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Abstract

This proposal addresses two problems in programmable networks. Speci�cally, we are
interested in networks that can dynamically deploy applications and session-speci�c
plugins within network routers, to provide advanced communication services.
In the �rst half of the proposal, we present a general approach to the problem of con-
�guring application sessions that require intermediate processing in programmable
networks. In the second half, we discuss how to provision a programmable net-
work for such sessions by placing and dimensioning link bandwidth and processing
resources in an eÆcient way.
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1. Introduction

Computer networks have evolved to provide convenience in diverse areas of everyday life.
Applications developed in such networks, particularly in the Internet, have various purposes
and objectives. In order to support the dynamics and the variety of such applications, re-
search in active networks [22][2] has been exploring the programmability of networks. In
programmable networks, applications can be designed so that some of their processing oc-
curs not only on end systems but also on routers. This feature opens up a set of 
exible
ways to develop and deploy new services. For example, consider an application that requires
speci�c encryption and decryption to be applied to its session data transmitted between
two remote corporate networks. On behalf of the application session, the processing com-
ponent on routers can be programmed to perform the encryption and the decryption. Now,
advances in technology are making it possible to build such networks by enabling general
purpose processing in network routers. Many research e�orts have been undertaken to de-
velop programmable routers [7] and methods for operating programmable networks.

In this work, we study two problems that are tightly related to managing resources in
programmable networks. The �rst problem deals with mapping application sessions onto
appropriate network resources. For the example given above, the session is mapped onto
links for the data 
ow and the routers where the encryption and decryption are performed
on the data. The requirements, which include processing cycles, memory, or the ability to
execute a particular program, are used to identify the set of routers capable of the process-
ing. Given such a characterization, we model the problem in a graph space and study how
to optimally con�gure individual sessions. In Section 3, we provide a formal de�nition and
details of the problem.

Second, we study the network con�guration problem in programmable networks. While
the �rst problem deals with dynamically con�guring application sessions given a set of
available resources, the second part focuses on how to deploy resources to satisfy expected
needs for resources. We focus on situations where the network topology is �xed and the
anticipated traÆc of the target applications are given, and then attempt to determine the
capacity required for each resource. We also study to best place processing resources, when
number of processing nodes is limited. The formal description and the de�nition of the
problem is given in Section 4.

2. Related Works

Several approaches have been proposed to realize the idea of programmable networks. One
such approach is called active networking [2],[22]. Active networking is best known with a
variant called capsule model, where a packet may include a speci�c program and is inter-
cepted by a router that executes the program on the packet data before forwarding it to the
next hop router. With respect to coding the intermediate programs, several programming
languages have been proposed as in [11], [25].

More practical variants of active networking involve pre-installation of programs at
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routers in advance of packet arrivals instead of carrying programs in packets. The instal-
lation procedure can be done with a signalling protocol that loads a trusted program into
routers, and the program can be applied to subsequent packets [7]. Programs can also be
installed by network administrators at designated routers in the network as a part of sup-
porting new services. After installing the programs, the applications providing the services
can have their packets routed through the routers that are installed with corresponding
programs. In this case, the installation of such programs must be done as a part of the
service deployment, which plays a crucial role in the performance of the applications and
the utilization of the network. Chae et al. proposed a distributed mechanism called the
Iterative Gather-Compute-Scatter(IGCS) computation model [3] that enables applications
to access various network status and attributes, and furthermore identify the nodes or links
where target services need be installed or deployed. Another method providing distributed
deployment of services, which extends the IGCS method, is proposed in [10], which par-
ticularly focus on an hierarchical network model that aggregates the network information
in order to support multiple autonomous networks. We also discuss the problem of the
service deployment in Section 4, where, however, the problem is considered in the network
designing phase given expected resource usages for the target services.

For both variants of active networking, routers need a software for executing the pro-
grams that are either conveyed by or installed for application data. Such software infras-
tructure has been exploited in many research e�orts [1], [18], [23], [24].

Programmable networks expand the concept of resource in networks by allowing ap-
plications to use processing resources at routers in addition to links through which data
is transmitted. Darwin project [4] is focused on the management of this broader set of
network resources. One of the core mechanisms in Darwin system is a resource or service
broker called Xena which discovers and selects the resources that are necessary and (near)
optimal for service requests from applications. Once the resources are identi�ed, a signaling
mechanism called Beagle conveys signaling messages to reserve the resources for the cor-
responding application. Darwin also contains a mechanism that manages and adapts the
resource usages at each resource, which is based on a Java code module called a delegate.

Among the mechanisms in Darwin, Xena implements the algorithm to determine the
resources to be con�gured for each service request of an application or an application ses-
sion. While Xena expresses the algorithm as a 0-1 integer programming problem to solve
more general forms of application sessions, our session con�guration described in Section 3
provides a more eÆcient algorithm for the most popular subsets of session forms and may
be combined with Xena for better performance.

Another component necessary to realize programmable networks is the application pro-
gramming interface(API) through which individual applications request and utilize re-
sources. A successful example of such interfaces is the BSD socket interface that has been
widely used in UNIX operating systems for applications communicating through Internet.
As programmable networks expand the concept of network resources to include the process-
ing capabilities of routers, we need a new API that supports the new resource type. Active
pipe [13] proposes an API for programmable networks, that abstracts heterogenous appli-
cation requirements and interacts with lower level entities that manage network resources.
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Figure 1: Session graphs

3. Con�guring Sessions in Programmable Networks

This section details the problem of mapping an application session onto resources in the
network, where intermediate processing is required. For example, consider a video trans-
mission application, whose goal is to have the video data sent from a sending device and
transformed at an intermediate router so that an incompatible receiving device can view it.
The con�guration of this session should identify the set of links used to form the data path
and the router which will do the video transformation.

In general, the task of con�guring a session is composed of identifying the session format,
particularly the communication and the processing that occur in the session, and then
mapping the format onto the resources in the network that would ful�ll the goals of the
session.

Depending on the purposes and the goals, network applications can take di�erent for-
mats. In this work, the session formats are described with the terminals sending and/or
receiving data, the data 
ows among the terminals, and the processing applied to the data

ows. We use a graph model to express each session format, where the nodes stand for
the terminals or the processing steps, and the edges stand for the data 
ows. Each edge in
the graph is associated with the link bandwidth consumed by the corresponding data 
ow.
Similarly, each non-terminal node is associated with the processing capacity consumed by
the corresponding processing step. Figure 1(a) shows an example that describes a unicast
session with two steps of intermediate processing. In the �gure, the terminal nodes are s
and d, and the processing steps are t1 and t2, while the edges specify the data 
ows from
one terminal through the other terminal. The bandwidths consumed by the data 
ows are
b1; b2 and b3, and the processing capacities are p1 and p2. We refer to the graph describ-
ing a session format as the session graph. We have another example of a session graph in
Figure 1(b) that involves more terminals, processing and data 
ows. In general, a session
graph forms a directed graph that involves one or more terminal nodes. While arbitrary
topologies are possible, we focus our attention here on paths and trees.
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We also describe the network as a graph. While the session graph describes only the
properties of a session, the network graph describes the entire network, which is composed of
terminals, routers, and physical links that connect them. For programmable networks, some
routers are specially labeled as processing nodes representing programmable routers. We
may further categorize the processing nodes so that each of them is labeled with the types
of processing that it can handle. The categorization is partially determined by the system
speci�cations on the routers, in which properties like processing power, memory size or
software capabilities may be considered. Processing can also be categorized by application
constraints. For instance, recall the example of the encryption and decryption application.
In this case, the application intends to perform the encryption before the data leaves the
network region that includes the sender and to perform the decryption after the data enters
the network region that includes the receiver. To re
ect this intent, we label all processing
nodes in the sender's network region to express the type of the nodes where the encryption
can be done. Similarly, we label all processing nodes in the receiver's network region for
decryption. Figure 3 shows the two regions and the associated processing types.

Figure 3 shows an example of a network graph, where terminals are drawn as squares and
router nodes are drawn as circles. Each processing node is also labeled with the processing
types (t1; t2; t3) that it can handle.

Now that we have described the sessions and the network as graphs, the task of con-
�guring a session is a matter of mapping the session graph onto the network graph, where
the terminals are mapped to the same terminals, the processing steps to processing nodes
of the appropriate types, and �nally the connections between two nodes that are adjacent
in the session graph to paths that connect the corresponding nodes in the network graph.
Following this principle, we can consider con�guring the session graphs in Figure 1 onto the
network graph in Figure 3. The con�gurations are given in Figure 4.

Meanwhile, in the networks where resources like processing nodes and links are costly
and limited commodities that are shared by multiple parties, sessions incur expenses when
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they consume resources that are con�gured and assigned to them. In this work, we refer to
the expense pertaining to consuming a unit capacity at a resource as its unit cost. While
the actual measure for the cost may vary depending on the network models, we limit it to
be a positive value as illustrated by the numbers labeling processing nodes and edges in
Figure 3.

