
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-27

2005-01-01

Efficient Estimation of Tighter Bounds for Worst Case Execution Efficient Estimation of Tighter Bounds for Worst Case Execution

Time of Programs Time of Programs

Kelly Leahy

In this paper, we will present a framework for the statistical analysis of the execution time of

program units. We will show alternative methods for computing the distribution of the execution

times and provide justification for the use of each of the methods presented. We will estimate

the worst-case execution time (WCET) of the program units using several methods and

compare the results of these methods. We will also present a new method for estimating the

WCET, based on the theory of extreme value distributions.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Leahy, Kelly, "Efficient Estimation of Tighter Bounds for Worst Case Execution Time of Programs" Report
Number: WUCSE-2005-27 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/945

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/945?utm_source=openscholarship.wustl.edu%2Fcse_research%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

SEVER INSTITUTE OF TECHNOLOGY

MASTER OF SCIENCE DEGREE

THESIS ACCEPTANCE

(To be the first page of each copy of the thesis)

DATE: December 15, 2004

STUDENT’S NAME: Kelly P. Leahy

This student’s thesis, entitled Efficient Estimation of Tighter Bounds for Worst
Case Execution Time of Programs has been examined by the undersigned committee
of three faculty members and has received full approval for acceptance in partial
fulfillment of the requirements for the degree Master of Science.

APPROVAL: Chairman

Short Title: Efficient Estimation of WCET Bounds Leahy, M.Sc. 2005

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

EFFICIENT ESTIMATION OF TIGHTER BOUNDS FOR WORST CASE

EXECUTION TIME OF PROGRAMS

by

Kelly P. Leahy

Prepared under the direction of Ron K. Cytron

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May, 2005

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

EFFICIENT ESTIMATION OF TIGHTER BOUNDS FOR WORST CASE

EXECUTION TIME OF PROGRAMS

by Kelly P. Leahy

ADVISOR: Ron K. Cytron

May, 2005

Saint Louis, Missouri

In this paper, we will present a framework for the statistical analysis of the

execution time of program units. We will show alternative methods for computing

the distribution of the execution times and provide justification for the use of each of

the methods presented. We will estimate the worst-case execution time (WCET) of

the program units using several methods and compare the results of these methods.

We will also present a new method for estimating the WCET, based on the theory of

extreme value distributions.

to my loving wife Nadia, for all of her patience and support

Contents

List of Tables . vi

List of Figures . viii

Acknowledgments . ix

1 Introduction . 1

1.1 The Model . 2

1.2 Our Methods . 3

1.2.1 Convolution using Discrete Distributions 4

1.2.2 Convolution by Discrete Fourier Transform 5

1.2.3 Convolution by Characteristic Function 6

1.3 Examples . 7

1.4 Mathematical Preliminaries . 8

1.5 Our Contribution . 8

2 Estimating the Component Distributions 9

2.1 Introduction . 9

2.2 Fitting the Simple Distributions . 10

2.2.1 Maximum Likelihood Estimation 11

2.2.2 MLE Estimates for the Training Data 13

2.3 Fitting the Complex Distributions . 16

2.3.1 Maximum Likelihood Estimation 19

2.3.2 MLE Estimates for the Training Data 21

2.4 Summary of Results . 26

3 Discrete Convolution . 28

3.1 The Convolution Process . 28

iii

3.2 Extension to M Distributions . 30

3.3 Using the Results of Convolution . 31

3.3.1 Smoothing Using a Kernel . 36

3.4 An Example . 37

4 Convolution by Discrete Fourier Transform 41

4.1 The Discrete Fourier Transform . 42

4.2 The Fast Fourier Transform . 43

4.3 The DFT Method . 44

4.3.1 Step 1 — Prepare the FFT Input 44

4.3.2 Step 2 — Compute the FFT 45

4.3.3 Step 3 — Multiply the FFT Output 46

4.3.4 Step 4 — Compute the iFFT 46

4.4 An Example . 47

4.4.1 Computing the DFT of the Probability Functions 48

4.4.2 Computing the DFT of the Convolution 49

4.4.3 Computing the Probability Function 50

4.5 Computational Cost of the Method 50

4.5.1 The Cost of Smoothing . 51

5 Convolution by Characteristic Function 53

5.1 CFs of Common Distributions . 54

5.2 The CFT Method . 55

5.2.1 Step 1 — Estimate the Distributions 56

5.2.2 Step 2 — Sample the CF . 58

5.2.3 Step 3 — Multiply the Results 59

5.2.4 Step 4 — Calculate the iFFT 60

5.3 Computational Cost of the Method 62

6 Combining the DFT and CFT Methods 63

6.1 The Combined Method . 63

6.1.1 Preparing the Distributions 64

6.1.2 Computing the Convolution Distribution 64

6.2 An Example . 65

iv

7 Testing the Models . 68

7.1 The Test Distributions . 68

7.2 WCET Estimates . 69

7.3 The Exact EV Distribution . 71

8 Conclusion . 74

8.1 Future Work . 74

8.2 Some Observations . 75

Appendix A Maximum Likelihood Estimation 78

A.1 Normal Distribution . 78

A.2 Log-Normal Distribution . 79

A.3 Gamma Distribution . 80

A.3.1 The Process . 84

A.4 Adjustments for the EM Algorithm 85

A.4.1 The Mixture Proportions (πj) 85

A.4.2 The Component Parameters 85

Appendix B Training Data and Tabular Results 87

References . 111

Vita . 114

v

List of Tables

2.2 Statistics for MLE Estimation . 14

2.3 Normal and Log-Normal Results (C, D) 14

2.4 Gamma estimation using Newton’s method 15

2.5 NLL for Parts C and D . 16

2.6 Distributions for Parts C and D . 16

2.7 Statistics for the EM Algorithm . 22

2.8 Part A EM for Normal Components 22

2.9 Part B EM for Normal Components 23

2.10 Part A EM for Log-Normal Components 23

2.11 Part B EM for Log-Normal Components 24

2.12 Part A EM for Gamma Components 25

2.13 Part B EM for Gamma Components 25

2.14 NLL for Parts A and B . 26

2.15 Distributions for Parts A and B . 27

2.16 Distributions for Parts C and D . 27

3.1 Discrete Convolution (Binom. Example) 33

4.2 Example Points from the Smoothed Distributions 48

4.3 Example Points from the DFTs . 48

4.3 Example Points from the DFTs . 49

4.4 Example Points from the Convolution DFT 49

4.5 Example Points from the Probability Function of A+B + C +D . . 50

5.2 Selected Entries from f̂B+C . 61

7.1 Underlying Test Distributions . 69

7.2 WCET Estimates and Results . 73

vi

B.1 Example Timing Data . 87

B.2 Unsmoothed FreqDist (A) . 90

B.3 Unsmoothed FreqDist (B) . 90

B.4 Unsmoothed FreqDist (C) . 91

B.5 Unsmoothed FreqDist (D) . 91

B.6 Unsmoothed Convolution . 92

B.7 Smoothed FreqDist (A) . 99

B.8 Smoothed FreqDist (B) . 100

B.9 Smoothed FreqDist (C) . 101

B.10 Smoothed FreqDist (D) . 101

B.11 Convolution of Smoothed Parts . 103

vii

List of Figures

2.1 An Example Program . 10

3.2 Unsmoothed Convolution Distribution 39

3.3 Smoothing Comparison for Part A 39

4.1 The DFT Method . 44

5.1 The CF Method . 56

5.3 The Convolution PDF of B+C . 61

6.1 The Convolution PDF of all parts . 67

viii

Acknowledgments

Thanks to the graduate students and faculty of Washington University that assisted

me with programming tasks and other items related to this thesis, as well as acting

as a sounding board for the various ideas herein. In particular, I’d like to thank

graduate students Scott Friedman and David Olliges and faculty member Jeremy

Buhler for their assistance. A special thanks to my thesis advisor Ron Cytron for his

patience and support and to Stuart Klugman of Drake University for his assistance

with various items related to mixture distributions..

Kelly P. Leahy

Washington University in Saint Louis

May 2005

ix

1

Chapter 1

Introduction

The estimation of worst case execution times (WCET) for a program requires a

distributional assumption for the random variable representing the run time. This

assumption may be explicit, or implicit, and may involve the use of one or more

of the well known probability distributions. Much of the existing literature on this

subject centers on the use of an extreme value distribution, such as the Gumbel or

Weibull distributions (see [7]). Other existing literature takes a low level approach to

estimation of the WCET by attempting to model the precise architecture on which

the task is running and simulate the program itself (see [3], [19], [23], [13], [9]). Ernst

and Ye [10] present a model using basic blocks as the components of the execution

time, but do not perform a statistical analysis of these times. Instead, they compute

their estimates of the WCET deterministically by simply summing the estimates. We

propose a method in which the distributions of the individual elements are computed,

and then the total distribution is computed. The total distribution is then used to

estimate the WCET.

The disadvantage of low-level methods is that they require an intimate knowl-

edge of the target architecture and the source program. Often it is simply not feasible

2

to build such a model for each target architecture. On the other hand, a disadvantage

of the methods using extreme value distributions is that they often give extremely

high WCET estimates. These high estimates can lead to wasted cycles, since the

tasks will often complete in a much shorter amount of time than that prescribed by

the WCET model.

We present a method for estimating a more aggressive bound on the WCET

that is more reasonable for a single scheduling of a given task. This more aggres-

sive bound may cause the deadlines to be missed from time to time, but allow the

scheduler to schedule many more tasks than the bounds given by the extreme value

distributions. We also describe some methods of using a combination of the extreme

value WCET bound and our single-sample WCET bound. Using a linear combination

of the bound provided by the extreme value distribution and that provided by our

method can alleviate some of the concern that our bound is too small. Of course,

a scheduler should recalculate the deadline from time to time, if it finds that the

deadlines are being missed with a greater frequency than is desired.

We describe a model in which a task is composed of several components that are

assumed to have independent execution times (from each other). These components

may represent separate function calls, basic blocks, loop iterations, or any other high-

level components that satisfy the assumption of independence. Of course, it is possible

that some components do not satisfy the independence assumption. We will assume,

for the purposes of this thesis, that this assumption is satisfied.

