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The Visual Display of Temporal Information
Steve B. Cousins Michael G. Kahn

Medical Informatics Laboratory
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Abstract: The detection of temporal relationships among time-ordered patient data is
an important, but difficult, clinical task. Large volumes of computer-stored clinical data
offer the possibility of aiding in the early detection of subtle trends and states, but the
presence of irrelevant data can obscure relevant findings and relationships. We present
a formal system for representing complex temporal data as events on an abstract entity
called a time line. We define five time line operations, SLICE, FILTER, OVERLAY, NEW,
and ApD. For each operation, we precisely define the operator’s effect on a time line,
including exceptions and boundary conditions. In addition to our time line formalism,
we describe an interactive environment designed specifically to help humans visualize
temporal data. We have developed a database kernel and a graphical user interface
that uses our time line formalism and operations to support temporal manipulations.
Using our formal system and our visualization environment, we describe two issues in
the display and manipulation of temporal data: (1) the temporal granularity problem,
and (2) the calendar mapping problem.

Keywords: Time line, Visualization

1 Introduction

The chronology of disease symptoms is critical information for patient-specific diagnostic, prog-
nostic, and therapeutic decision making. Temporal issues are so prevalent in the interpretation
of clinical data that medical database systems have developed specialized methods to address the
unique storage and retrieval requirements of time-varying clinical data. Advances in instrumen-
tation have increased our ability to observe, measure, and record vast quantities of biomedical
data. Yet the presence of a large number of data types increases the complexity of detecting the
important clinical implications of these measurements.

Most medical databases store data using the time-oriented data (TOD) model [11]. In TOD
databases, information is stored as < attribute,fime,value > tuples. All laboratory data, physi-
cal findings, and therapeutic interventions are represented as events with no meaningful duration,
called point events. The simplicity and flexibility of the TOD model make it an extremely pop-



ular representation method for medical data. Unfortunately, not all medical information fits a.
point-based representation. Effective diagnosis and therapy planning requires an understanding of
temporal trends and clinical contexts in which these patterns occur. For example, it is critical to
know if data were measured during a period of illness or while an administered drug was present in
therapeutic levels. Since the notion of a drug effect is not a point event, we believe that a medical
database must have the ability to represent and manipulate data as both point and interval events.
The latter concepts cannot be represented clearly using the traditional TOD model.

We are developing a methodology for formally manipulating and visualizing temporal relation-
ships among biological data. Our objective is to assist users in the interactive exploration of these
data and to support computer programs in the automated manipulation of patient data. Qur re-
search has approached this goal from both a mathematical and a visualization perspective. We
have developed a mathematical formalism, based on the abstract concept called a time line, for
representing a sequence of events ordered by time. We also have developed a set of mathematical
operations that manipulate time lines, In addition, we have developed a visual representation of
our mathematical structures and operations. For example, the most intuitive visual representation
of a time line is a two-dimensional object, with time on one axis and data and events on the other
axis (Figure 1). Because the visualization procedure is separate from the mathematical definition,
a time line may be visualized in different ways to solve different problems. We have developed an
interactive environment, called a time line browser, for displaying and manipulating sets of time
lines (Figure 2). Time line operations are applied to time lines in a time line browser to construct
new time lines.

The adoption of a more sophisticated temporal data model presents significant new theoretical
and practical problems [7,6]. The issue of temporal granularity is of particular interest to our
temporal reasoning and visualization research. Temporal granularity is the unit of a time scale
appropriate for a given problem-solving context. The problem with temporal granularity is that
the set of relevant facts changes whenever a shift in temporal granularity occurs. For example,
recording and retrieving information in units of minutes and hours is appropriate in an ICU setting,
but weeks or months usually are more appropriate temporal units for the analysis of chronic disease
data. Even in an acute setting like the ICU, previously recorded information is manipulated at a
different level of temporal granularity than are current data. After discharge from the hospital, the
entire ICU stay may be combined into a single interval. We describe one approach to the temporal
granularity problem,.