Starting from the following section, we formally describe the problem of con�guring
sessions with the optimal cost and present eÆcient solutions for the most important speci�c
case of the problem (sessions which de�ne paths). Later, we also discuss heuristics targeting
other cases, and issues related to resource capacities.

3.1. Con�guration for Generic Sessions

In this section, we de�ne the con�guration cost of sessions and give a formal statement
for the optimal session con�guration problem based on the cost. Previously, we introduced
the cost associated with each resource as it is con�gured for a session. Given a mapping
that identi�es the resources to be con�gured for a session, we can compute the cost at each
resource as the product of its unit cost and the capacity of the resource consumed by the
session. The con�guration cost of the session is then de�ned as the sum of the costs of all
resources designated by the mapping. Now, we attempt to �nd the mapping that results in
the least cost con�guration, which is the goal of the optimal session con�guration problem.

In Problem 3.1, we formally state the optimal session con�guration problem given a
network graph G = (V;E) and a session graph Gs = (Vs; Es).

Problem 3.1 Session Con�guration Problem
Given: A directed session graph Gs = (Vs; Es), with a type t(u) and a capacity requirement
p(u) for each vertex u 2 Vs, and a bandwidth requirement b(u; v) for each edge (u; v) 2 Es.
Also, a directed network graph G = (V;E) with a type set T (u) for each node u 2 V .
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Figure 4: Session con�guration

In addition, the unit costs, c(u) and c(u; v), are given for each vertex and edge as a positive
value.
Find: A location function l : Vs ! V and a routing function r : Es ! 2E that satisfy

8u 2 Vs; t(u) 2 T (l(u)) (1)

8(u; v) 2 Es; r(u; v) is a simple path in G from l(u) to l(v) (2)

and that minimize the cost Cl;r where

Cl;r =
P

u2Vs
c(l(u))p(u) +

P
(u;v)2Es

c(r(u; v))b(u; v) (3)

In the problem, the capacity consumption of the target session is expressed as require-
ments for the con�gured resources in order to guarantee that the capacities to be consumed
are actually available on the resources. For the moment, we assume that the network
resources have unlimited capacities and focus on optimizing the con�guration cost.

The mapping that designates the resources for a session is de�ned by the location func-
tion l and the routing function r, where the function l maps each node in Gs to a node in G,
and the function r maps each edge in Gs to a path in G. The functions should also satisfy
the conditions, (1) � (2), where Condition (1) ensures that selected nodes can perform the
required processing and Condition (2) ensures that adjacent nodes in the session graph are
connected by a path in the network graph. It also limits the path to be simple in order to
avoid unnecessary link usage.

Finally, we de�ne the con�guration cost Cl;r to be the total sum of the costs of all
resources used by the session. Therefore, the optimal mapping must minimize the con�gu-
ration cost Cl;r.

Among graph problems, the graph embedding problem [17] is most closely related to
the session con�guration problem. In the graph embedding problem, an embedding of a
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graph G onto another graph G0 is de�ned as a mapping from the former to the latter,
where each distinct node in G is mapped to a distinct node in G0, and each edge in G
to an edge in G0. The graph embedding problem has been used for designing parallel
algorithms on interconnection networks, which are composed of processors in distributed
memory machines. Here, the algorithms are represented by graphs where each node stands
for a processing step, and each edge stands for the sequence and/or the data 
ow between
steps. Then, the embeddings are used to implement and operate the algorithms in the
network.

Often in more realistic situations, the edge mapping in the graph embedding problem
is relaxed so that an edge in G is allowed to be mapped to a path in G0. This formulation
is called weak graph embedding and closely resembles our session con�guration problem.
In fact, the weak graph embedding problem is a special case of the session con�guration
problem, where the session graph and the network graph have a single processing type. In
addition, the optimal weak embedding problem is de�ned in the same way as the optimal
session con�guration problem with values assigned to the edges and the nodes used in the
embeddings.

Unfortunately, the optimal weak embedding problem is known to be NP-hard [17] and
thus, so is the general session con�guration problem because it contains the optimal weak
embedding problem.

Nevertheless, there are categories of session patterns, to which most application sessions
belong, in which the optimal session con�guration can be solved or closely approximated
eÆciently. We will discuss these cases next.

3.2. Con�guring unicast sessions

Unicast is the most common session form. A unicast session takes the form of a path with a
single source and destination plus zero or more intermediate processing steps. The session
graph of a unicast session is shown in Figure 1(a) with two steps of intermediate processing.

When no processing is involved, the optimal con�guration is identical to the least cost
path between the terminals. For this particular case of unicast sessions, standard shortest
path algorithms can be used to �nd the best session con�guration.

Now, when intermediate processing is required, the con�guration must also select pro-
cessing nodes. As described in Problem 3.1, the function l maps the processing steps in the
session graph to nodes with the corresponding processing types. Here, the con�guration
still forms a path from the source to the destination, where, in addition, the processing
nodes designated by the function l are included as intermediate nodes. Figure 4(a) shows a
con�guration for the unicast session graph given in Figure 1(a), where the con�gured path
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from source s to destination d passes through two designated processing nodes with the
matching types.

The optimal con�guration in this case should also have the least con�guration cost,
which now includes the cost of each of the con�gured processing nodes, in addition to
the path cost. Because of the node selection, standard shortest path algorithms are not
directly applicable to the problem. Nevertheless, the shortest path information is still
crucial to solving the problem. Below, we illustrate a method that computes the least cost
con�guration for unicast sessions and discuss related issues. Initially, we focus on unicast
sessions with single step processing, and then expand the discussion to multiple steps.

Let us assume a unicast session in the network graph G = (V;E) with the source s,
the destination d and one processing step of type t1 to be done on the data 
ow from s
to d, where R is the set of nodes, which can handle the processing. The session graph of
this session is shown in Figure 5 with its bandwidth requirements and processing capacity
requirement.

First, for each processing node r in R, compute the shortest paths from s to r and from
r to d, and construct the con�guration using the shortest paths as the data paths and the
node r as the processing node. Also, compute the cost of this con�guration by summing
the cost of the shortest paths and the cost of the processing node r. Here, the cost of each
link in the path from s to r is scaled up by the bandwidth consumption b(s; t1) from its
unit cost, and similarly each link in the path from r to d is scaled up by b(t1; d). The
cost of r is scaled up by p(t1). Note that this con�guration gives the least cost given r
as the processing node. Then, among all nodes in R, select the node that results in the
smallest con�guration cost when used as the processing node, and choose the associated
con�guration as constructed above.

In this method, the shortest paths can be found by computing the shortest path tree
from the source s and another converging to the destination d. Using Dijkstra's algorithm,
the time complexity is O(jV j log(jV j) + jEj+ jRj).

However, there are issues with generalizing this method to handle more processing steps.
Consider another unicast session, which now requires two processing steps. Let us denote the
sets of nodes for the processing steps as R1 and R2. By applying the same method, we need
to account for each pair of processing nodes in R1�R2 to con�gure the session. Now, jR1j+2
shortest path trees need to be computed to obtain all the shortest paths required for the
con�gurations. Then, jR1j�jR2j comparisons are needed to �nd the least cost con�guration.
If there are k steps, we need to compute and compare the cost associated with each choice
for the processing nodes, where the number of choices is O(jR1j � jR2j � :::� jRkj). In the
worse case, the comparison takes 
(nk) time.

3.2.1. Layered networks for single step processing. In this section, we introduce
a better alternative for solving the unicast session con�guration problem. This method takes
the problem given in the network graph into a di�erent space, where the problem is solved
as a conventional shortest path problem. Then, the result is brought back into the original
network graph to obtain the �nal solution.

We illustrate the method, focusing on the transformation that converts the network
graph into a new graph space called a \layered network". Let us reconsider the unicast
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Figure 6: Session con�guration with a layered graph

session with a single processing step, where R is the set of processing nodes that are capable
of the processing given the network graph G = (V;E). For this session, the new method,
which we will call the layered graph method, transforms the original network graph into a
\two layer" graph.

The layered network G0 includes two copies of the network graph G. We refer to one
copy as layer 0 and the other copy as layer 1. Also, for each node v in G, we denote the
copy of the node in layer 0 as v0 and the copy in layer 1, v1. The cost of each edge in layer
0, say (u0; v0), is set to the product of the unit cost of the original edge (u; v) in the network
graph and the bandwidth requirement b(s; t1), i.e. c(u; v) � b(s; t1). Similarly, the cost of
each edge (u1; v1) is set to c(u; v) � b(t1; d).