1.1 The Model

Our model is one for describing the execution times of a given task. For such a task,

we will assume that there are several components that are executed to perform this

3

task, and that that the execution time for the task is given by an equation similar to

T =
M∑
i=1

Ti (1.1)

where T is the random variable representing the total execution time for a task, and

the Ti are the execution times for the individual components. We assume that M

is a constant, and that the individual Ti are mutually independent random variables

(they need not be identically distributed).

We make no specific assumptions about the individual distributions of the Ti;

instead, we provide a method for estimating the distribution of T from estimates of

the distributions of the individual Ti. We describe methods for estimating the Ti in

systems that can have multiple environment states that greatly affect the execution

time of some components. An example of one such system is that in which the

main processor has a data and/or memory cache. In such a system, each Ti may be

dependent on the cache state when the component is to be executed (cold cache / hot

cache). In this case, the assumption of independence of the Ti may be questionable,

but we still assume that they may be independent, since the data cache and instruction

cache state of one component is often independent of the cache states of another.

1.2 Our Methods

We describe several methods for computing the distribution of T , as given in Equa-

tion 1.1. Because T is a sum of a fixed number of random variables, its probability

function (pf) is given by a convolution of the probability functions of the individual

random variables on the right-hand side of Equation 1.1. Analytically, the convo-

lution of two random variables X and Y , given by probability functions fX and fY

4

respectively, is written as fX ∗ fY , and is defined as

fX+Y (z) = (fX ∗ fY)(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx (1.2)

where z is the value of the sum X + Y at which the pf should be evaluated.

For some simple distributions (Gaussian, Gamma family), a closed-form ex-

pression for the convolution exists, permitting direct computation of the composite

distribution (of T) when all components are of applicable type. For more compli-

cated models, however, the composite distribution must be numerically estimated. It

is these situations with which we are most concerned.

For distributions of the discrete type (we will use these as numerical approxi-

mations of those of the continuous type), the convolution of two random variables X

and Y , given by probability functions fX and fY respectively, is given by

fX+Y (z) = (fX ∗ fY)(z) =
∑∑
z=x+y

fX(x)fY (z − x) (1.3)

where the summation is over all possible values of x and y that sum to z.

As can be seen from this formula for the calculation of the convolution, its

apparent complexity is O(X̄Ȳ), where X̄ and Ȳ denote the number of possible values

for X and Y respectively. We next describe a few methods that can allow us to reduce

the complexity of this computation, using Fourier analysis.

1.2.1 Convolution using Discrete Distributions

Our first method of computing the composite distribution of T involves an approxi-

mation of the distributions of the Ti by use of a discrete distribution. We assume that

this is, in fact, how the data was already gathered when timing was performed on the

5

different components. For this reason, this is computationally the simplest method

we have at our disposal. For our purposes, we assume that the discrete distribution is

given as a frequency distribution. This method is described in Chapter 3. The input

to this method is the sample data (as frequency distributions) corresponding to the

components represented by the Ti, and the output is the approximate distribution of

the random variable T (as a frequency distribution).

1.2.2 Convolution by Discrete Fourier Transform

Due to the computational complexity (O(NM) if each Ti has N samples) of the

discrete convolution method described in the previous subsection, we are interested

in other methods to compute the distribution of T . One such method, also using the

discrete distributions for the Ti, is the use of the Fast Fourier Transform (FFT) of the

probability functions to perform the convolution. The Fourier transform (the FFT is

a fast implementation of the discrete Fourier transform (DFT)) transforms the input

function from the time domain to the frequency domain. The advantage of this is

that the convolution operation in the time domain is transformed into multiplication

in the frequency domain. This property is known as the Fourier convolution theorem.

Stated in the typical Fourier notation, we have

fT (t) = (fT1 ∗ fT2 ∗ · · · ∗ fTM
)(t) = F−1

[
M∏
i=1

F [fTi
]

]
(1.4)

where F [f] represents the Fourier transform of a function f , and F−1[ϕ] represents

the inverse Fourier transform of a function ϕ. In this method (with the discrete

distributions), we use the DFT, rather than the continuous Fourier transform (CFT).

However, the convolution theorem is also true for the DFT, so we can use it for

6

the computation of the convolution of the individual Ti probability functions. This

method is presented in Chapter 4.

1.2.3 Convolution by Characteristic Function

One of the disadvantages of convolution by the use of the DFT is that we must use

discrete distributions as the input to the method. If, on the other hand, we wish to

approximate the distributions of our components (Ti) using continuous distributions

(standard or otherwise), we need to be able to compute the CFT of each probabil-

ity function (for each Ti) and multiply these CFTs together to compute the CFT of

the convolution. It turns out that the Fourier transform of the probability function

of a distribution is nearly identical to the characteristic function (often well known

and with many convenient properties) of the same distribution. We use the defini-

tion of the characteristic function for the distribution of a random variable T with

distribution function F (t) = P (T ≤ t) from [27] (paragraph 4.1), written as

ϕ(ω) =

∫ ∞

−∞
eiωt dF (t) (1.5)

whereas we use the definition of the Fourier transform from [17] (page 317), written

as

ϕ(ω) =

∫ ∞

−∞
eiωtf(t) dt. (1.6)

One may immediately see that these two functions are, in fact, identical, and so

the characteristic function of a distribution may be used interchangebly with the

continuous Fourier transform of the probability function of that distribution. It should

be noted that most literature defines the CFT with −itx in the exponent of the

exponential factor of the transform, rather than itx as we have here. This point will

7

be important in Chapter 5 when we must produce input for the inverse FFT algorithm.

Once we have the CFT of the pf of the distribution, we then must use some method

to compute the inverse Fourier transform of this convolution. We describe a method

by which we compute the product of the CFTs of the individual distributions of the

Ti, then compute the inverse DFT of a discretized version of the convolution’s CFT.

This has the advantage of being more accurate than the fully-discrete method, in

that sampling and truncation is performed only at the final step of the computation,

rather than prior to the use of the DFT. It also allows us to quickly (O(N)) compute

the CFT of the convolution, then compute the inverse DFT of the convolution using

the FFT for a total cost below that of the fully-discrete method described above.

This method is described in Chapter 5.

1.3 Examples

We will use one running example throughout all chapters that will illustrate all of

the methods described herein. The example will be presented in parts. The data for

the example will be presented in Appendix B, and each of the method chapters will

cover the application of one of the methods to this example. The example involves a

task built from 4 components. The first two of these components are dependent on

the system environment (at the start of their respective execution); the other two are

not. We will model the first two components with mixture distributions (described

in Chapter 2) and the other two components with standard distributions.

In order to test our methods, we will use simulation to generate execution

times consistent with our model of the task. We will train the system with these

samples (that is, we will fit our distributions to these samples), and then we will

8

generate separate samples (from the same model) to test the ability of our estimators

to predict the WCET.

1.4 Mathematical Preliminaries

Much of the theory put forth here requires some knowledge from Probability and

Statistics, Fourier Analysis, and general Mathematics. We will present references to

some of this knowledge, and will repeat the most important items in the chapters in

which they are first used. For a general review of probability and statistics, we refer

the reader to one of [15], [12], or [27].

1.5 Our Contribution

While others have investigated the WCET by use of extreme value distributions,

we present methods for estimating the run-time distribution of the program based

on a breakdown of several independent components. We then show how to proceed

from this estimate of the run-time distribution to a WCET estimate using the non-

asymptotic extreme value distribution. We show that this method produces a tighter

bound on the WCET than that provided by the asymptotic Gumbel distribution.

We also present several methods that can allow the calculation of the convolutions

necessary in our model to be performed in a manner that is less computationally

intensive than the traditional methods for computing convolutions. The CFT method

we present here is not found elsewhere in Computer Science literature, so far as the

author can tell.

9

Chapter 2

Estimating the Component

Distributions

2.1 Introduction

The first step in the estimation of the total execution-time distribution of a task is

the estimation of the distributions of the individual components that comprise the

task. The time distributions for these components may be analytical distributions,

estimated by the programmer based on hardware specifications, or they may be based

on samples gathered during profiling of the task in question. For our purposes, we

assume that the data come from the latter source. We do not concentrate on the

methods of gathering this data, but rather refer the reader to [22] or [11] for ideas on

how to gather timing samples for real-time analysis.

We use a simple program as the example for our task, given in Figure 2.1. This

program has four main parts, which we call parts A, B, C, and D. We assume that

timing data has been gathered from all of these parts. We present this timing data

in Figure B.1, in Appendix B.

10

program example;

begin

procA; (part A)
procB; (part B)
procC; (part C)
procD; (part D)

end.

Figure 2.1: An Example Program

The first two parts (represented by procA and procB) are assumed to be de-

pendent upon the system environment. The others (procC and procD), are assumed

to be independent. The dependent parts will be modeled with mixture distributions,

while the independent parts will be modeled with standard distributions. We de-

termine the standard distributions that best fit parts C and D using the method of

maximum likelihood estimation (MLE) of the parameters of the distributions, using

the distribution with the greatest value of the likelihood function as our choice of dis-

tribution (see [28], [26], [8]). For simplicity, we will restrict our analysis to a relatively

small number of continuous probability distributions. We will use three different dis-

tributions: Gamma, Normal, Log-Normal. In practice, one might use a catalog of

many distributions, but the process we describe for choosing the distribution is the

same, regardless of the number of distributions in our catalog.

2.2 Fitting the Simple Distributions

In order to choose the distribution to use for each of the two parts C and D, and

to estimate the values of the parameters of these distributions, we must compute the

MLEs of the parameters for each distribution based on the data samples. During the

process of computing the MLEs, we also compute the value of the likelihood function

11

for these parameter values. This value is the maximum value of the likelihood function

over all possible parameter choices, given the data as observed. First, we review the

process of maximum likelihood estimation.

2.2.1 Maximum Likelihood Estimation

The process of computing the MLE estimate of the parameters of a distribution

involves maximizing the likelihood function over all choices of parameter values. The

likelihood function is defined as

L(Ψ;x) =
N∏

i=1

fX(xi; Ψ) (2.1)

where Ψ is the vector of parameters to the pf of the distribution, fX is the pf of

the distribution, and {xi}Ni=1 is the sample data from which Ψ is estimated. The

MLE estimate of Ψ is the value of Ψ that maximizes the value of L over all possible

values of Ψ. As it is often more convenient in optimization problems, we may instead

maximize the log-likelihood function, defined as the logarithm of L written as

`(Ψ; x) = logL(Ψ;x) =
N∑

i=1

log fX(xi; Ψ). (2.2)

The Normal Distribution

The MLE estimators for the Normal (Gaussian) distribution with pf

fX(x;µ, σ) =
1

σ
√

2π
e−

1
2
(x−µ

σ
)2 (2.3)

12

are

µ̂ =
1

N

N∑
i=1

xi, (2.4)

σ̂2 =
1

N

N∑
i=1

(xi − µ̂)2. (2.5)

Note that the estimator for σ is not the same as the traditional (unbiased)

estimator s often used in statistical literature ([27], [28], [17]). We are working within

the MLE framework, so we use the MLE estimator as our estimate of the variance.