A second problem that we discuss is the mapping between “real” or calendar time and “virtual”
or relative time. Our formalism allows time lines to be combined in ways which may not map directly
to a traditional calendar, For example, our formalism allows a time line to be created by combining



two pregnancy events. This may be done to compare temporal features of key events during one
pregnancy, such as the appearance of proteinuria or hypertension, to similar events during a current
pregnancy. The resulting time line does not occur in “real time”; there is no mapping between the
combined events and a calendar. We describe our approach to determining how and when time
lines may be mapped to the Julian calendar.

In the remainder of this paper, we develop the mathematical and visual properties of time lines,
and discuss applications of the formalism. In Section 2, we formally define the concept of a time
line and its basic operations using set theory. In Section 3, we describe how a time line browser
allows time lines to be manipulated visually. Sections 4 and 5 describe the use of our formal system
and visualization methods to explore the temporal granularity and calendar mapping problems.

Finally, Section 6 considers future work.

2 Time Lines

In this section, we describe our representation of events and formally define time lines which
contain them. We define a set of basic operations on time lines that result in new time lines. Lastly,

we define additional time line operations by composing the basic operators.

2.1 Ewvents

We recognize the need to handle both point and interval events. In our work, interval events are
defined in terms of their end-points. Our formalization of time lines addresses only point events;
intervals follow because they are defined in terms of points.

Our database schema defines event classes that have similar temporal characteristics. This
grouping allows common properties and behaviors to be associated with each class of temporal
concepts from the domain that is modelled in the database. Although these distinctions among
events have no bearing on our mathematical treatment of time lines, they are at the heart of the
visualization aspects of this work, and are integral to our solution to the temporal granularity
problem. In Table 1, we describe the basic event classes and their default visual representations.
A taxonomy of event classes is used to describe temporal and atemporal properties and behaviors
associated with events contained in a patient’s database. Table 1 also presents the implementation
features of the three basic temporal classes defined in our current system. Simple events are
analogous to the <atiribute,time,value> tuples in TOD databases. They represent point events.
Complez events represent point events whose time of occurrence has been abstracted to a single
point. Intervals represent events with temporal duration.

Our taxonomy distinguishes between point and interval event classes because the properties



and behaviors associated with each class differ significantly. Point events are atomic; they contain
no additional events. Points occur before, during, or after other points. Intervals may contain
both points and subintervals. Intervals also may be overlapped by, concurrent with, contained in,
or contiguous to other intervals [1]. We may need to retrieve all events which occur within the
duration of a specified interval event, but it makes no sense to make the same query of a point
event. We also note that the display behavior of point and interval events are different. Interval
events need to display temporal duration, whereas point events do not (Figure 1, Section 3).

The complex event class is distinguished from the point event and interval event classes as a
modelling convenience. Certain events, such as intramuscular injections, are simply point events
from a clinical point of view; the duration of the injection may reasonably be considered to be
zero. Other events have meaningful duration, but that duration may not be recorded because it
typically is not considered during clinical reasoning. For example, hypoglycemic symptoms have
a meaningful duration, usually lasting a few minutes, but we reason about them only by their
existence, normally ignoring their duration. For clinical management, diabetic patients are asked

to record when they experienced hypoglycemic symptoms, but not how long they lasted.

2.2 Formal Definition of Time Lines

Time lines contain a set of events. Formally, a time line is a tuple < E, M >, where F is
a finite set of events containing at least the special null event eg, and M is a measure function
M : E — Rt. The measure function M assigns a temporal offset to each event in E. By definition,
M(eg) = 0, Ve; € E, M(eg) < M(e;), meaning that no event may come before the null event. One
special time line is the null time line, TLy =< {eg}, M >, which consists of only the null event.

