 1 1

110001

1 0 0 0 1 1 0 0 0 1 0 1

101000

0 0 0 1 0 11 1

1

0

0

0 0

0

0 0

1

0

Figure 3: The above figure shows how to determine the counter address for two different VCIs. To read the
number of cells arriving on VCI x0023, place 00b in bits 16 down to 15 and 100011b in bits 14 down to 9 of
the address field in the control cell of Figure 2. Note that bits 14 down to 9 correspond to the lower 6 bits of
the VCI. To read the number of SRAM reads on VCI x0023, place 01b in bits 16 down to 15 and 100011b
in bits 14 down to 9. To read the number of SRAM writes on VCI x0023, place 10b in bits 16 down to 15
and 100011b in bits 14 down to 9. The same technique can be used for cells arriving on VCI x0045 except
bits 14 down to 9 are 000101b.

3 Design

The main components of the fast CCP are the CCP finite state machine (FSM), CCP SRAM Interface, CCP

Stat Interface, Input FIFO FSM, Output FIFO FSM, and two 256 by 32 FIFOs. These components and how

they are connected to the fourteen pipeline registers is shown in Figure 4.

The fast CCP consists of fourteen pipeline registers, one for each of the words in a control cell. As the

cell enters the pipeline, the CCP FSM begins to process words. The FSM checks the VCI, HEC, Module

ID, and Opcode. If these are valid, the FSM will assert the appropriate opcode-dependent signals. If any of

these are not valid, the cell is passed through unchanged.

The input and output FIFO FSMs are responsible for interacting with the appropriate FIFO. On the input

side, the Input FIFO FSM listens forsoc in int. When this pulses, the FSM asserts a write signal to the input

FIFO. This component is also responsible for knowing how many cells are currently in the FIFO. If 18 cells

are currently in the FIFO, it will asserttca out int, which communicates to exterior modules that it can not

receive any more cells.

On the output side, the Output FIFO FSM awaitsstart write fifo out from the CCP FSM. When this

signal is asserted, it begins writing 32-bit words into the FIFO unless the signalfreezepipe is asserted.

The Output FIFO FSM also listens totca in int in order to determine if it can send a cell out or not. This

component also maintains a counter to determine how many cells are currently in the output FIFO. If 18

cells are awaiting to depart the module, the CCP cannot process cells until at least one cell begins to leave.

4



D Q
D Q

D Q

D Q

D Q

D QD QD Q

Input
Fifo

FSM /
Counter

Cell
Counter

D Q D Q

Output
Fifo

FSM /
Counter

fi
fo

_i
s_

fu
ll_

ou
t

st
ar

t_
w

ri
te

_f
if

o_
ou

t

CRC
GEN

CCP
Statistics
Interface

CCP
SRAM

Interface

CCP FSM

co
un

t_
th

e_
ce

ll
fi

fo
_i

s_
em

pt
y_

in

so
c_

in
_i

nt
tc

a_
ou

t_
in

t

da
ta

_i
n_

in
t

data_out_int
tca_in_int
soc_out_int

re
ad

_f
if

o_
in

pi
pe

_d
at

a_
1

sr
am

_o
p

fr
ee

ze
_p

ip
e

st
at

_o
p

co
un

t_
th

e_
ce

ll

Counter
CRC

st
ar

t_
cr

c_
ca

lc

re
ad

_f
if

o_
in

re
se

t_
ce

ll_
cn

t
ce

ll_
cn

t

Figure 4: This block diagram shows the main components of the fast CCP. Not all signals are shown in this
diagram.

4 Timing

The fast CCP implementation is capable of processing back-to-back cells. The separation from SOC to SOC

is 14 clock cycles, as shown in Figure 5. There is an initial delay from incoming SOC to outgoing SOC of

24 clock cycles.

Figure 5: When back-to-back cells are sent to the fast CCP, the response cells will leave back-to-back.