The Log-Normal Distribution

The Log-Normal distribution is a distribution for which the logarithm of the random

variable is normally distributed. It is given by the pf

fX(x;µ, σ) =
1

xσ
√

2π
e−

1
2
(log x−µ

σ
)2 (2.6)

with parameter MLE estimates given by

µ̂ =
1

N

N∑
i=1

log xi, (2.7)

σ̂2 =
1

N

N∑
i=1

(log xi − µ̂)2. (2.8)

See Appendix A for derivation of the MLE of the Log-Normal distribution.

13

The Gamma Distribution

The Gamma distribution is defined by the pf

fX(x;α, β) =
1

Γ(α)βα
xα−1e−x/β (2.9)

where Γ(α) is the well-known Gamma function (see [15], [31], or [17]) from advanced

calculus.

Unfortunately, the Gamma distribution does not have a closed form expres-

sion for the MLE estimates of its parameters. We describe a method for estimating

the parameters based on the Newton-Raphson method ([4], [29], [14], and [24]) in

Appendix A.

2.2.2 MLE Estimates for the Training Data

Now that we have MLE estimators defined for the three different standard distribu-

tions we will be using, we may compute the MLE estimates of the parameters for

each of the three distributions for each of our two data sets (for parts C and D),

and compute the loglikelihood function for each of the distributions at these choices

of parameters. The first step in computing these results is finding the values of the

statistics used in our analysis. These statistics are the sample variance, the sample

mean, the log-sample variance, and the log-sample mean (these are the terms we use

for the sample variance and mean of the logarithm of the observations). We denote

14

these respectively by S2
X , x̄, S2

log X , and l(x), given by

S2
X =

1

N

N∑
i=1

(xi − x̄)2 S2
log X =

1

N

N∑
i=1

(
log xi − l(x)

)2

x̄ =
1

N

N∑
i=1

xi l(x) =
1

N

N∑
i=1

log xi.

The values of these statistics are tabulated in Figure 2.2.

Table 2.2: Statistics for MLE Estimation

Part SX x̄ Slog X l(x)

C 18.7735 6302 103.1843 0.1861 2334 4.6196 0194

D 14.6269 7266 148.7574 0.0968 7508 4.9975 8541

Normal and Log-Normal Distributions

Using these statistics, we can immediately estimate the parameters for the Normal

and Log-Normal distributions. The estimates are given in Figure 2.3.

Table 2.3: Normal and Log-Normal Results (C, D)

Normal Log-Normal

Part µ̂ σ̂ −`(Ψ) µ̂ σ̂ −`(Ψ)

C 103.1843 18.7736 435.1388 4.6196 0.1861 435.7195

D 148.7574 14.6270 410.1806 4.9976 0.0969 408.2191

15

Gamma Distribution

In order to estimate the parameters for the Gamma distribution, we use the iterative

process from Section A.3.1. The results are tabulated in Figure 2.4.

Table 2.4: Gamma estimation using Newton’s method

k α(k) β(k) T
(k)
1 T

(k)
2 T

(k)
3 δ(k) NLL(k)

Results for part C

0 30.20883 3.41570 0.00027 0.00000 0.01673 0.49417 434.82077

1 29.71779 3.47122 -0.00027 -0.02726 0.01701 0.00783 434.81422

2 29.72562 3.47122 -0.00000 0.00000 0.01701 0.00006 434.81412

3 29.72568 3.47122 0.00000 0.00000 0.01701 0.00000 434.81412

4 29.72568 3.47122 434.81412

Results for part D

0 103.43041 1.43824 -0.00011 0.00000 0.00485 2.35849 408.72488

1 105.78868 1.40544 -0.00052 -0.07733 0.00474 0.05207 408.71308

2 105.84075 1.40548 -0.00000 0.00000 0.00474 0.00305 408.71164

3 105.84379 1.40544 0.00000 -0.00000 0.00474 0.00000 408.71164

4 105.84379 1.40544 408.71164

Choosing the Distribution

Now that we have calculated the parameter estimates for each of our distributions

in parts C and D, we can choose the distribution that best fits our data under the

MLE criterion. The distribution (from our choices) that best fits the sample data

will be the one with the smallest negative log-likelihood (NLL) or equivalently, the

16

largest likelihood. The NLL for each of the distributions for each part is tabulated in

Figure 2.5.

Table 2.5: NLL for Parts C and D

Part Normal Log-Normal Gamma Best Choice

C 435.13882 435.71948 434.81412 Gamma

D 410.18058 408.21910 408.71164 Log-Normal

The best choice from the distributions in our catalog for parts C and D are

Gamma and Log-Normal respectively. We take the parameters for these distributions

from Figures 2.3 and 2.4. Our choices lead to the distribution assumptions given in

Figure 2.6.

Table 2.6: Distributions for Parts C and D

Part Distribution Parameters

C Gamma
α̂ = 29.72568

β̂ = 3.47122

D Log-Normal
µ̂ = 4.99759

σ̂ = 0.09688

2.3 Fitting the Complex Distributions

We now have estimates of the distributions for Parts C and D – the simple distribu-

tions. Our goal now is to find applicable distributions and their parameters for the

17

environment-dependent parts of our program (Parts A and B). We will use a mixture

model to approximate the distribution of Parts A and B.

A mixture model is a model that describes random variables that can come

from one of a group of more than one distribution, where the distribution is ran-

domly chosen. For example, consider an experiment in which we have two urns, each

containing a mix of colored balls. In the first, we have 30% red balls and 70% black

balls. In the second, we have 50% red balls and 50% black balls. The mixture model

describes the probability of choosing a red (or a black) ball given that we randomly

choose the urn from which to draw the ball. In this experiment, there is a 50-50

chance of drawing from a given urn, and a 30% chance of drawing red from the first

urn (given it was the one selected) and a 50% chance of drawing red from the second

(again, given it was the one selected). Our probability distribution (for the choice of

a red ball) is given by

Pr(X = red) = 0.5(0.3) + 0.5(0.5). (2.10)

In general, a mixture model is characterized by a pf fZ of the form

fZ(z; Ψ) =
N−1∑
i=1

πifXi
(z; Ψ) +

(
1−

N−1∑
i=1

πi

)
fXN

(z; Ψ) (2.11)

or, if we define πN such that
∑N

i=1 πi = 1, then we can simply write

fZ(z; Ψ) =
N∑

i=1

πifXi
(z; Ψ). (2.12)

We will use Equation 2.12 to describe the pf of a mixture distribution for the remain-

der of this document, under the understanding that πN is a function of the πi for

i = 1, 2, . . . N − 1, rather than a parameter itself. The Ψ given in the equations is

18

the vector of parameters for all of the mixture components (each of the Xi is called

a mixture component, with πi known as its mixture proportion and fXi
its pf).

The concept that the distribution of the program part (Parts A and B) depends

on which state the system is in translates precisely to a mixture distribution. Each of

the πi represents the probability that the system is in state i with the fXi
representing

the distribution when the system is in state i. A mixture model is, in fact, a direct

translation of the law of total probability. The law of total probability (see [15] for

instance) states that if a set of events (Ai for i = 1, 2, . . . N) is mutually exclusive

and exhaustive1 then

P (B) =
N∑

i=1

P (B|Ai)P (Ai) (2.13)

where the notation P (B|Ai) represents the probability of the event B occuring given

that the event Ai is certain. To see the relationship between this law of total proba-

bility and the mixture pf given by Equation 2.12, we write P (B) = fZ(z), πi = P (Ai),

and P (B|Ai) = fXi
(z). We have already assumed that the system may be in only

one state at a time, and that the system must be in one of the states, so the Ai in

our case are, of course, mutually exclusive and exhaustive events.

We refer the interested reader to [21] for an excellent discourse on the applica-

tions and theory of mixture models.

1This is the same as saying that their collective union is the sample space (all possible outcomes)
and their intersection is the empty set. Written in mathematical notation this is

N⋃
i=1

Ai = Ω

N⋂
i=1

Ai = ∅

19

For the purposes of fitting the data from Parts A and B, we use a two-

component mixture model, made up of components from each of our three distri-

butions. We will not use “mixed” mixtures where the components are from different

distributions, so we will have three possible models to fit. If the distributions of the

components were likely to be different (as may very well be the case in a real system),

we would need to fit each possible (or feasible) combination of component distribu-

tions. An example of such a mixture would be a distribution where 10% of the time,

the distribution is a Normal distribution, and 90% of the time it is a Gamma distri-

bution. We will not use such a mixture, though there is no theoretical reason why

such a mixture could not exist. As in the previous section, the maximum likelihood

criterion would be used to select which combination of mixture distributions provides

the best fit to the data.

2.3.1 Maximum Likelihood Estimation

There are several ways in which the MLE estimates for the parameters of a mixture

distribution may be obtained. All of these methods are numerical in nature, as there

exist no closed form results for any of the distributions in which we are interested.

We will concentrate on the use of the EM algorithm ([20], [21]) for the estimation of

the mixture parameters.

In a mixture model, there are two types of explicit parameters: the component

proportions, and the component parameters. The first of these refers to the πi in the

mixture pf. If the mixture has M components, there are M − 1 of these parameters.

The second type of parameter refers to the parameters of the component distributions

themselves. If we assume that all component distributions are of the same type (as

we will in this document), then the number of these parameters is MP where P is the

20

number of parameters for the component distribution. Therefore, we are estimating

3M − 1 parameters for each of our types of component distributions (each has 2

parameters). In our case, M = 2, so there are 5 parameters to estimate for each type

of component distribution.

The EM Algorithm

The EM algorithm is a two-stage algorithm for MLE in the face of missing data.