Intuitively, a time line is a line segment with eg as its leftmost boundary, some e, such that
M({ey) is maximal as its rightmost boundary, and all other events placed in between according to
the temporal ordering imposed by M. The measure function imposes a total ordering on E. Qur
formalism assumes a standard unit of time for the measure function. The choice of a particular unit
(e-g. seconds, minutes, days) is arbitrary. In practice, the choice of a unit measure for manipulating
multiple time lines should be standardized. For our implementation, the unit measure we have
selected is seconds.

In the rest of this section, we formally define a set of time line operations. Informally, sLicE
corresponds to removing events from one or both ends of a time line, thereby reducing its size.
FILTER removes events that do not satisfy an arbitrary predicate from the time line. OVERLAY
corresponds to combining two time lines into one. One event in each time line is specified as the
aligning event; the new time line contains all of the events of the old ones aligned on the specified

events, NEW creates a new, empty time line, and ADD allows an event to be added to an existing



time line. We show how other operations may be defined in terms of our primitive operations.

2.3 Slice

SLICE removes events from one or both ends of a time line (Figure 3A). A timeline 7L =< E, M >,
sliced from e; to e; (e1,e2 € F and M(e1) < M(ez)), yields a new time line

TL =< E',M' >= sLice(TL, e1, €2) (1)
where
E ={e€ E|M(e1) < M(e) £ M{ez)} U {eq} (2)
M'(eEE’)z{ 0 when e.xeq, (3)
M(e) — M(e;) otherwise

Equation 1 describes the structure of a call to SLICE, using standard functional notation. Equa-
tion 2 adds all events whose measure function puts them between e; and e, inclusive, to the new
time line. The way this definition is structured implies that the events between e; and e, will exist
in both time lines—E’ is not made up of copies of the events from E. Equation 1 also guarantees
that the null event eg is in E’. Equation 3 defines a new measure function for the new time line,
which maintains the same relative temporal offsets among events in TL/ as in TL. Note that the
definition of SLIGE permits e; = ez (resulting in a time line with only the events eg and e1), and
that (VT L)sLiCE(T L,ep,e0) = T Lg, i.e. slicing the null time line gives a null time line.

2.4 Filter

FiLTER (Figure 3B) removes all events not satisfying an arbitrary predicate P from a time line
TL=< E,M >. By definition, the null event ey cannot be removed by any predicate. The new

time line is

TL =< E',M >= riLtER(T L, P) (4)
where

E' = {e € E|P(e)} U {es} (5)

Equation 5 applies the predicate P to all events except eg. The null time line T Lg is generated
whenever a predicate P removes all events (other than eg) from the original time line T'L.

2.5 Overlay

OVERLAY puts all of the events in two time lines into a single one, so that an event from the first

time line and one from the second time line have the same measure function in the new time line



(Figure 3C). A subtle complication occurs in the OVERLAY operation that does not occur in any
other temporal operation. If both original time lines have an event in common, it is undesirable to
have that event duplicated in the new time line at the same point in time, since then even simple
operations such as counting the events in the new time line would not act as the user expects. On
the other hand, if the alignment operation does not happen to align the common event, the measure
function for that event could have two potential values. Because it makes no sense to give the same
event two different measure function values, duplication of that event is required (Figure 4). We
use an operation called copy to do the necessary duplication in Equation 10. We define copy for
events as copy(e) = € such that (Y P)P(e) «— P(e') and e # ¢ where P is an arbitrary predicate
defined over events. After copy, the events e and e’ have the same properties but are not the same
event.
OVERLAY combines two time lines

TL =< Ey, M; > (6)

TLy =< Eq, My > (M)
into a new time line,

TL =< E',M' >= overLay(TLy,e;,T Lo, e3) (8)
aligning the time lines on e; € E; and e; € E;, where

Mi(e1) 2 My(ez2) (9)

E = EUEU (10)
{copy(e)l(e € By N Ey \ {es}) A
(Mi(er) = Mi(e) # My(ey) — My(e))}

Equation 10 adds to E all events in E; and E; and copies of events which occur in both E; and
E, but which will not be combined in E’. To simplify the definition of M’, we define the following:

shift = M;i(e1) — Ma(ez) (11)
Ma(copy(e)) = Ma(e) (12)