The waveform in Figure 5 assumes that SRAM grant is given immediately. This is not always the case

since a contending module may have been granted access to SRAM. The fast CCP cannot perform memory

5



operations until the other module has completed its transaction. In such cases, the pipeline is frozen in place

to wait for grant. Once a grant is given, the pipeline is allowed to advance again. The signalfreezepipe

is used to prevent latching the data pipeline flip-flops. In the following example, a memory operation for

SRAM device 0 is to occur. However,dev0 gr int has not been asserted when expected. This causes

freezepipe to be asserted, which freezes the current FSM state and holds the current value of the pipeline

registers. Refer to Figure 6 for a waveform showing the pipeline freeze.

Figure 6: When SRAM grant is not given immediately, the pipeline will remain in its current state The above
waveform shows the address presented to RAM being held.

5 Resources

The fast CCP is relatively small, utilizing only 1092 of 19,200 (5%) slices of the Xilinx Virtex XCV2000E

FPGA. The design uses 757 of 38,400 (1%) 4-input LUTs and 6 of 160 (3%) on-chip block RAMs. This

design has been placed and routed on the chip, and it is capable of running at a clock frequency of 100.7

MHz.

6 Code Location

The source code, edf files, test cells, and documentation for this module can be found in the CVS tree at:

/project/arl/fpx/cvsroot/FPXROOT/RAD/TOP/FASTRAD CCP

6



7 Conclusion

The fast CCP is capable of processing back-to-back cells on the fly, with a separation as they leave of 14

clock cycles. This is the best case, however, in that if a grant is not received from SRAM immediately,

the fast CCP pipeline will be frozen in place until grant is asserted. In addition, the fast CCP instantiates

a Statistics Counter Plus [5] component to count the number of cells arriving on each VCI, the number of

SRAM reads on each VCI, the number of SRAM writes on each VCI, and the total number of control cells

passed through the module.

References

[1] J. W. Lockwood, J. S. Turner, and D. E. Taylor, “Field programmable port extender (FPX) for dis-

tributed routing and queuing,” inACM International Symposium on Field Programmable Gate Arrays

(FPGA’2000), (Monterey, CA, USA), pp. 137–144, Feb. 2000.

[2] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Reprogrammable Network Packet Pro-

cessing on the Field Programmable Port Extender (FPX),” inACM International Symposium on Field

Programmable Gate Arrays (FPGA’2001), (Monterey, CA, USA), pp. 87–93, Feb. 2001.

[3] D. E. T. Todd Sproull, John W. Lockwood, “Control and configuration software for a reconfigurable

networking hardware platform,” inIEEE Symposium on Field-Programmable Custom Computing Ma-

chines, (FCCM), (Napa, CA), Apr. 2002.

[4] D. E. Taylor, J. W. Lockwood, and N. Naufel, “Rad module infrastructure of the field-programmable port

extender (fpx),” Tech. Rep. WUCS-TM-01-16, Applied Research Laboratory, Department of Computer

Science, Washington University in Saint Louis, July 2001.

[5] M. E. Attig and J. W. Lockwood, “Usage of the Statistics Counter Plus Component in Networking

Hardware Modules,” tech. rep., WUCS-02-25, Washington University, Department of Computer Sci-

ence, Aug. 2002.

7


	Implementation of a Pipelined Control Cell Processor
	Recommended Citation
	Implementation of a Pipelined Control Cell Processor

	tmp.1472055847.pdf.qi_dd

	Abstract: Abstract: A fast control cell processor (CCP) has been designed and implemented in order to process control cells as they enter the module. This fast CCP is capable of receiving back-to-back control cells, processing them, and sending them out in back-to-back fashion. The fast CCP comes equipped with a SRAM interface and a statistics interface. Currently, the fast CCP uses the Statistics Counter Plus to count the number of control cells on each VCI, the number of SRAM reads on each VCI, the number of SRAM writes on each VCI, and the total number of control cells that pass through the module.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: August 14, 2002
	Author: Authors: Attig, Michael; Lockwood, J. W.
	Title: Implementation of a Pipelined Control Cell Processor
	ReportNumber: 2002-24
	DepartmentName: Department of Computer Science & Engineering