Then, we complete the layered network G0 by adding an inter-layer edge (r0; r1) for each
processing node r in R. Here, the cost of (r0; r1) is set to the product of the unit cost of
the node r and the processing requirement p(t1), i.e. c(r) � p(t1). Figure 6(a) shows the
layered graph transformed from the original graph in Figure 3 for sessions with processing
type t1, b(s; t1) = 1; b(t1; d) = 2, and p(t1) = 1.

Given the new graph G0, the layered graph method computes the least cost path from
the node s0, the copy of the source in layer 0, to the node d1, the copy of the destination
in layer 1. Note that G0 only carries edge costs, so shortest path algorithms can be applied
directly. Figure 6(a) also shows the least cost path in the layered graph.

For the �nal solution to the unicast session con�guration problem, the least cost path
in G0 is mapped back to the network graph G as follows. For each regular edge involved in
the path, we \project" it to the original edge in G. Similarly for each inter-layer edge in
the path, we \project" it to the original processing node in G and mark it as the designated
node for the processing requested in the session graph. The projection yields a legitimate
con�guration connecting the two terminals and containing the processing node on the path.
The projected con�guration of the least cost path in Figure 6(a) is given in Figure 6(b) with
its con�guration cost. We claim that this con�guration gives the least cost and therefore is
the optimal solution.

To prove our claim, let us assume that there is another con�guration in the network
graph with a smaller cost. We can map this con�guration back to a path in the layered
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graph by simply reversing the \projection" procedure. Now, this path has the same end
points as the least cost path while having the same cost as the con�guration from which it
is mapped. Thus, it has a smaller cost than the least cost path, which is a contradiction.
Hence, our claim holds.

The layered graph method has three parts, �rst constructing the layered network, second
computing the least cost path in the layered network, and last projecting the path back
to the original network. The �rst part can be implemented with O(jV j + jEj + jRj) by
iterating on the set of nodes and edges. The second part can be implemented to run in
O(jV j log jV j + jEj + jRj) using Dijkstra's shortest path algorithm. Lastly, the projection
can be done in time linear in the size of the path, which is O(jV 0j). Here, the dominant part
is the shortest path computation. The comparison method introduced earlier has the same
asymptotic time complexity, and may slightly outperform the layered graph method in a
real implementation. However, the layered graph method scales better for multiple steps,
as we discuss in the next section.

3.2.2. Layered network for multiple processing steps. In this section, we gen-
eralize the layered graph method for an arbitrary number of processing steps. Consider a
unicast session that involves two terminals s and d and processing with k consecutive steps
of types t1; t2; :::; tk, where the bandwidth requirements are b(s; t1); b(t1; t2); :::; b(tk; d), and
the processing capacity requirements are p(t1); p(t2); :::; p(tk). For each step i, let us denote
the set of processing nodes capable of the step as Ri.

We build the layered network in a similar way as for single step processing. For k
steps, we make k + 1 copies of the original network where the copies are denoted layer 0
through layer k. For each link (u; v), we apply the scaled cost c(u; v)� b(ti; ti+1) to its copy
in layer i, where t0 = s and tk+1 = d. We also add inter-layer edges between every two
consecutive layers as follows. Between layer i� 1 and layer i, we add the edge (ri�1; ri) for
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Figure 8: Multicast session graph for a video transfer application

each processing node r 2 Ri, and apply the scaled cost c(r)� p(ti).

The intuition in this formulation is that any path from layer 0 to layer k is forced to
include k inter-layer edges, where the ith inter-layer edge corresponds to one of the processing
nodes capable of the ith step. Then, the projection of a path to the original graph forms
the path that passes through the k processing nodes in the given order.

Therefore, for the unicast session given earlier, we compute the least cost path from
s0 to dk, where s and d are the source and the destination. The projection of the path
on the network graph now forms a legitimate con�guration for the session connecting the
two terminals and containing the k processing nodes. An example of the layered network
for a session with two processing steps t1 and t2, the bandwidth requirements b(s; t1) =
1; b(t1; t2) = 2 and b(t2; d) = 1, and the processing capacity requirements p(t1) = 1 and
p(t2) = 3, is given in Figure 7(a) with the least cost path drawn with thick lines. The
projected con�guration of the path is also given in Figure 7(b) with its con�guration cost.

In fact, the projection of the least cost path is the least cost con�guration, which can be
proved using a similar argument to the one given for single step processing in Section 3.2.1.
Therefore, the layered graph method solves the optimal session con�guration problem for
unicast sessions with an arbitrary number of processing steps.

Again, the time complexity is dominated by the shortest path computation. The layered
graph contains (k + 1)jV j nodes and (k + 1)jEj+

P
i jRij edges. The least cost path in the

graph can be found in O((k+1)(jV j log jV j+ jEj)+
P

i jRij). Particularly as k grows larger,
the layered graph method outperforms the comparison method that was presented in the
beginning of this section.

Furthermore, for any given value of k, the layered graph method takes no more than
about k times the time it takes to compute the regular least cost path in the network graph
and certainly is feasible for dynamic session con�gurations.

3.3. Con�guring single source multicast sessions

In this section, we discuss the con�guration of multicast sessions, which involve a single
source and multiple receivers. The con�guration for such a session should provide a set of
link resources that connect the source with each receiver in the session. In the particular
form of a multicast, the link resources may be shared among data 
ows terminating at
di�erent receivers, and the con�guration often forms a tree shape rooted at the source.

Now, we consider the intermediate processing applied to the data 
ows of such multicast
sessions. As an example, consider a video transfer application that provides a single-source
multicast session where the video data coming from the source is compressed to reduce
transmission cost and decompressed before it gets to each of the receivers. Figure 8 shows
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Figure 9: Multicast session con�gurations

a session graph for this example.

The graph resembles the session graph of the unicast session with two processing steps
introduced earlier, with the destination node now representing all receivers in the multicast.
The edges in the session graph are of a special type to re
ect that link resources can be
shared among multiple data 
ows terminating at di�erent receivers. The session graph
also shows the changes in the bandwidth requirements when the compression ratio is 50%.
Possible con�gurations of the session are shown in Figure 9 speci�ed with think lines, each
of which forms a tree with di�erent branching points and di�erent choices of processing
nodes. The optimal con�guration of the session is the one that has the least cost among all
possible con�gurations.

One way to con�gure the session is to con�gure each data 
ow as a unicast session.
However, we cannot take advantage of the shared resources with the separate con�gura-
tions. Instead, we can directly �nd a multicast con�guration in the layered graph, which is
constructed in the same way as for unicast sessions. Figure 10 shows the layered graph. To
con�gure the session, �nd a multicast tree rooted at s0 and terminating at a2, b2, c2 and
d2 in the layered graph. Then, project it to the original network graph in the same way as
for unicast sessions. The projection corresponds to a proper con�guration for the multicast
session with the processing applied to all data 
ows. The multicast tree shown in Figure 10
corresponds to Figure 9(b).

Therefore, by �nding a con�guration in the layered graph, we equivalently con�gure a
multicast session with processing in the network graph. The layered graph method again
lets us hide the processing requirement with the graph transformation and solve the problem
as a conventional multicast con�guration.

On the other hand, �nding the least cost con�guration is more complex for multicast
sessions. In fact, the multicast routing problem is equivalent to the NP-hard Steiner tree
problem in graphs.

The Steiner tree problem has been studied extensively for undirected graphs, and there
are several approximation methods for it with the best method known having a worst-case
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Figure 10: Layered network for multicast

performance ratio of 1.55 [20]. However, those methods cannot be generalized for directed
graphs. Only recently, the directed Steiner tree problem has been studied actively and there
exist a few approximation methods. The method presented in [19] gives the ratio of 2	
in time O(k2b + jEj) where 	 represents the asymmetry of the optimal Steiner tree, and
b(< jV j) is a tunable variable in the algorithm, while another set of methods in [5] gives the
ratio of i(i � 1)k1=i in time O(jV jik2i), given any i > 1, where k is the number of receivers
for both methods.

Unfortunately, the results for directed graphs are not appropriate for dynamic session
con�gurations since their time complexity is excessive. We suggest a simple greedy heuristic
which attempts to �nd a good con�guration. For the source s and the set M of receiver
nodes in the network G, we incrementally construct the multicast tree T , starting with
T = (fsg; fg).

Repeat the following step until the set M is empty. Find the receiver d 2 M that is
nearest to T . The distance from T to d is measured as the shortest path between any node
in T to d. Then, augment the tree T to include the shortest path from T to the selected
receiver d and remove d from M .

We plan to investigate the eÆciency and the performance of this heuristic in pro-
grammable networks during the course of this research.