Equation 11 gives a name to the temporal offset between the two time lines. Note that the
precondition in Equation 9 ensures that shift will not be negative. An implementation could relax
the restriction in Equation 9 by testing for it and swapping the time lines if necessary to make it
hold. Equation 12 defines the measure function for copied events. With these definitions, we define

the new measure function for TL' as:



Mi(e) when e € Fy
M'(e€ E'Y =< Ma(e)+ shift whenec hAeg Iy (13)
Ma(e)+ shift when e¢ U E;
In Equation 13, the first case assigns a value to the new measure function for events which come
from T'Ly, including those events which occur in both T'L; and T'L,. The second case handles events
from T'Ly, except those which have already been given a value in M’ because they are also in T'L;.

The third cases handles the remaining events in E', which are only those events resulting from a

copy.

2.6 New

The NEW operation constructs a null time line (Figure 3D):

TLy =< {es}, M >=nEwW() (14)

2.7 Add
ADD is used to add an event ¢ to a time line TL =< E, M > at offset ¢:

TL =< E'\M' >= app(TL,e,t) (15)
where

eg B (16)

E' = Eu {e} (17)

M =MU{<ei>} (18)

Formally, we treat the function M as a set of ordered pairs, and add elements to the domain over
which M is defined. The restriction of Equation 16 ensures that M remains a proper function after

the operation.

2.8 Composite Operations

The operations we have defined are intended to provide minimal functionality for time lines.
Other operations can be defined in terms of these primitive operators. For example, concatenation
can be performed as a special case of OVERLAY by using the last event of the first time line and the
first event of the second time line as the aligning events. A time line can be copied by slicing from

its first event to its last event. Even the time of an event on a time line can be changed:
MOVE(e,T L) = ApD(FILTER(T L, (Az)(z # €)), ¢, newtime) (19)

Here FILTER(T L, (Az)(z # e)) is simply a function to remove e from TL.



3 Time Line Browsers

Although time line operations have the conceptual power to manipulate time lines as math-
ematical abstractions, they do not specify the visual behavior of time lines. We have developed
an editor for time lines, called a time line browser, which implements time line operations as well
as additional operators specific to time line browsers. In this section, we describe the time line
browser and how it provides visual access to the various time line operations.

In order to interact with time lines graphically, we need a 2-dimensional visualization of them
(Figure 1). The only required dimension is time, so we are free to use the second dimension at our
discretion. Some types of events have integer- or real-valued components. In these cases, the second
dimension often is used to plot the value of these components. Other event types are informational,
and the second axis is used only to avoid overwriting co-temporal events. Small circles in Figure 1
represent blood glucose readings, positioned vertically by value. The horizontal positions of the
X-ray icon and the speakers indicate when an X-ray was taken or when voice-commentaries were
made to the record, respectively. The widths of the boxes denoting interval events indicate their

temporal duration.

3.1 General Structure of Time Line Browsers

Time lines are placed in rows in a time line browser (Figure 2). The order of the time lines is
determined by the user. Two adjacent time lines may be aligned (visually synchronized) to indicate
temporal synchronization. When not aligned, adjacent time lines are separated by a dashed line.

At any given time, a subset of the objects in a time line browser (time lines and the events they
contain) are selected [2]. In general, objects are selected by clicking on them. An entire time line
is selected by dlicking on its border. Multiple events are selected by holding the add fo selection
modifier key down (typically the shift key). An entire class of events is selected by clicking on any
instance of the event class with the class modifier key down.

3.2 Visualizing Time Line Operations

Just as time lines have both a mathematical definition and a visual representation, we have
developed visual analogs of the time line operations.

Visually, sLIGE is performed by selecting a range of events and choosing the sLICE option from
a menu. The first event in the selection is taken as e; and the last event selected is taken as es.
The new time line is inserted in the time line browser immediately after the one from which it was
sliced, and is aligned with the original time line.