While the reader may note that it doesn’t appear that we are missing data (our

samples aren’t truncated or censored), our problem can be formulated as a missing-

data problem by assuming that there are some data, denoted zij, associated with

each of the data points xi. These data zij are indicators that indicate which state the

system was in for the execution corresponding to xi. They are 0/1 variables, with

zij = 0 indicating “not in state j during execution leading to time xi” and zij = 1

indicating the alternative (in state j). Had we been able to gather this data, it would

be quite simple to estimate the parameters of the components (since we would know

the distribution to which each observation belongs) and the proportions (since we

would know how many observations came from each system state).

For example, in the Normal distribution case, we would have

µ̂j =

∑N
i=1 zijxi∑N
i=1 zij

(2.14)

σ̂2
j =

∑N
i=1 zij(xi − µ̂j)

2∑N
i=1 zij

(2.15)

and

π̂j =
1

N

N∑
i=1

zij. (2.16)

21

The Process The process of applying the EM algorithm is as follows:

1. Compute an initial estimate of the parameters of the distributions based on an

initial partitioning of the observations into groups corresponding to the mixture

components.

2. Using the computed estimates for the component distribution parameters, com-

pute the probabilities that each of the data points resulted from each of the mix-

ture components. Use these probabilities to estimate the zij using the equation

ẑij = E[zij] =
πjfXj

(xi; θ̂j)∑M
k=1 πkfXk

(xi; θ̂k)
(2.17)

where θ̂j is the current estimate of the parameters for mixture distribution j,

and M is the number of mixture components.

3. Using the estimates ẑij from step 2, estimate the parameters of the component

distributions (see Equations A.5* and A.6* for the Normal distribution, Equa-

tions A.11* and A.12* for the Log-Normal distribution, or Equations A.13*,

A.14* and A.15* for the Gamma distribution).

4. If the result has converged to within the desired tolerance, stop; otherwise return

to step 2

2.3.2 MLE Estimates for the Training Data

For our purposes, we will initialize our estimates for the EM algorithm by simply

dividing the training data in two halves, the fifty smallest and the fifty largest. We

then use this division to estimate the parameters of our three distributions, for the

starting point of the EM algorithm. The statistics computed on this data are given

in Figure 2.7.

22

Table 2.7: Statistics for the EM Algorithm

Part Group SX x̄ Slog X l(x) π̂j

A Low 1.35859522 38.3052 0.03627907 3.64493752 0.5

High 430.93016683 310.6080 1.42489530 4.62455229 0.5

B Low 5.22430583 43.2008 0.13365915 3.75753905 0.5

High 414.87919156 276.5026 1.21920932 4.67256012 0.5

The Normal Mixtures

First, we estimate the parameters for the Normal mixtures. The results for Part A

are tabulated in Figure 2.8. The results for Part B are tabulated in Figure 2.9. The

first row of each table (iteration one) is the initialization provided in Figure 2.7. The

second and later iterations are the results of applying the EM algorithm to the initial

estimates of the parameters given in row 1.

Table 2.8: Part A EM for Normal Components

Iter π1 µ̂1 µ̂2 σ̂1 σ̂2 NLL

1 0.50000 38.30520 310.60800 1.35860 430.93017 433.64794

2 0.77469 41.06717 633.10545 2.54341 412.26863 349.04243

3 0.85860 39.86482 991.68282 2.26691 75.04354 306.90075

4 0.86000 39.83500 1001.41786 2.26794 20.22373 294.90933

5 0.86000 39.83500 1001.41786 2.26794 20.22373 294.90933

23

Table 2.9: Part B EM for Normal Components

Iter π1 µ̂1 µ̂2 σ̂1 σ̂2 NLL

1 0.50000 43.20080 276.50260 5.22431 414.87919 518.24196

2 0.74908 49.99793 487.79806 7.38597 464.48401 443.34094

3 0.87641 49.40430 943.05710 8.30094 236.95495 422.04111

4 0.88999 48.94692 1057.08244 8.38641 31.95495 403.49570

5 0.89000 48.94685 1057.17273 8.38651 30.68959 403.47817

6 0.89000 48.94685 1057.17273 8.38651 30.68959 403.47817

The Log-Normal Mixtures

Now that we have estimated the Normal-component mixtures, we can move on to

the Log-Normal and Gamma mixtures. The Log-Normal estimates are given by Fig-

ure 2.10 and 2.11.

Table 2.10: Part A EM for Log-Normal Components

Iter π1 µ̂1 µ̂2 σ̂1 σ̂2 NLL

1 0.50000 3.64494 4.62455 0.03628 1.42490 422.93776

2 0.69615 3.92630 4.61232 0.26613 1.64867 490.01643

3 0.78568 3.80686 5.33674 0.13785 1.49541 430.57377

4 0.83998 3.70945 6.36724 0.06261 0.95026 352.38005

5 0.85951 3.68344 6.89583 0.05689 0.17912 318.42644

6 0.86000 3.68313 6.90897 0.05692 0.02004 294.63614

7 0.86000 3.68313 6.90897 0.05692 0.02004 294.63614

24

Table 2.11: Part B EM for Log-Normal Components

Iter π1 µ̂1 µ̂2 σ̂1 σ̂2 NLL

1 0.50000 3.75754 4.67256 0.13366 1.21921 491.87104

2 0.64877 4.21344 4.21802 0.40855 1.55641 526.07859

3 0.72727 4.11043 4.49404 0.28738 1.64076 498.43958

4 0.79453 4.00911 5.01139 0.20661 1.62081 467.61674

5 0.83470 3.93301 5.63920 0.16739 1.51421 448.04447

6 0.85653 3.90063 6.09217 0.16192 1.38700 443.11100

7 0.86894 3.88811 6.38258 0.16395 1.23241 441.61787

8 0.87740 3.88290 6.59212 0.16795 1.03711 440.03889

9 0.88645 3.87777 6.84796 0.17535 0.57681 433.05540

10 0.89000 3.87542 6.96292 0.17781 0.02955 405.38911

11 0.89000 3.87542 6.96293 0.17781 0.02896 405.38472

12 0.89000 3.87542 6.96293 0.17781 0.02896 405.38472

The astute reader may notice that the NLL on the Log-Normal mixtures actu-

ally increases from the first to the second iteration. This is a result of the poor initial

estimate given by the choice of the median as the “dividing line”. One should notice

that after the first iteration, the NLL decreases monotonically.

The Gamma Mixtures

As before, the process of estimating the Gamma mixtures is a bit more complicated

than that of the Log-Normal and Normal mixtures, due to the fact that the Gamma

MLEs are not closed-form. However, the general idea is the same, only the MLE (the

25

M step) is replaced by the solve for the Gamma MLEs based on the initial estimates

given by x̄ and S2. The results are tabulated in Figure 2.12 for Part A and Figure 2.13

for Part B.

Table 2.12: Part A EM for Gamma Components

Iter π1 α̂1 α̂2 β̂1 β̂2 NLL

1 0.50000 771.60823 0.56034 0.04964 554.31932 423.01425

2† 0.72282 482.01746 0.65914 0.08166 799.15633 423.00408

3 0.83418 353.32292 5.98702 0.11252 142.32138 358.87962

4 0.86000 308.97979 2405.30944 0.12892 0.41634 331.93477

5 0.86000 308.97919 2477.36193 0.12892 0.40423 294.67962

6 0.86000 308.97919 2477.36193 0.12892 0.40423 294.67660

Table 2.13: Part B EM for Gamma Components

Iter π1 α̂1 α̂2 β̂1 β̂2 NLL

1 0.50000 60.26261 0.64396 0.71688 429.38127 496.82920

2 0.68900 56.31266 0.62847 0.83627 651.84801 492.82888

3† 0.81232 45.11140 1.66844 1.08018 384.08715 455.59212

4† 0.87498 36.67997 7.92605 1.33867 117.95610 440.82549

5 0.89000 32.82081 1188.05476 1.49134 0.88797 427.51405

6 0.89000 32.82080 1190.55002 1.49134 0.88797 404.19959

7 0.89000 32.82080 1190.55002 1.49134 0.88797 404.19958

8 0.89000 32.82080 1190.55002 1.49134 0.88797 404.19958

†The Gamma MLE solve for this iteration diverged for distribution 2, so α̂2 and β̂2 are estimates
using the Method of Moments.

26

Choosing the Distribution

As before, we choose the distribution family that provides the best MLE (lowest NLL)

as the distribution to represent the data. The NLL values for the mixtures we have

selected as candidates for our estimates are given in Figure 2.14.

Table 2.14: NLL for Parts A and B

Part Normal Log-Normal Gamma Best Choice

A 294.90933 294.63614 294.67660 Log-Normal

B 403.47817 405.38472 404.19958 Normal

2.4 Summary of Results

In the previous two sections, we estimated the parameters for the four distributions

of Parts A, B, C, and D from our example program. Two of these distributions

were estimated as mixtures, and two as simple distributions. Parts A and B were

estimated as mixtures, with the parameters given by Figure 2.15. Parts C and D

were estimated as simple distributions, with the parameters given in Figure 2.16.

27

Table 2.15: Distributions for Parts A and B

Part Distribution Parameter Estimates

A Log-Normal

π̂1 = 0.86000 π̂2 = 0.14000

µ̂1 = 3.68313 µ̂2 = 6.90897

σ̂1 = 0.05692 σ̂2 = 0.02004

B Normal

π̂1 = 0.89000 π̂2 = 0.11000

µ̂1 = 48.94685 µ̂2 = 1057.17273

σ̂1 = 8.38651 σ̂2 = 30.68959

Table 2.16: Distributions for Parts C and D

Part Distribution Parameters

C Gamma
α̂ = 29.72568

β̂ = 3.47122

D Log-Normal
µ̂ = 4.99759

σ̂ = 0.09688

28

Chapter 3

Discrete Convolution

In this chapter, we present the method of discrete convolution. This method is the

simple brute force method of computing convolutions. We describe this method in

the context of two different data sources (both based on the example data given in

Appendix B). The first data source we consider is the raw data from the example

data set. The second data source is the empirical pf of the distribution, smoothed by

kernel density smoothing [27].

3.1 The Convolution Process

Consider a set of data points with associated frequencies. Each point in the data set

can be represented by the ordered pair (fi, xi), where fi is the frequency associated

with the point xi. In the case of a regular data sample that is ungrouped, we may let

fi = 1 for all i. A data set gathered in this way is known as a frequency distribution

if ∑
i

fi = 1

29

and the xi are unique. The first condition can be satisfied by a process known as

“normalization”. When normalizing a frequency distribution, each fi is divided by∑
i fi in order to cause all fi to sum to one. The second condition can be satisfied by

grouping all xi with a given value together ((fj, yj) = (
∑

xi=yj

fi , yj)).