3.4. Con�guring sessions with capacity constraints

In this section, we raise an issue in con�guring sessions when the network has hard limits
on the resource capacities that can be consumed by application sessions. For instance, a
video conference application may require a �xed bandwidth available on the links in order
to achieve desirable video quality for its interactive sessions, while some link resources may
not have enough capacity to accommodate the required bandwidth. Likewise, processing
nodes may also be required to have a certain amount of processing capacity in order to
handle the target processing while some nodes are lack of the required capacity. In the
session con�guration problem given in Problem 3.1, however, we did not include capacity
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limits in the network graph, and considered every resource in con�guring sessions regardless
of the available capacity.

In order to explicitly consider the capacity issue, we rede�ne the session con�guration
problem with the available capacity at each resource speci�ed in the network graph. The
problem statement is given in Problem 3.2.

Problem 3.2 Session Con�guration Problem for Capacity Constrained Networks
Given: A directed session graph Gs = (Vs; Es), with a type t(u) and a capacity requirement
p(u) for each vertex u 2 Vs, and a bandwidth requirement b(u; v) for each edge (u; v) 2 Es.
Also, a directed network graph G = (V;E) with a type set T (u) and processing capacity P (u)
for each vertex u 2 V , and available bandwidth B(u; v) for each edge (u; v) 2 E.
In addition, the unit costs, c(u) and c(u; v), are given for each vertex and edge as a positive
integer value.
Find: A location function l : Vs ! V and a routing function r : Es ! 2E that satisfy

8u 2 Vs; t(u) 2 T (l(u)) (4)

8(u; v) 2 Es; r(u; v) is a simple path in G from l(u) to l(v) (5)

8x 2 V;
X

u2Vs :
x=l(u)

p(u) � P (x) (6)

8(x; y) 2 E;
X

(u;v)2Es :
(x;y)2r(u;v)

b(u; v) � B(x; y) (7)

and that minimizes the cost Cl;r where

Cl;r =
P

u2Vs
c(l(u))p(u) +

P
(u;v)2Es

c(r(u; v))b(u; v) (8)

This problem extends Problem 3.1 further by adding the capacity constraint of each resource
in the network graph while keeping the objective of �nding the optimal location and routing
functions. Each of Conditions (6) and (7) states that the available capacity should be
suÆcient to accommodate the total capacity consumption at each resource.

Now, the network graph maintains another variable for each resource to express the
available capacity. We refer to this network model as capacity-constrained networks. Given
the new network model and the capacity requirement, we now reconsider the optimal con-
�guration problem focusing on unicast sessions.

First, con�guring sessions that do not require intermediate processing can be done simply
by eliminating the links that lack the required bandwidth from the network graph and
�nding the least cost path in the \reduced" network. Because the \reduced" network only
contains links with enough capacity for the bandwidth requirement and no link is used
more than once (in the least cost path), we can guarantee that the optimal con�guration
computed in this network will always satisfy the capacity requirement.
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Figure 11: Session con�guration in capacity constrained networks

On the other hand, the same strategy may not always work for sessions that do require
intermediate processing. This is because a single resource may be used multiple times in a
selected con�guration. An example is given in Figure 11(a), where the session from s to d
is to be con�gured with one processing step. Here, the shaded node is the only processing
node capable of the processing, and each resource is associated with two values, the �rst
being its cost and the second being the available capacity. Here, while the session can be
con�gured if 0.5 unit of link bandwidth is required, there is no possible path if 1 unit is
required because (u; v) is used twice in the only possible path.

Figure 11(b) shows the corresponding layered graph, in which it is unclear what capacity
to assign to each edge. In the �gure, we show the least cost path in the layered graph after
ignoring links with less than 1 unit of capacity. It is easy to see that the con�guration
shown is valid if the session requires � 0:5 units of bandwidth but invalid otherwise.

The reason behind these diÆculties is that the general problem of con�guring sessions
with capacity constraints and processing requirements is intractable. Consider a complete
network, G = (V;E) where every node except s and d is capable of any type of processing,
and each has 1 unit of available capacity. Now, consider a session from s to d which requires
jV j � 2 processing steps. Any feasible con�guration to this problem must pass through all
the intermediate nodes, and thus it provides a solution to the well-known Hamiltonian path
problem [9], which is known to be NP-complete.

3.5. Heuristics for con�guring sessions with capacity requirements

In this section, we introduce two heuristic methods for the optimal session con�guration
problem in a capacity-constrained network. We focus on unicast sessions that specify a
processing requirement for each step and a bandwidth requirement for each path segment
between two consecutive steps. Note that the bandwidth requirement can di�er on di�er-
ent path segments, since processing steps may expand or reduce the amount of data. As
described earlier, the costs in the di�erent layers are scaled to account for such e�ects. Our
heuristics extend the layered graph method to prevent resources from being used beyond
their current capacity.

The �rst heuristic is really a collection of similar algorithms, that we refer to as selective
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edge inclusion algorithms. Each modi�es the layered graph to prevent links from being
over-used and then �nds a shortest path in the modi�ed graph. The algorithms di�er in
the way they modify the layered graph.

� The strict inclusion method includes an edge in the layered graph only if it has enough
available capacity so that it cannot be over-used, even if it is selected for use in all layers.
This policy applies to both intra-layer and inter-layer edges. Since di�erent processing
steps may require di�erent amounts of processing capacity, we include a given edge as an
inter-layer edge only if the sum of the capacities required for all the processing steps is no
larger than the available capacity of the processing node represented by the inter-layer
edges. Similarly, we include a given intra-layer edge only if its capacity is no smaller than
the sum of the bandwidth requirements for all path segments. Once the modi�ed layered
network is constructed, a shortest path from the source to the destination is found. If
none exists, the session con�guration attempt is rejected.

� The loose inclusion method includes an edge in all layers if it has suÆcient capacity to
be used in any layer. If, after a path is determined, the path is found to over-use some
edge, the path is discarded and the session con�guration attempt is rejected.

� The permissive loose inclusionmethod is not intended as a practical algorithm, but is used
in the simulation study described below to provide a nominal bound on the performance
of the other algorithms. It works like the loose inclusion method, except that it never
rejects the path that is found, even if the path over-uses some edge.

� The random inclusion method includes edges in a set of selected layers for which the
total capacity is no larger than the edge capacity. For each edge, the layers are selected
randomly and independently. Once the modi�ed layered network is constructed, shortest
path search is done. If successful, the session is con�gured using that path.

� The consecutive inclusion method picks a layer at random and then goes through the
remaining layers in consecutive order, adding the edge to each layer in which the addition
does not violate the capacity constraint.

The selective edge inclusion methods are very simple to implement and can perform rea-
sonably well when the session resource requirements are much smaller than the capacities
of the links and processing nodes.

Our second heuristic is somewhat more complex but can perform well, even when session
resource requirements are relatively large. The algorithm is an extension to Dijkstra's
shortest path algorithm, and is called the capacity tracking algorithm. We start with a brief
review of Dijstra's shortest path algorithm.

Given a graph, and a source node s, Dijkstra's algorithm computes a shortest path tree
rooted at s. Initially, the tree contains just s. The algorithm maintains a set S, of boundary
vertices, which includes all nodes v that are connected to a vertex u in the partial tree
constructed so far, by a directed edge (u; v). At the start of the algorithm, S contains the
nodes v, for which there is an edge of the form (s; v). The algorithm also maintains, for each
vertex v, a tentative distance d(v), which is the length of the shortest path from s to v that
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has been found so far. It also maintains a tentative parent p(v), which is the predecessor of
v in a path from s of length d(v). The quantities d(v) and p(v) are not de�ned for nodes
that are neither in the tree, nor in S.

At each step, Dijkstra's algorithm selects a node v in S for which d(v) is minimum, and
adds it to the tree. It then examines each edge (v; w). For each node w that is neither in the
tree nor in S, it adds w to S, setting p(w) to v and d(w) to d(v) plus the length of (v; w).
For each node w that is in S, it compares d(w) to d(v; w) plus the length of the edge (v; w),
and if it �nds that d(w) is larger, it updates d(w) and p(w). If the set of boundary vertices
is implemented using a Fibonacci heap [6], Dijkstra's algorithm runs in O(m+n logn) time,
where n is the number of nodes in the graph, and m is the number of edges.

When Dijkstra's algorithm is applied to a layered graph, some of the paths in the
shortest path tree may contain edges on di�erent layers that correspond to the same link
or router in the original network, from which the layered network was constructed. This
may lead to over-use of resources. To prevent this, we modify the basic processing step, to
include a check for over-used resources. In particular, when a node vi is added to the tree
(i denotes the layer in which the vertex appears), we consider edges of the form (vi; wi) and
(vi; vi+1). Before processing an edge of the form (vi; wi), we examine the path in the tree
from s to vi and add up the capacities required by all edges on the path that correspond to
the original link (v; w). If this total capacity, plus the capacity that would be used by the
edge (vi; wi) exceeds the available capacity of the link, then no action is taken with respect
to that edge. Edges of the form (vi; vi+1) are handled similarly. We refer to this capacity
checking procedure as link capacity tracking.