Visualizing FILTER is complicated by the need to specify the predicate P in Equation 4. Because



all events are members of some event-class, this problem is solved best in general at the event-class
level. We provide shortcuts for a few simple predicates. In particular, the predicate Fo(ey=(e g C)
(for an arbitrary event class C) which removes all events in class C, is performed by selecting a class
of events, and then striking the delete key. Similarly, a specific event is removed by selecting it and
striking the delete key, which invokes the operation del(e’) = FILTER(T L, P) where Pyajle)=e# €.
In general, however, selecting an event and choosing FILTER from a menu invokes a class-specific
method for constructing predicates relevant to the event’s class. Although, the formal definition of
FILTER actually returns a new time line, applying FILTER in a time line browser visually replaces
the current time line with the new time line created by the operation in order to provide the feeling
that the user is directly manjpulating time lines in the time line browser.

OVERLAY is performed by dragging the aligning event of one time line onto the aligning event
of a second time line. The resulting time line visually replaces the second time line in the time line
browser.

Finally, a new (null) time line is created by choosing the NEw command from a menu. Alter-
nately, a new time line can be created from existing time lines by taking an arbitrary sLice from

a time line, and then using FILTER to remove all events.

3.3 Visualizing Time Line Browser Operations

The utility of the time line browser is greatly enhanced by adding browser-level operations to
the collection of time line operations defined above. Unlike time line operations, time line browser
operations are applied to one or more time lines contained in a time line browser. We describe
operations which allow the user to ALIGN time lines in the time line browser, to change the time

SCALE (temporal granularity), and to MARK events.

3.3.1 Align

ALIGN is used to arrange two adjacent time lines so that appropriate events are lined up
vertically (Figure 2). Typically, ALIGN is used to give two time lines a common temporal basis.
For example, two time lines representing the same period of calendar time would be aligned on a
common day, or two pregnancies may be aligned on the dates of conception. Time lines can be
moved within time line browsers, but it may be necessary to break their alignment with other time

lines in order to do so.
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3.3.2 Scale

ScALE refers to the amount of time represented by a umnit of space on the horizontal axis
(Figure 6). To avoid visual confusion, all time lines within a single time line browser are drawn
to the same temporal scale. For example, the scale in Figure 1 is approximately 1day = linch.
Zooming out to a coarser temporal granularity and zooming in to a finer temporal granularity are
implemented as changes in the scALE of a time line browser. We discuss the implications of changes

in temporal scale in the context of the temporal granularity problem in Section 4.

3.3.3 Mark

Selecting a set of events and choosing MARK temporarily alters the visual characteristics of the
selected events. For example, the marked events may have their shapes modified, or on a color
moritor the events may all be drawn in a new color. In Figure 2, vacation events are marked with
an “x” rather than a “o”. Although a MARK is an attribute of a time line browser, its effect is to

change the visual characteristics of a time line.

3.3.4 Other operations

The number of functions desired in a time line browser may eventually approach the number
of operations in modern text editors, and we do not intend for those listed here to constitute a
complete set. ALIGN, SCALE, and MARK are some of the more unusual operators.

For practical use of a time line browser, time lines may be selected and saved to a file individually,
or complete time line browsers may be saved. If the entire time line browser is saved, all positioning
information is retained in the file. Similarly, time lines can be loaded from files into new time line

browsers, and time line browsers which have been saved can be restored.