The convolution of two frequency distributions F and G, given in the normal-

ized and unique-point form described above, is then

Z =

 (u, z)

∣∣∣∣∣ (∃ (v, z) ∈ F ⊕G) ∧ u =
∑

(a,z)∈F⊕G

a

 (3.1)

where the operator ⊕ is defined such that

X ⊕ Y =
{

(f · g, x+ y) | (f, x) ∈ X, (g, y) ∈ Y
}
.

An Example. Consider the two frequency distributions F and G defined as

F = {(0.1, 1), (0.5, 2), (0.3, 3), (0.1, 5)}

and

G = {(0.3, 1), (0.2, 3), (0.5, 7)}.

The convolution of these two frequency distributions is given by

Z = { (0.03, 2), (0.15, 3), (0.11, 4), (0.1, 5), (0.09, 6),

(0.07, 8), (0.25, 9), (0.15, 10), (0.05, 12) }.

A simple algorithm for computing the discrete convolution Z of F and G is

given by Algorithm 1. The result of this algorithm will be a set Z that satisfies the

two requirements given above for frequency distributions.

30

Algorithm 1 Compute the convolution Z = F ∗G
Require: F , G frequency distributions
Ensure: Z is frequency distribution of F ∗G
Z ← ∅
for all (f, x) ∈ F do

for all (g, y) ∈ G do
if ∃(u, x+ y) ∈ Z then
Z ← (Z − {(u, x+ y)}) ∪ {(u+ fg, x+ y)}

else
Z ← Z ∪ {(f · g, x+ y)}

end if
end for

end for

3.2 Extension to M Distributions

The algorithm given in the previous section for computing the convolution is only

for two frequency distributions. In order to compute the convolution of more than

two distributions, we recognize that the output of the convolution operation is itself

a distribution, so we perform the convolutions in series. For instance, if we wish to

compute the convolution

Z = F1 ∗ F2 ∗ F3

we notice that we may simply compute

Z2 = F1 ∗ F2

and then compute

Z = Z2 ∗ F3

using Algorithm 1. It is easy to see that this can be extended to any finite number

of distributions being convolved together.

31

In general, to convolve M distributions, the convolution operation must be per-

formed (M − 1) times. Since the convolution operation can be shown to be O(N1N2)

if there are N1 points in the first distribution and N2 points in the second, the convo-

lution of M distributions is O(NM). This point is not obvious, but is apparent after

recognizing that each convolution potentially produces an output that is the size of

the Cartesian product of the elements of the two input sets.

In later chapters, we present other methods of computing the convolution that

require less computation time than this method. One advantage of this method, how-

ever, is that it is the only method that can handle arbitrary frequency distributions

without any sampling (approximation) error. The other methods will require points

to be equally spaced on the number line. Such a requirement is not necessary for the

brute-force convolution method.

3.3 Using the Results of Convolution

One of the disadvantages of discrete convolution, as described here, is that it has the

tendency to magnify the effects of sampling artifacts in the component distributions.

Sampling artifacts are due to the fact that we are approximating the real distribution

of a component run-time with a discrete set of samples. These samples are not,

in themselves, necessarily very representative of the source distribution. Without

some form of smoothing, either by grouping, approximation by analytical function,

or kernel methods, the distribution does not assign probability at values for which no

observation was encountered.

As an example of sampling artifacts, consider an experiment in which a fair

coin is tossed 50 times, with the number of heads recorded. If this experiment is

32

performed 10 times, resulting in the sample values

29 29 19 21 32 28 23 26 22 23

we obtain the frequency distribution

(19, 0.1), (21, 0.1), (22, 0.1), (23, 0.2), (26, 0.1), (28, 0.1), (29, 0.2), (32, 0.1)

which doesn’t even include the most likely value (the mode – 25) of the true distri-

bution. If we use this frequency distribution, without any smoothing or grouping, we

would be led to believe that the distribution is bimodal with modes as 23 and 29, and

no probability of the values 1 through 18, 20, 24, 25, 27, 30, 31, or 33 through 50.

If we convolve the distributions in their current form (as unsmoothed frequency

distributions), the errors given by the original samples propagate to the entire dis-

tribution and produce even more holes than those found in the original frequency

distributions. Consider, in reference to our example, that we would like to predict

the number of ”heads” given by two separate trials of the experiment described above.

If we use the frequency distribution, we would have the convolution of this distribu-

tion with itself. This convolution is the frequency distribution given by Figure 3.1.

In the table, p̂(x) is the empirical distribution, and p(x) is the probability function

of the true distribution of the convolution at these points. p̃(x) is described later in

this paragraph. Those points with values significantly close to zero or one are left

out of the table. Here, p and p̂ are the probability functions of the distribution (true

and empirical). We measure the error by taking the sum of the squared differences

between the empirical and actual probability functions. Using this error measure,

the error in the approximation of p by p̂ is 0.01135. If instead, we estimate (using

33

MLE) the parameter π of the binomial distribution (assuming the number of trials

is known to be 50), we estimate from our original distribution of values the result

π̂ = 0.504. Using this estimate to compute p̃ (the distribution of the convolution

of two b(50, 0.504) random variables), we have the p̃ given in Figure 3.1. The error

given by the same measure applied to p̃ (versus p) is 0.00018. The reason for this

substantial decrease in measured error is that the distribution does not have so many

holes, since it was smoothed by using an analytical distribution before convolution

occurred. Of course, often we are unable to determine the underlying analytical dis-

tribution of a dataset (if any is appropriate at all). In these more common cases, we

may still attempt to smooth the empirical data by kernel methods as discussed in the

next section. The entries in the fifth column of Figure 3.1 are described in the next

section.

Table 3.1: Discrete Convolution (Binom. Example)

X p̂(x) p(x) p̃(x) ˜̃p(x)

≤ 28 0.00000 0.00000 0.00000 0.00000

29 0.00000 0.00001 0.00001 0.00000

30 0.00000 0.00002 0.00002 0.00000

31 0.00000 0.00005 0.00004 0.00000

32 0.00000 0.00011 0.00008 0.00000

33 0.00000 0.00023 0.00018 0.00000

34 0.00000 0.00046 0.00035 0.00000

35 0.00000 0.00086 0.00068 0.00000

36 0.00000 0.00156 0.00124 0.00150

37 0.00000 0.00270 0.00218 0.00200

34

Table 3.1: Discrete Convolution (Binom. Example)

X p̂(x) p(x) p̃(x) ˜̃p(x)

38 0.01000 0.00447 0.00368 0.00600

39 0.00000 0.00711 0.00594 0.00900

40 0.02000 0.01084 0.00921 0.01900

41 0.02000 0.01587 0.01370 0.02300

42 0.05000 0.02229 0.01955 0.03350

43 0.02000 0.03007 0.02680 0.03800

44 0.05000 0.03895 0.03527 0.04450

45 0.06000 0.04847 0.04460 0.04500

46 0.04000 0.05796 0.05419 0.04850

47 0.04000 0.06659 0.06327 0.05000

48 0.06000 0.07353 0.07098 0.05300

49 0.06000 0.07803 0.07654 0.06300

50 0.06000 0.07959 0.07933 0.07250

51 0.10000 0.07803 0.07903 0.07200

52 0.09000 0.07353 0.07568 0.06600

53 0.02000 0.06659 0.06964 0.05900

54 0.04000 0.05796 0.06159 0.04700

55 0.08000 0.04847 0.05234 0.04300

56 0.01000 0.03895 0.04274 0.04200

57 0.04000 0.03007 0.03352 0.03800

58 0.06000 0.02229 0.02526 0.03050

59 0.00000 0.01587 0.01827 0.02800

35

Table 3.1: Discrete Convolution (Binom. Example)

X p̂(x) p(x) p̃(x) ˜̃p(x)

60 0.02000 0.01084 0.01268 0.02300

61 0.04000 0.00711 0.00845 0.01600

62 0.00000 0.00447 0.00540 0.01250

63 0.00000 0.00270 0.00331 0.00800

64 0.01000 0.00156 0.00195 0.00300

65 0.00000 0.00086 0.00109 0.00200

66 0.00000 0.00046 0.00059 0.00150

67 0.00000 0.00023 0.00030 0.00000

68 0.00000 0.00011 0.00015 0.00000

69 0.00000 0.00005 0.00007 0.00000

70 0.00000 0.00002 0.00003 0.00000

71 0.00000 0.00001 0.00001 0.00000

72 0.00000 0.00000 0.00001 0.00000

≥ 73 0.00000 0.00000 0.00000 0.00000

Since p̂ was never smoothed, it is not really fair to compare the error in p̂ to that

of p̃. If instead, we compute a smoothed version of p̂ by assuming that the resulting

distribution is binomial1, our results should be much better. This is relatively easy

in this situation because a convolution of two instances of a binomial distribution

with the same success rate (π) is simply a binomial distribution with the trials equal

to the sum of the trials for the convolved distributions. Therefore, if we convolve

1The number of heads resulting from a fixed number (M) of tosses of a fair coin is represented
by the Binomial distribution with parameters n = M and π = 0.5.

36

b(50, π) with b(50, π) we get b(100, π). We can then estimate π from our empirical

distribution by using the MLE estimator of π. This gives us an estimate of π that

is 0.504. It should come as no surprise that this value is the same as the estimate

we obtained from the individual distributions, since the expected value of the sum of

two random variables is the sum of the expected values, and the MLE estimate of π

is based on the sample mean, divided by the number of trials. Before, we estimated

p by EX[X] /N , now we estimate it by 2EX[X] /2N .

3.3.1 Smoothing Using a Kernel

We were able to smooth the empirical distribution by estimating with an analyti-

cal distribution. However, often there is no obvious analytical distribution that is

applicable to the data. In this case, we often want to smooth the empirical distri-

bution. We can turn to a kernel function to help us smooth the distribution. One

use of a kernel function is to smooth the distibution so that there are no “holes”

in the empirical distribution. Holes are points of zero probability between points of

non-zero probability, where we would expect the true distribution to have non-zero

probability. For instance, in the empirical distribution of Figure 3.1, there is zero

probability of the value 39, while there is non-zero probability for 38 and 40. In the

real distribution, we can see that there is probability of 0.00711 for the value 39. Even

without knowing the true distribution, we might suspect that the distribution should

be somewhat bell shaped. Such an assumption leads to the belief that there should

be no holes in intermediate values of the probability function.