The extra time required by link capacity tracking is O((km)(kn)), in the worst-case,
where m and n are the number of edges and nodes in the original network and k is the
number of processing steps. This can be seen by noting that the checking procedure is
invoked no more than k(m+ n) times and each execution requires that we traverse a path
with no more than kn� 1 edges.

The running time can be improved by maintaining an additional variable �(vi) for each
vertex in the partial tree constructed so far. If ui = p(vi), then �(vi) is the sum of the
capacities required from all edges on the tree path from s to vi that are copies of the link
(u; v) in the original network graph. Similarly, if vi�1 = p(vi), then �(vi) is the sum of
the capacities required from all edges on the tree path from s to vi that correspond to the
processing node v in the original network graph. Using these additional variables, we can
terminate the capacity tracking search from a node vi back to s early, reducing the time
taken for capacity tracking to O(kmn).

In practice, the extra time required by capacity tracking is much smaller than the worst-
case analysis suggests, because networks are designed to have small diameter, which means
that the paths in the shortest path tree generally have far fewer than kn edges. If we let D
denote the maximum number of edges in a path from the root to a vertex in the shortest
path tree, then the extra time required by link capacity tracking is O(kmD). Even this
result over-states the time required by capacity tracking in practice. As will be seen later,
running time measurements show that capacity tracking takes less than double the time
required by the simpler heuristics, in more realistic situations.

Link capacity tracking ensures that paths found by the algorithm do not over-use any
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Figure 12: Blocked path in Link capacity tracking

resources. However, since the problem is NP-hard, we cannot expect it to always �nd a
valid path, even when a path exists. Consider the example shown in Figure 12(a). If each
link in the original network graph has one unit of capacity and the session requires one unit
of capacity on each edge of the selected path, it can fail to �nd a path, as shown in part (a)
of the �gure. The bold edges are the edges that form the shortest path tree, at the time
the path search terminates. Note that there is no way to extend the tree further, since the
only edge leaving vertex u2 has already been used in the top layer, and hence cannot be
used again. On the other hand, there is a path that could be used for this session, as shown
in part (b).

We performed a set of simulations for the session con�guration problem to evaluate the
heuristic methods discussed so far. In the simulations, we considered the following four
di�erent network topologies.

� Torus: This network is based on a grid of 64 nodes where every node has an outgoing
edge to each of its four neighbors, north, south, east and west along the grid lines. The
nodes at edges of the square grid also have links that \wrap around" to the corresponding
node at the opposite edge, resulting in a torus topology. Figure 13 shows the network
topology. Nodes that can perform processing are shown as triangles.

� Random: This network is a random regular network with 64 nodes, each having 4 incident
edges. We build the network starting with a random degree-bounded tree that spans all
64 nodes, then we expand the network by adding edges randomly until every node has
exactly four incident edges.

In both networks, every link has the same capacity and the same cost, and one third of the
nodes are randomly designated as processing nodes, with the ability to perform processing.
All processing nodes have the same capacity.
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Figure 13: Torus network

� Metro 20: This network is a more realistic network con�guration, spanning the 20 largest
metropolitan areas in the United States. The network topology is shown in Figure 14(a).
Nodes that are capable of performing processing are shown as triangles. Link costs are
set equal to the physical distance between the nodes they connect, re
ecting the higher
cost associated with links spanning greater distances. The link capacities are selected to
be large enough to handle the anticipated traÆc. The link dimensioning procedure used
for this purpose is taken from [16], which describes a constraint-based network design
methodology and an interactive network design tool that implements it. We constrain
the traÆc in two ways. First, the total traÆc entering and leaving a node is chosen to
be proportional to the population of the metropolitan area represented by that node.
Next, for each node u, we constrain its traÆc to every other node using constraints that
are proportional to the populations of the metropolitan areas represented by the other
nodes. Speci�cally, if Æv is the fraction of the population outside node u, that is associated
with node v, then we limit the traÆc between u and v to be no more than 1:3Æv times
the total traÆc entering and leaving node u. The factor of 1.3, was chosen to allow for
some 
exibility in the distribution of traÆc, re
ecting the natural variations that occur
in network traÆc. Given these traÆc assumptions and a default path joining each pair
of vertices, link dimensions can be computed using linear programming. The resulting
link capacities guarantee that any traÆc pattern satisfying the traÆc constraints can be
carried if the traÆc is routed along the default paths. The default path between a pair
of vertices is a shortest path containing at least one processing node, and can be found
using a two layer network. The processing nodes along each default path are dimensioned
to handle the worst-case traÆc load allowed by the traÆc constraints. When performing
the simulations, we do not constrain the traÆc to use just the default paths, but the link
dimensions are chosen, under the assumption that the default paths are used.

� Metro 50: This network is a larger version of the Metro 20 network. It has a node for
each of the �fty largest metropolitan areas in US. The topology is shown in Figure 14(b).
The links and processing nodes are dimensioned in the same way as Metro 20.

On the four network topologies, we simulated the heuristics for over 2.5 million sessions
with three processing steps and the capacity requirement equal to 3% of the average link
bandwidth.

For each con�guration attempt, we selected the end points randomly for Random, while
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Figure 15: Heuristics for session con�gurations

restricting them to be exactly four hops apart for Torus. For Metro 20 and Metro 50, the
selection of the end nodes was weighted by the populations of the metro areas, re
ecting
the higher traÆc volumes expected in larger cities.

The performance of the heuristics is measured with the blocking probability, which is
the percentage of session con�guration attempts that were unsuccessful. Figure 15 shows
the blocking probabilities for the various heuristics, as a function of the o�ered load. The
plots also show the blocking probability when sessions are constrained to use a �xed default
path, which is initialized to the least cost path in the layered graph when capacity is
considered unlimited. Among the network topologies, Torus shows the best performance
due to abundant connectivities between any end point pair. However, without being able to
take alternate paths, the default path always shows the worst blocking probabilities that are
somewhat consistent in all topologies. Loose Inclusion is also blocked with high probability
by overusing resources.

For other topologies, all heuristics show higher blocking probabilities while Link Capacity
Tracking performs almost as good as the lower bound with blocking probabilities of less than
1% at o�ered loads of more than 75%.

We also measured the cost of the successful con�gurations. In Figure 16, we show the
con�guration cost from all heuristics relative to the cost of the default shortest path, which



Session Con�guration and Network Design in Programmable Networks 22

1.000

1.100

1.200

1.300

1.400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

Nor
mai

lze
dP

ath
Cos

t

Link Capacity Tracking

Permissive Loose

Loose Inclusion

R andom Inclusion

Consecutive
Inclusion

Strict Inclusion

(a) Torus Network

1.000

1.100

1.200

1.300

1.400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

Nor
mal

ize
dP

ath
Cos

t

Link Capacity
Tracking

Permissive Loose
Loose Inclusion

R andom Inclusion

Consecutive
Inclusion

Strict Inclusion

(b) Random Network

1.00

1.10

1.20

1.30

1.40

1.50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

Nor
mal

ize
dP

ath
Cos

t

Link Ca p acit y

Permissive Loose

Loose Inclusion

R andom Inclusion

Consecutive Inclusion

Strict Inclusion

(c) Twenty metro areas

1.00

1.10

1.20

1.30

1.40

1.50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

Nor
mai

lze
dP

ath
Cos

t
Link Capacity Tracking

Permissive Loose

Loose Inclusion

R andom Inclusion

Consecutive

Strict Inclusion

(d) Fifty metro areas

Figure 16: Con�guration Cost

is a lower bound. All heuristics provide nearly optimal costs at low loads, but deviate
signi�cantly at higher loads. The paths produced using Link Capacity Tracking generally
stay within 5 to 10% of the lower bound up to loads of 95%.

Lastly, we measured the average time required for session con�guration by the di�erent
algorithms. Figure 17 shows the results for Torus and Metro 50. For all algorithms, we
varied the number of steps from 1 to 10. As can be seen, the algorithms based on selective
link inclusions are the fastest. On the other hand, link capacity tracking remains reasonably
competitive, with a computational cost less than twice that of the best selective inclusion
algorithm when ten processing steps are performed. Considering that sessions are likely
to have far fewer than 10 steps in the vast majority of applications, the superior blocking
probability achieved with Link Capacity Tracking more than compensates for the extra
computational time.

4. Network Design in Programmable Networks

In the previous section, we introduced the concept of programmable routers, equipped
with the capability to dynamically install and run processing modules. In the session
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Figure 17: Time requirements for session con�gurations

con�guration problem, our objective was to �nd the optimal (the most cost e�ective) set of
resources to support each session, where the resources included the links and the processing
nodes required by the session.

In this section, we address the problem of how to provision a programmable network to
ensure that it can carry an anticipated traÆc load with good performance, while achieving
eÆcient resource usage.