3.4 A Time Line Browser for Diabetes

Using the analysis and display of diabetes patient data as our application area, we have imple-
mented a time line browser prototype which displays a patient’s medical history as a time line. We
have defined application-specific subclasses of the three basic temporal classes to encode temporal
entities typically found in diabetes data (Figure 5). Application-specific classes which are interval-
based, such as illness-intervals, are subclasses of interval, while classes which are point-based are
subclasses of either simple-event or complex-event. This prototype system supports the time line
manipulations we have described. One key feature for visualizing large data sets collected over a
long period of time is the user’s ability to zoom in and out to different levels of temporal abstraction
(Figure 6).
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In Figure 2, we show a time line browser for a hypothetical diabetic patient. The uppermost
time line in the time line browser represents the output of the patient’s diabetic loghook!. Note
the run of markedly hyperglycemic readings (indicated by “x”s) on Monday through Wednesday.
The second time line is a slice from the patient’s personal calendar (a form of time line), which is
temporally aligned with the logbook. When available, a calendar can give a physician additional
information about the patient’s lifestyle that the medically-oriented logbook does not include. In
this case, the calendar indicates that the patient visited family members during those three days,
which in turn suggests the hypothesis that the patient had either more food or less exercise than
usual due to the break in his normal schedule. The third time line in Figure 2 is separated from the
first two by a dashed line, indicating that it is not temporally aligned with them. This time line is
a modal day—created by overlaying a whole week’s worth of days. The modal day is popular in the
domain of diabetes management because it gives an indication of the range of values at different

times during the day.

4 Temporal Granularity

Temporal granularity is the unit of a time scale appropriate for a given problem-solving con-
text [3]. Exact seconds do not matter if the concept of interest ranges over years, but seconds
become important when that concept evolves over minutes. The temporal granularity problem is
that as the temporal granularity grows, the number of entities to be considered grows. The visual
aspect of this problem is that as the temporal granularity grows, the visual clutter on the screen
grows. To keep a decade’s worth of data from becoming a black band on a time line, we pro-
pose temporal granularity heuristics which attempt to determine which classes of events to display
dynamically as the temporal granularity changes.

Temporal abstraction is an effective mechanism for combining smaller temporal entities into
larger, but less detailed, concepts. Abstraction simplifies retrieving and reasoning by combining
multiple features into a single entity. Temporal decomposition is the inverse operation of temporal
abstraction. In temporal decomposition, the entities contained within a larger temporal abstraction
are available for more refined reasoning. The number of entities to manipulate is increased by
decomposing an abstraction. We believe that temporal abstraction and decomposition are the
expression of a powerful heuristic used by humans to focus only on features that are relevant to

solve a specific problem [5].

! Most diabetic logbooks are recorded by hand today, and do not usually have this variety of information. However,
hand-held electronic logbooks are being developed, which will make this information much more readily available to
analysis programs in the near future.
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We seek to develop an automated method that suppresses specific information in some problem-
solving contexts, but makes these details available when appropriate. Because of the vague nature of
“when appropriate”, the best we can hope for is a heuristic. The purpose of a temporal granularity
heuristic is to minimize the extraneous detail that always exists at a particular temporal granularity.
By eliminating the visual clutter caused by unwanted detail, the user of the browser can perform
time line manipulations with only those concepts that are required to solve his current analysis
problem. Event classes in our system can use temporal abstraction to suppress details when the
temporal granularity changes and makes them irrelevant.

Our temporal granularity heuristics encode the information about relevant temporal granulari-
ties in each class of events. This architecture provides a simple way to customize various temporal
granularity heuristics. In this way, objects can change behaviors depending on the current tempo-
ral granularity. We use this property to modify an object’s response to queries and for the visual
display of information. For example, blood glucose readings are individually displayed when the
temporal granularity is such that only a few weeks are displayed, but are suppressed when the
granularity increases so that many months or years are displayed.

One way to implement temporal abstraction and decomposition is to define a subclass of inter-
val called a sub-time-line. Using this subclass, a hierarchy of time lines can be represented, with
each sub-time-line containing events which have been abstracted from the parent time line. Given
such a hierarchy, temporal decomposition is performed by overlaying the sub-time-line onto the
original time line, creating a time line which contains the events of both time lines, Temporal ab-
straction is implemented by creating sub-time-lines containing the abstracted events and replacing
the abstracted events with the sub-time-line in the original time line. Temporal abstraction can be

achieved with our current set of time line operators.