There are many classes of kernel functions [30] [25]. The main requirements of

a kernel function are that the sum of the kernel function over all values is equal to

37

one. For illustrative purposes, we use a simple discrete kernel function defined as

Kj(u) = {(−2, 0.15), (−1, 0.2), (0, 0.3), (1, 0.2), (2, 0.15)} (3.2)

where u is the signed distance between x and the point xj (x−xj). The kernel function

is used to weight nearby frequencies. This particular kernel function eliminates holes

that are within 2 units of a non-zero probability point. For instance, to compute the

estimate of F at x = 39, we use the points x = 37 . . . 41. The estimate is defined by

the formula

˜̃p(39) =
2∑

i=−2

K(39)(i)p̂(39 + i)

where K(39) is the kernel function defined above.

The estimate at 39 is 0.009. Using this kernel function for an estimate of p,

denoted ˜̃p, and the error measure of the previous sections, we have a total error of

0.00229. This error is, of course, the smaller of the two errors of the non-analytical

estimates of p. Mostly, this is the result of the “filling” of the holes in the distribution.

Due to the relatively small number of sample values in our empirical distribution, we

see a marked increase in the accuracy of the estimate using smoothing. The larger

the number of samples in the empirical distribution, the less the need for smoothing.

3.4 An Example

We now provide an example of the topics of this chapter using the data provided

in Appendix B. Our first example will use the raw data from the Appendix, while

our second will show a method for smoothing the frequency distribution prior to

convolution. We will also contrast the effects of smoothing before the convolution to

those of smoothing the convolution of unsmoothed empirical distributions. In both

38

the smoothed and unsmoothed versions of the distribution, we will use a discrete

frequency distribution with values at the non-negative integers.

In order to confine our distribution to the non-negative integers, we will round

each observation to the nearest whole number. Alternatively, we could scale the

distribution, but since we are talking about the number of heads in a series of coin

tosses, it makes sense to confine our results to whole integers). We then will count the

number of observations at each whole number. We will then divide the count at each

whole number by the total number of observations (100 for each distribution). The

result will be the frequency corresponding to the point in the frequency distribution.

After computing this frequency distribution, the result is shown in Tables B.2, B.3,

B.4 and B.5 in Appendix B.

After preparing the unsmoothed frequency distributions of the four parts, we

can compute the convolution of these frequency distributions. This convolution is

computed in the traditional manner as described in this chapter. The result of this

convolution is tabulated in Figure B.6 in Appendix B. The convolution p.f. is shown

in comparison to the empirical probability function in Figure 3.2.

We now wish to compute the convolution of the smoothed versions of the in-

dividual probability functions. We will use the smoothing function defined by Equa-

tion 3.2 above. A comparison of the lower mode of part A’s empirical probability

function before and after smoothing can be found in Figure 3.3.

Once we have computed the smoothed versions of each of the probability func-

tions (listed in Appendix B as Tables B.7, B.8, B.9 and B.10), we can compute the

convolution of these smoothed distribution (shown in Figure B.11).

It can seen by the results of both the unsmoothed convolution and the convo-

lution of the smoothed components that the distribution is much smoother and much

more precise than the original empirical distribution of the total run times (the last

39

0

0.01

0.02

0.03

0.04

0.05

0 500 1000 1500 2000 2500

Empirical
Convolution

Figure 3.2: Unsmoothed Convolution Distribution

0

0.05

0.1

0.15

0.2

0.25

20 25 30 35 40 45 50 55 60

Empirical
Smoothed

Figure 3.3: Smoothing Comparison for Part A

40

column in Figure B.1). In fact, from looking at the results of the unsmoothed convo-

lution, one might suspect that smoothing is not even necessary in order to provide a

relatively accurate representation of the total run-time distribution.

41

Chapter 4

Convolution by Discrete Fourier

Transform

In the previous chapter, we described a method for computing the discrete convo-

lution of two distributions in the traditional manner. In this chapter, we describe

a method for computing the convolution that requires far less computation than

the traditional method. Since this method is applicable to discrete distributions, it

can be used on frequency distributions or discretized continuous distributions. This

method is particularly applicable to frequency distributions built from large samples

and smoothed frequency distributions. For frequency distributions built from smaller

samples, smoothing should typically be performed before applying the methods de-

scribed in this chapter. If such smoothing is not applied, the result of the convolution

(by Discrete Fourier Transform) will suffer similar problems to those seen in the

previous chapter.

42

4.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a function f is defined by

φ̂k = F̂ [f] (k) =
N−1∑
j=0

fj exp

(
2πijk

N

)
(4.1)

where fj = f (A+ j∆x), ∆x = B−A
N

, and f is a periodic function defined over the

interval [A,B). While the definition of the DFT requires a periodic function, the

theory can be applied to nonperiodic functions by a process of mirroring the function

in other ranges. For instance, if the function f is defined over [A,B), then we can

make the function f a periodic function satisfying the requirements of the DFT by

defining the function f̃ recursively as

f̃(x) = f(x) for x ∈ [A,B)

f̃(x) = f̃(x− (B − A)) for x ≥ B (4.2)

f̃(x) = f̃(x+ (B − A)) for x < A.

With these definitions, f̃ is a periodic function defined at the points A± j∆x for all

natural numbers j. The function f̃ corresponds to f within the interval [A,B).

The DFT has several useful properties. The Discrete Fourier Transform oper-

ator is a linear operator. This means that

F̂ [af + bg] = aF̂ [f] + bF̂ [g] (4.3)

for any scalars a and b and functions f and g suitable for DFT application. These

functions must, of course, have the same period. If they do not have the same period,

one of the functions may be zero padded to the same range as the other and then

43

converted to periodic functions so that they have the same period. Another property

of the transform is that the transform of a convolution is the product of the transforms

of the convolved functions. This is known as the Fourier Convolution Theorem and

has application to both the DFT and the Continuous Fourier Transform (CFT). The

discrete form of this theorem can be stated mathematically as

F̂ [f ∗ g] = F̂ [f]F̂ [g] (4.4)

where again, f and g are functions of the same period. The convolution operator ∗

is defined for two functions f and g as

(f ∗ g)(x) =
∑
t1

∑
t2

f(t1)g(t2)δ(x− t1 − t2) (4.5)

with δ(u) defined as

δ(u) =

1, u = 0

0, u 6= 0.

(4.6)

4.2 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a fast algorithm for the implementation of

the DFT. It requires an input array of a size that is a power of 2. It is capable of

computing the DFT for an array of size N on the order O(N logN). With the use

of the Fourier Convolution Theorem, this means we can compute the convolution

of M distributions on the order of O(MN logN) which is, of course, the same as

O(N logN) as M is assumed to be fixed for a given problem.

44

fX1

FFT−−−→ F̂ [fX1] −−−→ ϕ̂X1y
fX2

FFT−−−→ F̂ [fX2]
multiply−−−−→ ϕ̂X1+X2y

...
...

...y
fXN

FFT−−−→ F̂ [fXN
]

multiply−−−−→ ϕ̂X1+X2+···+XN

iFFT−−−→ fX1+X2+···+XN

Figure 4.1: The DFT Method

4.3 The DFT Method

The method of convolution by DFT involves steps for building the input array to the

FFT algorithm (for each distribution to be convolved), running the FFT algorithm,

multiplying the results of the FFT together, and running the inverse FFT algorithm

(nearly identical to the FFT algorithm) to compute the results of the convolution.

The results are illustrated in Figure 4.1.

4.3.1 Step 1 — Prepare the FFT Input

As mentioned previously, the FFT algorithm requires an array of a length that is a

power of two. Also, the points at which the FFT is evaluated must be equidistant.

Since the results of the FFT will be used to evaluate the convolution of the distribu-

tions, the range of the arrays must be sufficient to represent all non-zero probability

of the convolution distribution.

Consider, for instance, the distribution of the previous chapter. The initial

distributions were approximately binomial and could have non-zero probability only

in the range [0, 50]. The convolution (since we were only doing one convolution) could

45

have non-zero probability on the range [0, 100] (from the sum of the minimum values

to the sum of the maximum values). If we wish to represent only integral values (as

we do), the smallest array we can use to represent the input items is the array with

indices 0 through 127 (128 entries).

In order to prepare the input array for the binomial distribution, we build an

array with 128 elements, zeroing all elements except those with probability. We would

fill the array using the entries in Figure 3.1. After filling the array as appropriate, we

would proceed to the other steps of the DFT method.

This step should be done for each input distribution. If convolving a distribu-

tion with itself, this step must be performed only once.

4.3.2 Step 2 — Compute the FFT

There are several commercially available and public domain implementations of the

FFT algorithm. For a description of the algorithm, see [6], [5] or [24]. For the DFT

method described in this chapter, the implementation used must only be compatible

with the inverse implementation used. However, in the CFT method, attention must

be paid to the FFT method used as there are some differences in the format of

the output array between various implementations. We will discuss this further in

Chapter 5.

This step should be performed for each of the outputs of Step 1. If the same

distribution is being convolved multiple times, only one FFT computation is required

for that distribution.

46

4.3.3 Step 3 — Multiply the FFT Output

Once the FFT is computed for each input distribution, there should be two arrays

for each distribution (the real part of the complex value and the imaginary part).

They should be the same length as the input arrays produced in Step 1. In this

step, we must multiply the complex outputs of the FFT with each other, once for

each distribution. For instance, if we have three distributions, the FFT results from

the first must be multiplied (one entry at a time) with the FFT results from the

second. This result (of the multiplication) must then be mupltiplied by the FFT

results from the third distribution. When performing the multiplication, it should

be performed as a functional multiplication, not a dot product. The results of the

functional multplication will be a real / imaginary pair of arrays of the same length

as the original input arrays.

This step will be performed one time for each distribution other than the first.

Therefore, if there are M distributions to be convolved, it will be performed M − 1

times.

4.3.4 Step 4 — Compute the iFFT

Given the output of Step 3, a single pair of real / imaginary arrays, we compute

the inverse FFT of these results to obtain the probability function for the result-

ing distribution. This probability function will be the discrete probability function

corresponding to the convolution of the individual probability functions of the input

distributions. As mentioned in Step 2, the implementation of the iFFT should come

from the same source as the implementation of the FFT, but otherwise, the choice

of implementation is most likely not significant. The output of the iFFT will be a

47

pair of real/imaginary arrays, but if everything was done with sufficient precision the

resulting imaginary array should be zero in all elements.