In conventional networks, links are the major resources shared by application sessions.
In the \link dimensioning problem" in conventional networks, the goal is to dimension
all links in the network so that any possible set of application sessions can be con�gured
without blocking. Now, as we allow intermediate processing, sessions often take a set of
links that are di�erent from the ones used in conventional networks (where no processing
is required), and thus require links to be dimensioned di�erently. In addition, processing
nodes also need be dimensioned.

Let us consider the example given in Figure 18(a). We assume that the maximum traÆc
for sessions with a processing requirement is expected to be 5 Mb=sec from the end node
u to node v, 15 Mb=sec from x to y, and zero between all other nodes. Also, suppose
that we require suÆcient processing capacity to execute 10 instructions per bit of data
sent. The processing limit at the processing node (shaded) is adjusted for the maximum
traÆc that goes through the node and shown in units of MIPS in the �gure (1 MIP =
1 million instruction per second). Our objective is to provision the network so that any
collection of sessions satisfying these overall constraints can be supported. Speci�cally, we
must determine how much capacity to assign to each resource on the paths in Figure 18(a).
One solution is shown in Figure 18(b). While we require the network to be nonblocking
for the given traÆc constraints, we naturally prefer not to assign more resources than are
needed. So, we associate each link and each processing node with a cost per unit capacity.
Among all the possible network con�gurations that satisfy the given traÆc constraints, we
seek the one with the smallest overall cost.

The resource dimensioning problem has been studied in the context of conventional
networks [14][21] which do not support intermediate processing. In this proposal, we discuss
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the problem of dimensioning a programmable network for a general set of traÆc for sessions
that do require intermediate processing.

We also consider the problem of how to choose the locations for processing resources.
We discuss how the processing locations a�ect the overall network cost and propose methods
for determining optimal or near optimal locations.

4.1. Dimensioning resource capacity

In this section, we discuss the problem of dimensioning resources that are shared among
application sessions in a programmable network . For the moment, we focus on the class
of unicast applications whose sessions require a single processing step. We denote such
sessions as a tuple (s; b1; p; b2; t), which represents a unicast path from the source s to the
destination t that passes through a node with processing capacity p. In the tuple, we also
specify the link bandwidth b1 for the path segment from s to the processing node and b2 for
the path segment from the processing node to t. The target application class includes any
unicast applications with this session format where the value of b1 and b2 can be varied.

We assume that the network topology and the processing sites are given. We also assume
that all traÆc between a pair of nodes is carried on a given �xed path (typically the shortest
path). Our goal is to determine the capacity of each link and each processing node in order
to satisfy the application sessions.

Following [8], we have two types of traÆc constraints; termination constraints and pair-
wise constraints. For each node u, we let �(u) be the maximum session bandwidth that
originates from u (source limit), and !(u) be the maximum session bandwidth that termi-
nates at u (sink limit). For each pair of nodes, u, v, we also have a constraint Æ(u; v) on
the traÆc from u to v.

Given traÆc constraints � = (�; !; Æ), we say that a session (s; b1; p; b2; t) is \compatible"
if it satis�es the traÆc limits, i.e. b1 � �(s); b2 � !(t), b1 � Æ(s; t), and b2 � Æ(s; t).
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Furthermore, we say that a set of sessions S is \compatible" if the total traÆc satis�es �.
In other words, for all s and t,

X

(s0;b0
1
;p0;b0

2
;t0)2S

s0=s

b01 � �(s);
X

(s0;b0
1
;p0;b0

2
;t0)2S

t0=t

b02 � !(t)

and X

(s0;b0
1
;p0;b0

2
;t0)2S

s0=s;t0=t

b01 � Æ(s; t);
X

(s0 ;b0
1
;p0;b0

2
;t0)2S

s0=s;t0=t

b02 � Æ(s; t)

The formal statement of the problem appears below.

Problem 4.1 Resource Dimensioning Problem in Programmable Networks
Given: A network graph G = (V;E) with a cost c(l) for each link l 2 E, a set R � V of
processing nodes with a cost c(w) for each node w, and a set of traÆc constraints �(�; !; Æ).
Also, for each pair of nodes u, v, a path �(u; v) which passes through a processing node
r(u; v) 2 R.
Find: Link capacities cap(l), for all links l 2 E, processing capacities cap(w) for all nodes
w 2 R that satisfy

cap(l) �
X

(s;b1;p;b2;t)2S
l2�1(s;t)

b1 +
X

(s;b1;p;b2;t)2S
l2�2(s;t)

b2 (9)

cap(w) �
X

(s;b1;p;b2;t)2S
w=r(s;t)

p (10)

for all links l, all nodes w and all sets of sessions S that are compatible with �, and that
minimizes

D(G;R;�) =
X

l2E

cap(l)cost(l) +
X

w2R

cap(w)cost(w) (11)

Conditions (9) and (10) state that the capacity assigned to each resource is large enough
to accommodate any set of sessions satisfying �. Due to the processing requirement, each
session path �(u; v) is composed of two path segments, u � r(u; v) and r(u; v) � v, that
may overlap with each other. We denote the �rst path segment as �1(u; v) and the second
path segment as �2(u; v). Since a link may appear in more than one path segment with a
di�erent capacity requirement, we considered the two cases separately and combine them
to bound the total capacity in (9).

In programmable networks, resource dimensioning is complicated by two factors that
are not present in the conventional resource dimensioning. First, the goal of the problem
is expanded to dimensioning processing resources in addition to link resources. Second,
while in conventional networks unicast sessions are con�gured on simple paths (no repeated
links or nodes), in programmable networks the best end-to-end path may not be simple.
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Figure 19: An instance of the max 
ow problem for dimensioning (u; v)

Nonetheless, we found that a method used for dimensioning links in conventional networks
can be generalized for programmable networks.

The problem of link dimensioning in conventional network is discussed in [8], where
Fingerhut asserts that the capacity assigned to each link by the minimum cost dimensioning
is actually the minimum capacity required at the link to accommodate any compatible set
of sessions. He then formulates the problem of �nding the minimum capacity at each link
as an instance of the max 
ow problem.

The general max 
ow problem [6] consists of a directed graph, edges labeled with ca-
pacity bounds, and two distinct nodes; the source and the sink. In this graph, a 
ow is an
assignment of values to each edge, such that the value does not exceed the capacity bound
at each edge, and the sum of the incoming 
ows equals to the sum of the outgoing 
ows at
each node except at the source and the sink. The goal of the max 
ow problem is to �nd a

ow in the network which maximizes the incoming 
ow at the sink.

Figure 19 shows the instance of the max 
ow problem for computing the minimum
capacity required at link (u; v) in a conventional network. This max 
ow instance contains
a source node su that corresponds to u and a sink node tv that corresponds to v. The
graph also contains two columns of copies of all nodes in the network. Each copy in the
�rst column, denoted ws

i , is connected from su with an edge of the capacity bound �(wi),
while the copy in the second column, denoted wt

i , is connected to tu with an edge of the
capacity bound !(wi). We complete the graph by including an edge for each pair of node
(ws

i ; w
t
j) only if �xed path �(wi; wj) for sessions from wi to wj goes through the link (u; v).

The capacity of this edge is set to the pairwise traÆc limit Æ(wi; wj). In this formulation,
the value of any 
ow is a permitted amount of traÆc at (u; v) given the traÆc limits,
� = (�; !; Æ). Therefore, by �nding the maximum 
ow in this graph, we can obtain the
maximum amount of traÆc that can be observed at (u; v), and thus the minimum amount
of capacity needed at (u; v) to handle any set of sessions satisfying the traÆc limits.

Now, we generalize the max 
ow formulation to dimension the same link (u; v) in a
programmable network. Constructing the max 
ow graph is done in the same way as for
conventional networks. This formulation, however, does not present the actual traÆc limit
at the link (u; v) in programmable networks because each con�guration path �(wi; wj) may
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use the link multiple times. For example, although the maximum traÆc limit between wi and
wj is the minimum of �(wi), !(wj), and Æ(wi; wj)), the actual limit observed at the link (u; v)
should be scaled up by �(wi; wj ; (u; v)) i.e. min(�(wi); !(wj); Æ(wi; wj)) � �(wi; wj ; (u; v),
where the quantity �(wi; wj ; (u; v)) is the number of times that (u; v) appears on the path
�(wi; wj).

To represent this e�ect, we apply to each edge (ws
i ; w

t
j) the quantity �(wi; wj ; (u; v)) as

its cost while applying zero cost to all other edges. Figure 20 shows the formulation. The
max 
ow formulation augmented with edge costs speci�es another problem called the max
cost max 
ow problem. Here, the cost of a 
ow at each edge is de�ned as the product of the

ow and the cost, and the cost of a 
ow in the entire network as the sum of the products.