5 Mapping Time Lines onto a Calendar

A key feature of our time line definition is the clear distinction between a temporal ordering
and calendar time. When two separate days are sliced from a single time line and are overlayed
to form a new time line representing a composite day, the new time line no longer has a direct
relation to the Julian calendar (What would its date be?). In order to separate these ideas, we
need to suspend the notion of calendar time, but keep the proper temporal ordering. Because of
the definition of the measure function M, our basic time line formalism contains only the notion
of temporal ordering of events. We refer to time lines which can be directly mapped to the Julian
calendar as grounded time lines.

A time line is grounded when it has a direct mapping to the Julian Calendar. Let C =< Eg, Mc >
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be the Julian Calendar starting at some arbitrary (but finite) point in time. All events which occur
in the world are included in C. Time line 7' =< E, M > is grounded if

3s € R such that Ve € E(e € Ec A M(e) + s = Mc(e)) (20)

Note that s (for shift) is the offset of the grounded time line from the beginning of the Julian
Calendar,

The modal day plot in Figure 2 is an example of an ungrounded time line. It contains a temporal
ordering, but does not map onto any particular part of the calendar. The modal day plot is formed
by filtering all events except blood glucose readings from the first time line, marking the values on
the three-day weekend, slicing the resulting time line into single day time lines, and then overlaying
the single day time lines onto each other. This type of plot is very popular among physicians
managing diabetics because it aggregates a large amount of data in a meaningful way.

It follows that the null time line is always grounded, and that the Julian Calendar itself is
grounded. Any time line created with SLICE or FILTER from the Julian Calendar is also grounded.
Ungrounded time lines are always a result of either creating a new time line with NEw, and then

using ADD, or performing an OVERLAY operation.

6 Discussion

The operations described in this paper provide a basic framework for manipulating temporal
data. We conclude with a discussion of the implementation, scalability, and future extensions of
this work.

Our prototype time line browser is designed for diabetes data management. Data common to
this problem domain are blood glucose measurements, meals, and insulin injections (point events),
and exercise and unusual events such as hypoglycemia or illness (interval events). Although our
initial prototype addresses issues in diabetes data storage and retrieval, our system is applicable to
a much wider range of applications, both inside and outside of the domain of medicine.

We use object-oriented programming methods [4,8] to implement the temporal classes and to
store data instances. A class object stores properties that are common to all instances of that class.
Programming procedures associated with each class object implement behaviors that are common
to all class instances. Operations among database entities are performed by sending messages to
data objects in the database. Figure 5 shows the object hierarchy for events in our diabetes time
line browser. The root of the hierarchy events, contains a default action for most defined behaviors.
In the object-oriented paradigm, a function is defined to perform a default behavior. Subclasses
specialize the default behaviors by defining functions with the same name as the parent class. These
specialized behaviors then become the default behavior for that subclass and any child subclass
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(Table 2).

Accommodating large quantities of data is a serious issue in any real visualization system. We
minimize this problem through the use of data abstraction techniques which aggregate irrelevant
data. For example, when reasoning about a previous hospitalization, it is often reasonable (and
desirable} to suppress minor details of the hospital course. Abstraction aggregates detailed in-
formation into a less detailed composite concept. This technique represents a trade-off between
the necessary retention of all medical data and the time-consuming retrieval of data in a medical
problem-solving environment. We propose to remove the primary data from the active portion of
the medical record, leaving only a hospital interval abstraction, which has a pointer to a long-term
storage device (such as a tape label) that contains the detailed data. If the hospital abstraction
interval ever is queried for more details, the object’s response might be to request that the appro-
priate magnetic tape be mounted so that the requested details could be re-incorporated into the
patient’s active history.

We have not dealt with incorporating temporal uncertainty into our time line operations. Others
have shown the general solution to temporal uncertainty to be an NP-hard problem [1,10]. Our
framework allows one to specify bounds on the occurrence of events, but we have not dealt with
how to resolve that temporal uncertainty. For example, assume we have two events regarded as
having occurred at 11:55 AM. When viewed at a very fine temporal granularity, it becomes clear
that the events could have occurred at different times. In these cases, we add error bars to the
event’s visual representation to indicate that, at this temporal granularity, the exact location of the
event on the screen is not indicative of its exact temporal location.