4.4 An Example

Returning to our example dataset, we can compute smoothed discrete distributions

from the sample points by grouping our data into integral values and computing

frequency distributions over these values. We will use the Gaussian kernel function

Kh(δ) = exp

(
− δ2

2h2

)
(4.7)

with h = 10 for each of the four samples (for parts A through D). Because we are

not covering the entire space of possible values for the kernel function (the kernel

has a range of (−∞,∞)), we will need to normalize the distributions after applying

the kernel. This has the effect of redistributing all probability from the tails of the

distribution to the center of the distribution in proportion to the probability function

at each point. For instance, if the tails of the distribution account for 20% of the total

probability, then each point of the distribution will be “grossed up” by 25% (1−0.8
0.8

).

Figure 4.2 contains several example points from the smoothed distributions.

Since it will be necessary to have arrays of a length that is a power of 2 in

order to perform the FFT step, and these arrays must be of sufficient size to avoid

aliasing, we choose an array length of 4096 entries. The approximate maximum of

A+B + C +D is 4020 or less.

48

Table 4.2: Example Points from the Smoothed Distribu-

tions

X p̂A(x) p̂B(x) p̂C(x) p̂D(x)

37 0.032216 0.018057 0.000065 0.000000

100 0.000000 0.000011 0.020315 0.000257

150 0.000000 0.000000 0.001029 0.023462

990 0.002727 0.000190 0.000000 0.000000

1045 0.000760 0.001757 0.000000 0.000000

4.4.1 Computing the DFT of the Probability Functions

Now that we have computed the smoothed versions of the probability functions for

the sample dataset, we can use the FFT algorithm to compute the DFT of each of the

input arrays. We use the Fourier Analysis feature of Microsoft Excel r© to compute the

FFT. Several example points from this calculation are given in Figure 4.3. The Excel

implementation, as do most, produces the array with positive angles first, followed

by negative angles.

Table 4.3: Example Points from the DFTs

X ϕ̂A(x) ϕ̂B(x) ϕ̂C(x) ϕ̂D(x)

0 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

1 0.8631− 0.1924i 0.8817− 0.1765i 0.9870− 0.1575i 0.9737− 0.2261i

2 0.7138− 0.1145i 0.7704− 0.1219i 0.9483− 0.3106i 0.8963− 0.4400i

3 0.8302− 0.0181i 0.8825− 0.0909i 0.8851− 0.4550i 0.7721− 0.6302i

49

Table 4.3: Example Points from the DFTs

X ϕ̂A(x) ϕ̂B(x) ϕ̂C(x) ϕ̂D(x)

4093 0.8302 + 0.0181i 0.8825 + 0.0909i 0.8851 + 0.4450i 0.7721 + 0.6302i

4094 0.7138 + 0.1145i 0.7704 + 0.1219i 0.9483 + 0.3106i 0.8963 + 0.4400i

4095 0.8631 + 0.1924i 0.8817 + 0.1765i 0.9870 + 0.1575i 0.9737 + 0.2261i

4.4.2 Computing the DFT of the Convolution

Once we have calculated the DFT of each of the four distributions, we can convolve

the distributions’ probability functions by multiplying their DFTs. The multiplication

performed is a complex product. Some example points from this product are given

in Figure 4.4.

Table 4.4: Example Points from the Convolution DFT

X ϕ̂A+B+C+D(x) X ϕ̂A+B+C+D(x)

0 1.0000 + 0.0000i 2048 0.0000 + 0.0000i

1 0.5516− 0.5717i 4093 0.2068 + 0.7008i

2 0.2604− 0.4979i 4094 0.2604 + 0.4979i

3 0.2068− 0.7008i 4095 0.5516 + 0.5707i

2047 0.0000 + 0.0000i

50

4.4.3 Computing the Probability Function

In order to complete our process of computing the estimate of the probability function

of the sum distribution, we must invert the DFT of the convolution computed in the

previous section. Fortunately, this is quite simple as all FFT implementations can

be used also to invert the results of the FFT to compute the inverse DFT. In the

previous section, we multiplied all of the four DFTs of the individual components

together to compute the DFT of the convolution. We now compute the inverse DFT

of that product in order to obtain the convolution probability function. We again use

the FFT implementation built into MS Excel to compute this inverse transform, and

give some results from the array in Figure 4.5.

Table 4.5: Example Points from the Probability Function

of A+B + C +D

X p̂A+B+C+D(x) X p̂A+B+C+D(x)

250 0.00015262 1380 0.00079850

300 0.00428857 1460 0.00003856

350 0.00913601 2200 0.00007509

1300 0.00181381 2300 0.00012591

4.5 Computational Cost of the Method

Referring to Figure 4.1, we see that there are M computations of the FFT algorithm

in order to compute the DFTs of the input distributions. Since the cost of the FFT

algorithm is O(N logN), and M is a constant for each given problem (not related to

the number of points at which the distribution is evaluated), the computation of the

51

FFT of all M distributions is also O(N logN). This concludes step 2 of the method.

We purposely ignore step one of the method as smoothing is optional and the cost

of smoothing is very dependent on the choice of smoothing method. Additionally,

smoothing would presumably be necessary for any method to be used if the sample

size warrants smoothing. The other parts of step one (organizing the data into equally

spaced buckets and appending zeroes as necessary to extend the array length to a

power of two) are of negligible cost and so are also ignored.

The cost of computing step 3’s product is on the order of O(N) for each mul-

tiplication, and by the same argument as that for step 2 is in total O(N). Therefore,

the overall cost of the combination of steps 2 and 3 is also O(N logN) as N logN

dominates N . The action taken in step 4 is simply the execution of the FFT algorithm

(with the inverse option) which has the same cost as the forward FFT. Therefore, it

is also O(N logN) keeping our total cost at O(N logN). By comparison, the com-

putation required for the discrete convolution method is O(N2) due to the nature of

the convolution operation.

4.5.1 The Cost of Smoothing

It should be noted, with all this discussion of computation cost of the method, that

the choice of kernel function is very important if smoothing is to be performed. For

example, the kernel we chose (Equation 4.7) for this example is very costly in terms of

computation time. Ignoring the cost of computing the exponentials in the function,

the evaluation of p(x) using this kernel function requires evaluation at every sampled

point for each frequency bucket. This feature alone makes the smoothing operation

on the order of O(N2). On the other hand, the kernel used in the binomial example

of Chapter 3 (see Equation 3.2) puts the smoothing operation on the order of O(N).

52

From the results of the discrete unsmoothed convolution in Chapter 3, we can

see that convolution is not even necessary if a less smooth resulting is satisfactory for

the purposes of the analysis. If smoothing is desirable, but the performance burden is

too great, a discrete kernel such as the one in Equation 3.2 can be used on the output

of the convolution. The results of such a late smoothing will not be as profound as

those of an early smoothing, but will still help to smooth the distribution a bit. Of

course, if the goal of computing the output distribution is to compute a particular

percentile of the distribution, such smoothing is not likely to be very useful.

53

Chapter 5

Convolution by Characteristic

Function

In the previous chapter, we introduced a method of computing the convolution of

several component distributions by means of the Discrete Fourier Transform (DFT).

In this chapter, we present a method by which the convolution can be computed by

means of the Continuous Fourier Transform (CFT) of the probability function of a

continuous distribution. The CFT of the probability density function is known in

probability theory as the Characteristic Function (CF). Accordingly, we will use the

terms CFT and CF interchangeably throughout this chapter.

In order to use the method presented in this chapter, we must approximate

the input distributions with a continuous distribution for which the CF is known.

Unfortunately, the CF is not known in closed form for all distributions. A well known

example of the lack of closed form CF is that of the Lognormal Distribution. The

Lognormal is known (see [16] and [18]) to have a CF that is difficult to compute, due

to the inability to expand the CF as a Taylor series based on the moments. The Taylor

series can be shown to diverge and as such makes the CF difficult to compute. At

54

this time, the current body of research seems to imply a tendency towards believing

a closed-form representation of the CF that is useful for computational purposes may

not exist. At the very least, it has not yet been found.

However, for most distributions, the CF is known and is relatively easy to

compute. For those distributions that have an easy to calculate CF, we will use the

analytical CF. For those that have a CF that is difficult to compute, we will use the

DFT of a discretized version of the PDF in place of the CF.

5.1 CFs of Common Distributions

In this paper, we have used three common continuous distributions: Normal, Gamma,

and Lognormal. Of these three distributions, the first two have closed-form analytical

CFs that can be easily computed. The third — Lognormal — does not. For the

Normal distribution, the CF is given by

ϕ(t) = eiµt−σ2t2/2 (5.1)

where µ and σ are the well-known parameters of the distribution. For the Gamma

distribution, given by probability density function

f(x) =
1

Γ(α)βα
xα−1e−x/β (5.2)

the CF is given by

ϕ(t) =
1

(1− iβt)α
. (5.3)

55

In Chapter 2, we discussed mixture distributions and their properties. Given

a mixture distribution with the probability density function

fZ(z) =
M−1∑
j=0

πjfXj
(z) , (5.4)

which represents a mixture with M components having the density functions fXj
and

mixture proportion πj, a little algebra will show that the CF of the mixture is given

by

ϕZ(t) =
M−1∑
j=0

πjϕXj
(t) (5.5)

where the ϕXj
are the CFs corresponding to the fXj

.

5.2 The CFT Method

The characteristic function method described in this chapter is similar to the DFT

method described in the previous chapter. The major difference between the methods

is that the CF method requires fitting a continuous distribution to the data of the

component distributions, and then uses these resulting distributions to compute the

CF of the convolution. A pictoral description of the method is given in Figure 5.1.

Both the DFT method and the CF method eventually use the inverse FFT to

compute the approximate probability function. However, the CF method assumes

that a continuous distribution more accurately represents the underlying population

from which the sampled times come. Once these continuous distributions are esti-

mated, the CF method samples the CF of the convolution by computing the CFs of

each of the components at the same set of points at which the iFFT is to be evalu-

ated. Essentially, we are sampling in the frequency domain, rather than in the time

domain, as is done in the DFT method.

56

f̂X1

MLE−−−→ F [f̂X1]
sampling−−−−−→ ϕ̂X1y

f̂X2

MLE−−−→ F [f̂X2]
sample-multiply−−−−−−−−−→ ϕ̂X1+X2y

...
...