In our formulation of the max cost max 
ow problem, because the quantity �(wi; wj ; (u; v))
is given as the cost of the edge (ws

i ; w
t
j), the cost of any legitimate 
ow in the graph repre-

sent the actual traÆc observed at the link (u; v). Therefore, the maximum 
ow from su to
tv that also has the maximum cost corresponds to the maximum traÆc that would observed
at (u; v), thus the minimum amount of capacity needed at (u; v).

The capacity at a processing node x can be found with the same formulation. First, we
construct the max 
ow instance with a new source sx and a sink tx replacing su and tv. This
time, we include an edge (ws

i ; w
t
j) with a capacity bound Æ(wi; wj) only if the processing

node x is used by the sessions with end points wi and wj, i.e. r(wi; wj) = x. We also apply
to each edge (ws

i ; w
t
j) the cost of �(wi; wj ; x), which is the number of times x is used as a

processing node for sessions between wi and wj . The maximum 
ow with the maximum cost
in this graph corresponds to the minimum processing capacity needed at x. Although this
capacity requirement is obtained in terms of data traÆc (link bandwidth), we can convert
it into a processing capacity such as MIPS by applying the number of instructions required
per unit data bandwidth. The maximum 
ow instances for all links and all processing nodes
determine the minimum capacities needed for all resources in a programmable network, and
furthermore yielding the minimum cost dimensioning.

4.1.1. Issues. In this section, we discuss some of the issues in applying the resource
dimensioning problem for applications with diverse parameters.
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Figure 21: An instance of the max cost max 
ow problem for multiple applications

Previously in the dimensioning problem, we only considered sessions with one processing
step. Now, we further generalize the problem for sessions with an arbitrary number of
processing steps, where sessions are denoted (s; b1; p1; b2; :::; bk ; pk; bk+1; t). Such sessions
are con�gured on a path �(s; t) that includes k processing nodes, and therefore is composed
of k + 1 path segments, where a link may appear in any of the k + 1 path segments.

The max cost max 
ow formulation for the case of single step processing is general
enough to be applied to the case of processing with an arbitrary number of steps. Note that
the cost of a 
ow still represents the correct amount of traÆc observed at the target link
(u; v) when the quantity �(wi; wj ; (u; v)) is assigned to each edge (ws

i ; w
t
j) as the cost. The

argument can be applied for dimensioning processing nodes.

Now that we can handle applications with various session formats, we consider a more
realistic situation where the network is shared among applications with di�erent session
formats. In this case, the network needs be dimensioned so that any mixture of sessions
with di�erent formats satisfying the traÆc constraints can be con�gured without blocking.

As complicated as it might sound to dimension the network for heterogeneous appli-
cations, the dimensioning at each resource can be done easily by combining the capacity
requirements from all applications. Let us assume that there are total m classes of appli-
cations, A1, A2,...,Am, each of which speci�es the paths and the processing nodes to be
used for its sessions. Also, suppose that we know how much does each application class
contribute to the traÆc limits. For instance, we have the source traÆc limit �i(u; v) which
is the maximum traÆc limit from u belonging to the application class i. We denote other
traÆc limits similarly as Æi(u) and !i(u). Naturally, the total traÆc limits are given as the
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sum of the traÆc limits for all applications, i.e.

X

i=1::m

�i(u) = �(u);
X

i=1::m

!i(u) = !(u);
X

i=1::m

Æi(u; v) = Æ(u; v):

In order to determine the maximum traÆc given the m di�erent application classes, we
formulate an instance of the max cost max 
ow problem that combines the instances for all
classes. Figure 21 shows the formulation, where m individual max cost max 
ow instances
share the source su and the sink tv. The instance for the application class h is shown inside
the dotted line. The value of the max cost max 
ow in this formulation now corresponds
to the maximum traÆc that can be expected at (u; v) from all applications, and therefore
is the minimum amount of capacity required at (u; v). Dimensioning a processing node x
can also be done in the same way.

Therefore, by combining the max cost max 
ow formulation, we can solve the dimen-
sioning problem for an application class with any number of processing steps and also for
any combination of application classes in programmable networks. As a special case, we
may also dimension networks that have both the conventional traÆc (that requires no in-
termediate processing) and the traÆc that requires processing by treating the conventional
traÆc as simply another application class.

4.2. Placing Processing Resources

We have discussed how to determine the capacity of each resource in programmable networks
where the path and the processing nodes were �xed for every pair of end points. In this
section, we consider a more generalized situation where we have the freedom to select the
nodes for placing processing resources. Our goal is to obtain a least cost dimensioning by
carefully placing the processing resources. For the moment, we focus on the case of sessions
with a single processing step.

One extreme way to place processing resources is to allow only one processing node
in the entire network. In this case, once the processing node is selected, say x, we can
identify the path � for every pair of end nodes, which is the shortest path between them
that includes x. An example for this case is shown in Figure 22(a), where possible pairs are
(u1; u2), (u3; u4), (u5; u6), (u7; u8) and u10 is the processing node. Now, we can dimension
the network as we did in the previous section. To get the least cost dimensioning, we can
compute the dimensioning cost for each node as the processing location and select the one
that gives the least cost. This is the optimal dimensioning when we limit the number of
processing nodes to 1, and in fact is an upper bound for the cost associated with any number
of processing nodes.

Another extreme way is not to limit the number of processing nodes at all. That is,
let the set R include every node in V , in which case p(u; v) = p(u; v;R), where p(u; v) is
the direct shortest path between u and v, and p(u; v;R) is the shortest path that includes
any node in R. Figure 22(b) shows the new con�gurations given in the same network
with unlimited processing resources. Here, since every node on the path � can be used
for processing, we must identify the node that is actually used for each end point pair to
properly dimension resources. However, selecting a set of processing nodes that result in
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the smallest dimensioning cost is a complex task, and is in fact NP-hard given any bound
on the number of processing nodes. We will detail this problem in the next section.

In the mean time, we can provide a lower bound on the dimensioning cost in pro-
grammable networks with a lower bound in conventional networks because the latter bounds
the cost associated with dimensioning links only, and processing requirements always add
more costs into the total cost.

A lower bound for conventional network dimensioning is provided in [8] for any network
topology given traÆc limits �, with the assumption that the link costs satisfy the triangle
inequality. According to the de�nition in Problem 4.1, given a network topology, the dimen-
sioning cost must be at least as much as the cost for con�guring the most expensive sessions
that satisfy the traÆc limits �. Therefore, when the sessions are con�gured in the least
cost way, which is through the link directly connecting the end points due to the triangular
inequality, the con�guration cost of the most expensive sessions gives a lower bound to the
dimensioning cost for any network topology. We can obtain this lower bound as follows.
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First, consider the maximum session traÆc compatible with � = (�; !; Æ), which is the
max 
ow of the formulation given in Figure 23, where the �rst number associate with each
edge is the capacity bound. Among the collections of sessions that have the maximum traÆc,
�nd the one that is most expensive to con�gure assuming the direct link con�gurations with
the following instance of the max cost max 
ow problem [6].

In the above max 
ow formulation, de�ne the cost per unit 
ow for each edge (ws
i ; w

t
j)

as the cost of the direct link c(wi; wj) and zero for all other edges. In Figure 23, the second
number associated with each edge is the cost per unit 
ow. Given a 
ow, the cost at each
edge is de�ned as the product of its cost per unit 
ow and the 
ow assigned to the edge,
and the cost of the entire 
ow is the sum of the costs of all edges. The cost of the entire

ow then corresponds to the con�guration cost for the session traÆc speci�ed by the 
ow.
Therefore, by �nding the max 
ow that also has the maximum cost, we obtain the cost for
con�guring the most expensive session traÆc, which is a lower bound to the conventional
link dimensioning for any network topology.

Now that we have discussed the measures (the lower bound and the upper bound)
which can be used to evaluate our choices of processing nodes and the resulting network
dimensioning, we return to the problem of placing processing resources and discuss two
properties that are essential in practical situations. First, we assume a budget for processing
resources, which allows us to have at most a constant number(K) of processing nodes.
Second, we restrict the paths that may be used for each session so that they do not overuse
resources. Note that the path p(u; v;R) may deviate from the direct shortest path p(u; v)
using additional link resources. We would like to place the processing resources so that no
session must take too long a \detour" to reach a processing node. To achieve this objective,
we require

length(p(u; v;R)) � length(p(u; v)) +max(Lmin; �� length(p(u; v)))

where Lmin and � are parameters.

Given the restrictions, we formally state the problem of placing processing resources
below.

Problem 4.2 Processing Placement Problem
Given: A network graph G = (V;E), a positive value �; Lmin � 0, traÆc limits � =
(�; !; Æ), and a positive integer K � jV j
Find: a set R � V with at most K elements that minimizes D(G;R;�) such that for every
u, v,

length(p(u; v;R)) � length(p(u; v)) +max(Lmin; �� length(p(u; v))) (12)

where p(u; v;R) is the shortest path that includes any node in R.