There are other visual representations of time in common use which we believe our system will
be able to handle, but which we have not yet implemented. For example, we have examined a large
number of temporally-oriented statistical graphics from Tufte’s book [9], and are confident that our
framework can handle them. There are two commonly-used visual representations that we do not
currently handle. One is the “traditional” time line: A single line with other lines perpendicular
to it, such as in Figures 3 and 4. Another useful visual representation displays time lines vertically
(as in a patjent chart or date book). One way to handle these alternative representations, is to
require event classes to respond to new display messages, such as “traditional draw”. Unfortunately,
this requirement would add to the burden of programmers of event classes, making them define a
separate draw routine for each possible visual representation. We have a tentative design which we
believe will allow us to draw these alternative time line formats without placing such a burden on
event class programmers. At the current time, our prototype draws only time lines in the format
shown in Figures 1 and 2.

It will take more than fast display algorithms to satisfy the needs of physicians to visualize
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patient data. We believe that having a powerful, concise, and intuitive set of operations is absolutely
necessary to allow clinicians to perform more thorough analysis of temporal data. Therefore, we
have developed formal specifications that precisely define the temporal characteristics of all time
line operations. Each definition describes both the alterations in a time line imposed by the
operation and a description of a visual format for displaying the results of the operation. We seek
to develop a complete calculus of time line manipulations and visualizations that can be generalized
to other sources of time-oriented biological data. With precise semantics and a complete toolbox of
operators, we believe the time line concept will become a useful visualization approach to browsing
biomedical data.
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Table 1: Event types and their visual representations

Time Line Description Default Visual | Temporal Fields
Event Depiction
Simple Event Non-decomposable o Date

event

Simple event occurring —o— (Future Work)

at any time in the inter-
val denoted by the line
segment

Complex
Event

Decomposable, but typ-
ically aggregate event
Decomposable event oc-
curring at some un-
known time in the inter-
val denoted by the line
segment

Date, Interval

(Fature Work)

Interval

Event with a significant
duration

Interval occurring at
any time in the larger
interval denoted by the
line segment

Event, Event

(Future Work)
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Table 2: Sample event-object default and specialized behaviors.

Object Class

Representative Action

Draw | Y-location |

Double-click

Blood Glucose

Small circle | BG value

Show dialog box

X-Ray

X-Ray icon 0.75

Show XR picture

Event (default)

Small circle 0.50

No action
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Figure 1: A time line displaying various event classes that might be found in a diabetic patient
record. The small circles represent blood glucose readings, positioned vertically by value and hor-
izontally by time of measurement. The horizontal positions of the X-ray icon and the speakers
indicate when an X-ray was taken or when voice-commentaries were made to the record, respec-
tively. Boxes denote interval events; the width of a box indicates an interval event’s temporal
duration.

Figure 2: A time line browser is an editor for time lines. This time line browser displays data from
a diabetic patient in three time lines: (a) a diabetes logbook record; (b) a portion of the patient’s
personal calendar; (c) a modal day plot. “B L D N” js a short-hand for the time of day: Breakfast,
Lunch, Dinner, or Nighttime.

Figure 3: Operations on time lines. We use the more traditional visual representation for time lines
in this figure for clarity.

Figure 4: Two time lines showing the effects of an OVERLAY operation when the time lines have
events in common (events b and ¢). (a) When the 0VERLAY operation places the same event from
two time lines in exactly the same place, only one event results. (b) If the repeated events must
occur at two times in the resulting time line, the repeated events are copied. The events ¥ and ¢
are generated by copy(e).

Figure 5: A taxonomy of temporal classes in diabetes data.

Figure 6: Two time line browsers displaying different levels of temporal granularity. Events which
are relevant at one temporal granularity are removed at other temporal granularities, where they
are less relevant and would only clutter up the display.

Table 2
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