The objective of Problem 4.2 is to �nd K nodes in the network such that the dimen-
sioning cost D(G;R;�) is minimized when they are provided as the processing nodes R in
Problem 4.1.

Finding the exact solution to the problem is a complex task. In fact, it is proved to
be an intractable problem, to which the K-median problem, particularly in 2D Euclidean
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space, can be reduced. In brief, the goal of the K-median problem is to �nd a set of nodes
(medians) with at most K elements in a complete graph G with edge lengths, such that the
sum of the edge lengths from each node to the nearest median is minimized.

Let us assume an instance of the K-median problem in 2-D Euclidean space. Then,
we can build an instance of the processing placement problem as follows. First, construct
a network composed of all points given in the K-median problem. Second, set the traÆc
limits � to �(u) = !(u) = Æ(u; u) = 1 for every node u while Æ(u; v) = 0 for u 6= v. With
these limits, we can only allow sessions whose source and sink are the same with maximum
traÆc 1. Then, we also set both the cost cost(u; v) and the distance dist(u; v) of each edge
(u; v) to be the distance d(u; v) in 2-D Euclidean space. Then, the solution to this instance
of the processing placement problem gives a set of K nodes, say R, that minimizes the
dimensioning cost of X

(u;v)2E

cost(u; v)cap(u; v)

Now, we prove that R is also the solution to the K-median problem.

First, because each session is of a form (x; x; b), and the triangle inequality holds for the
entire network, a session (x; x; b) is con�gured always on the shortest path f(x; r); (r; x)g,
which is also the least cost path given any r 2 R if x is not one of the processing location.
(No links are used if the end point x is one of the processing nodes.) Note also that for any
such link (x; r) or (r; x), the session form (x; x; b) is the only one that uses the links.

Therefore, the minimum capacity required at (x; r) or (r; x) is

cap(x; r) = cap(r; x) = minf�(x); !(x); Æ(x; x)g = 1

From this,
X

(u;v)2E

cap(u; v)cost(u; v)

=
X

x2V

cap(x; r)min
r2R

(dist(x; r) + dist(x; r))

=
X

x2V

min
r2R

(d(x; r) + d(r; x))

= 2
X

x2V

min
r2R

d(x; r)

This proves that R also minimizes the sum of the distance
P

x2V minr2R d(x; r), and
thus is a solution to the K-median problem.

Therefore, the processing placement problem includes theK-median problem, and there-
fore is NP-hard [12]. Moreover, the K-median problem is not approximable within any �
bound (not in APX ), however is approximable if the boundK can be relaxed. Lin and Vit-
ter [15] presented an algorithm that gives a solution with the total distance within 2(1+ 1

� )
of the optimum if the size of the set R can be at most (1 + �)K in Euclidean space.

Unfortunately, the approximation algorithm does not provide a solution to the process-
ing placement problem when we have arbitrary traÆc constraints. Therefore, we need to
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devise new algorithms that perform well under the conditions that we expect to arise in
practice.

4.2.1. Selecting K nodes. In this section, we suggest two heuristic strategies for
selecting the K nodes. First, we de�ne the set of sessions with non-zero maximum traÆc
as follows.

S = f(x; y)jtmax(x; y) > 0g

where tmax(x; y) = min(�(x); !(y); Æ(x; y)), the maximum amount of traÆc from x to y.

Next, we de�ne the sessions that can be served by each processing location. So, for each
location u,

S(u) = f(x; y)jp(x; y; u) � f(x; y; �) and (x; y) 2 Sg

where p(x; y; u) is the shortest path from x to y that goes through u.

Then, in the �rst strategy, we de�ne the weight of each node pair (x; y) and the weight
of each potential processing node u as

w(x; y) = tmax(x; y)l(x; y)

w(u) =
X

(x;y)2S(u)

w(x; y)

where l(x; y) is the length of the shortest path p(x; y).

Now, we select K nodes that have the largest weight. This task can be carried out with
the following greedy method. We start with an empty set R and a set S containing sessions
with non-zero traÆc limits and repeat the following steps until S is empty or jRj = K.

First, select a node u that gives the largest weight w(u) and include it into R. Next,
remove all sessions in S(u) from S, i.e. S = S � S(u). Note that this may change the
weights of nodes that have not yet been selected. If, when the algorithm terminates, S is
empty then the set R satis�es the bound on path lengths. Otherwise, it does not.

Finding such K nodes can also be formulated as an integer linear program, for which
we can generalize a heuristic method introduced in [15] to obtain an approximated solution.
Below, we give the linear program and leave the details of the approximation method for
future work.

First, each constant variable fi;j;h for ui; uj ; uh 2 V is de�ned such that fi;j;h = 1 if
the node uh can be designated as a processing node for sessions between the pair (ui; uj),
i.e. (ui; uj) 2 S(uh), and zero otherwise. Then, �nding K nodes with the largest weight is
equivalent to the following integer linear program that maximizes

X

uh2V

X

ui;uj2V

fi;j;h � xi;j;h � yh � w(ui; uj)
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subject to

X

uh2V

fi;j;h � xi;j;h � 1; ui; uj 2 V

X

uh2V

yh � K

xi;j;h � yh

xi;j;h; yh 2 f0; 1g; ui; uj ; uh 2 V

where yh = 1 if and only if the node uh is chosen as a processing node, and xi;j;h = 1 if and
only if yh = 1, (ui; uj) 2 S(uh), and the pair (ui; uj) is assigned with the processing node
uh.

Overall, this heuristic attempts to place the processing nodes in favor of the end point
pairs that are likely to produce more traÆc and to require more resources. This is re
ected
in the weight of each potential processing node, which is the sum of the traÆc contributions
from the end point pairs that can be served by the node. Thus, this method is expected to
to o�er better (shorter) paths for end point pairs with large traÆc contributions, and thus
reduce the overall resource requirements.

Meanwhile, as an alternative strategy, we can de�ne the weight w(u), as the minimum
dimensioning cost only considering end points in S(u) and the processing node u, i.e. w(u) =
D(G; fug;�). Similarly, we de�ne the weight of a set of processing nodes R as the associated
dimensioning cost, i.e. w(R) = D(G;R;�) for end points in

S
u2R S(u). With the new

weights, we attempt to specify the portion of the optimal dimensioning cost contributed
by each processing node, and select k nodes with the largest portion. Hopefully, we may
identify the processing nodes that serve a majority of session traÆc while approximating
the optimal solution. Both the greedy and the linear programming method can be applied
to this case.

We have proposed two strategies for heuristically selecting processing locations. Once
we determine the k processing locations, we can dimension resources with the max 
ow
formulation. In order to evaluate the strategies, we de�ne the quality of a solution R as
the dimensioning cost D(G;R;�) relative to the optimal cost Dopt, i.e.

D(G;R;�)
Dopt

. However,
without knowing the optimal solution and its cost, we can use the lower bound Dlo as an
alternative way to measure the quality because

D(G;R;�)

Dlo
�

D(G;R;�)

Dopt

where the quality of the given solution is bounded by the left hand side.

The performance of the particular strategies for selecting K nodes and possibly other
strategies need be studied further. We will measure and compare the methods in terms of
the quality of the dimensioning cost and the performance of session con�gurations given
the resources. As another variation, we may also try to tune the value of K as suggested
in [15],
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5. Concluding remarks

Programmable networks open up a broad range of ways to develop and operate applications
by allowing customized processing in network routers. In this proposal, we have addressed
two key issues that arise in operating and provisioning such networks.

First, we presented the problem of con�guring application sessions that require interme-
diate processing on routers, and provided an optimal solution for a major class of sessions.
We also discussed the issues related with con�guring sessions that reserve resources, pre-
sented eÆcient algorithms and demonstrated experimentally that they can work well in
practice.

Then, we considered how to provision a programmable network to satisfy anticipated
resource demands. Particularly in the resource dimensioning problem, we generalized a for-
mulation for dimensioning conventional networks so that it can be applied to programmable
networks that support various types of processing. We then discussed the problem of placing
processing resources where we illustrated the e�ect of di�erent placements and potential
methods for selecting optimal locations. By identifying problems in programmable net-
works and providing methods for resolving them, we hope to discover practical ways to
realize programmable networks and bene�t from them.
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	Abstract: Abstract: This proposal addresses two problems in programmable networks.

Specifically, we are interested in networks that can dynamically deploy applications and

session-specific plugins within network routers, to provide advanced communication services.



In the first half of the proposal, we present a general approach to 

the problem of configuring application sessions that require intermediate processing 

in programmable networks.

In the second half, we discuss how to provision a programmable network for such sessions

by placing and dimensioning link bandwidth and processing resources in an efficient way.
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