...y
f̂XN

MLE−−−→ F [f̂XN
]

sample-multiply−−−−−−−−−→ ϕ̂X1+X2+···+XN

iFFT−−−→ fX1+X2+···+XN

Figure 5.1: The CF Method

The basic steps of the method are

1. Select appropriate continuous distributions for each of the components and de-

termine the MLE estimates of their associated parameters,

2. Sample the CF of each of these component distributions at the appropriate

points for iFFT application,

3. Compute the product of the CFs at the calculated points,

4. Use the results of step 3 as input to the iFFT algorithm. Normalize the out-

put. The resulting array is an approximation to the probability function of the

convolution.

5.2.1 Step 1 — Estimate the Distributions

In Chapter 2, we described how to estimate the underlying component population

distributions with continuous distributions. We tabulated our results in Section 2.4.

Using these results, we can find that for the distributions of Parts A and B, we

need the CF of the Lognormal and Normal distributions respectively. Since, as we

mentioned in the beginning of this chapter, the Lognormal CF is not easy to calculate,

57

we will leave Part A out of our current consideration. The next chapter will show

how to integrate the DFT and CF methods so that distributions for which the CF is

unknown can also be used. For parts C and D, we need the Gamma and Lognormal

CFs respectively. Again, we will defer the computation of part D to the next chapter.

Since we are deferring parts A and D to the next chapter, we will compute the

convolution of B and C in this chapter.

For part B, the CF is the CF of a mixture of two Normal (Gaussian) compo-

nents, with mixture proportions and parameters given in Figure 2.15. The resulting

CF is

ϕB(t) = 0.89 exp
(
48.94685ti− (8.38651t)2/2

)
+ 0.11 exp

(
1057.17273ti− (30.68959t)2/2

)
(5.6)

where i =
√
−1. With a little algebra, it can be shown that the real and imaginary

parts of ϕB are

<ϕB(t) = π1 cos(µ1t)e
−σ2

1t2

2 + π2 cos(µ2t)e
−σ2

2t2

2 (5.7)

=ϕB(t) = π1 sin(µ1t)e
−σ2

1t2

2 + π2 sin(µ2t)e
−σ2

2t2

2 (5.8)

where the πj, µj, and σj are those from Figure 2.15. Using the equations above, we

can calculate the entries in the real and imaginary arrays that are needed for input

into the iFFT algorithm.

Similarly, we can compute the CF of part C’s distribution (quite easily) as

ϕC(t) =

(
1

1− 3.47122it

)29.72568

(5.9)

58

which has real and imaginary parts given by

<ϕC(t) =
(
1 + β2t2

)−α/2
cos (α arctan βt) (5.10)

=ϕC(t) =
(
1 + β2t2

)−α/2
sin (α arctan βt) (5.11)

5.2.2 Step 2 — Sample the CF

In this step, we need to sample the CFs determined in step 1 for each of the component

distributions (in our current example, just parts B and C) at the appropriate points

for evaluation of the iFFT. At this point, we need to discuss what such appropriate

points might be. The FFT algorithm that we are using outputs two arrays, a real

array and an imaginary array. These arrays are the real and imaginary parts of

the DFT, respectively. Since we are skipping the application of the FFT and going

straight to the CF, but wish to still use the iFFT, we must put our CF samples in

the same form expected by the iFFT algorithm (which, of course, is the same form

output by the FFT algorithm).

The astute reader may notice that we started with samples, so it might seem

strange that we are again sampling. The reason we are sampling again is that the

original sample data was used to estimate the parameters for the analytical distri-

bution we use to represent the component, and the sampling we are doing here is to

transition from the analytical CF to an array of values that can be used in the FFT

algorithm.

The order of the elements in the arrays is, of course, significant to the iFFT

algorithm. The FFT implementation we use for this paper puts the positive part of

the DFT domain (0, 1, . . . , N/2 − 1) in the first N/2 entries of the array, and the

negative part of the domain in the second N/2 entries. The negative part of the

59

domain is output in normal order, so the element at index N/2 of the output array

(0-based) corresponds to the DFT at −N/2, and index N/2 + 1 to −(N/2− 1), and

so on. It should also be noted that the true domain of the Fourier Transform is from

−π to +π in the frequency domain, and that this means that an argument of k (in

the DFT domain) corresponds to k 2π
N

in the Fourier domain.

As mentioned in Chapter 1, the definition of the Fourier Transform also comes

into play. Our definition of the Fourier Transform (Equation 1.6) does not correspond

to the one used by our FFT algorithm (MS Excel). To be precise, the CFT as we

defined it is evaluated at the opposite of the argument at which Excel evaluates.

Therefore, we must sample at the points t∗ = −t when sampling our CF.

5.2.3 Step 3 — Multiply the Results

We are now armed with the facts necessary to build the CF sample that corresponds

to the output of the FFT algorithm (and of course to the input of the iFFT). Since

we wish to compute the convolution of part B’s distribution with that of part C,

we simply multiply the CFs of B and C at each point at which we evaluate them.

Accordingly, we need to evaluate the CF

ϕ(t) = ϕB(t)ϕC(t) (5.12)

at the points

t∗ = −t = −{[(j +N/2) mod N]−N/2}2π
N

(5.13)

for j = 0, 1, . . . , N − 1.

In order to do this calculation, we need to multiply ϕB(t) with ϕC(t). Let us

compute one of the entries from our set of arrays as an example of the computation.

60

For example, for j = 3, we have

t = {[(3 + 4096/2) mod 4096]− 4096/2} 2π

4096

= 0.00460194

so that

<ϕB(−t) = 0.88343247

=ϕB(−t) = −0.09099224

<ϕC(−t) = 0.88601410

=ϕC(−t) = −0.45543744

and

<ϕ(−t) = <ϕB(−t)<ϕC(−t)−=ϕB(−t)=ϕC(−t)

= 0.74129235

=ϕ(−t) = <ϕB(−t)=ϕC(−t) + =ϕB(−t)<ϕC(−t)

= −0.48296863.

5.2.4 Step 4 — Calculate the iFFT

The values of t∗ given by Equation 5.13 range from −π to π in equal steps. Having

computed all of the entries in the array, we can compute the iFFT of this array to

invert the CF of the convolution distribution.

Given the output of Step 3 (an array of numbers in FFT-output order), we can

compute the iFFT of this array and obtain the estimate of the probability function

61

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 200 400 600 800 1000 1200 1400

B+C

Figure 5.3: The Convolution PDF of B+C

for B +C. Some selected entries from the resulting probability function are given in

Figure 5.2, and a plot of the results are given in Figure 5.3.

Table 5.2: Selected Entries from f̂B+C .

z f̂B+C(z) z f̂B+C(z) z f̂B+C(z)

100 0.00041065 101 0.00048661 102 0.00057386

148 0.01731210 149 0.01734352 150 0.01733304

151 0.01728132 210 0.00054769 1148 0.00115884

1153 0.00119979 1160 0.00121896 1165 0.00120454

1172 0.00114709 1178 0.00106790 1182 0.00100294

62

5.3 Computational Cost of the Method

The computational cost of computing the CFT is O(N) for each component distribu-

tion, once the component distribution is approximated with a continuous distribution.

Even in the case of the Lognormal distribution, the order cannot be O(N2) to com-

pute the characteristic function because N is not related in any way to ϕ once the fit

is performed (the only parameters to ϕ are t, σ, and µ). Since again we assume there

is a fixed number of convolutions to be performed, the total convolution process is

O(N). However, since we need to compute the iFFT to return to the “time” domain

(the x-domain), we need one iFFT computation at cost O(N logN). This brings our

total cost of computation to O(N logN). While this total cost is the same as the DFT

method, we believe that when the DFT method is used on continuous fitted distri-

butions (as this method is), the actual costs will be less for this method, assuming

the CFT is not very difficult to compute. The difference in the cost of computation

between the two methods is based on the difference between the cost of computing the

CFT for the values of t needed versus the cost of sampling and computing the DFT

at the sampled points. In the case of using the DFT method with raw sampled data

(without MLE fitting the component distributions and sampling from the probability

functions) or smoothed data with a very simple smoothing kernel, the DFT method

will probably be faster, though it may be less accurate (depending on the sample

size).

63

Chapter 6

Combining the DFT and CFT

Methods

In the previous two chapters, we described methods for computing an approximation

to the convolved distribution by use of the DFT and CFT respectively. In Chapter 5,

we could not apply the CFT method to Part A or Part D due to the fact that the

Lognormal distribution does not have an easy to compute closed form CF (ϕ). In

this chapter, we show how to use the DFT method to compute the approximation to

the CF of these two parts, while using the CFT method for the other two parts. The

total cost of this method will also be O(N logN) since each of the two parts are of

this order.

6.1 The Combined Method

Essentially, this method uses the DFT method from Chapter 4 to compute the convo-

lution of Parts A and D, while using the CFT method from Chapter 5 to compute the

64

convolution of Parts B and C. The application of the DFT method to this problem

is slightly different in this method, however.

6.1.1 Preparing the Distributions

In order to apply the DFT method in this problem, we would like to prepare our

distributions of Parts A and D to match, as closely as possible, the results that we

would get from applying the CFT method to these distributions. Instead of applying

smoothing to our samples or using the DFT method directly on the raw sampled data,

we wish to prepare input arrays with the probability functions of interest. In this

case, we wish to prepare input arrays for Part A that closely match the probability

function of the Lognormal mixture that we fit to Part A’s data. In the case of Part D,

we wish to similarly prepare input arrays that closely match the probability function

of the Lognormal distribution that we fit to the data.

In order to prepare the arrays, we sample the probability function of the ap-

plicable distributions at the appropriate points in the array. Since both of these

distributions have the positive real line as their domain, we must cut them off at a

certain point to avoid aliasing problems in the FFT. We will discuss the procedure

for aliasing avoidance later in this chapter.

6.1.2 Computing the Convolution Distribution

After sampling from the probability function, we will apply the DFT method as in

Chapter 4, obtaining the results of the convolutions of the distributions that are

difficult for the CFT method. We will not apply the final step of the DFT method,

however, so we will leave the results in the Fourier domain (the products of the FFTs).

65

For the distributions to which we can apply the CFT method, we apply the

method. Again, as in the application of the DFT method to the other distributions,

we will not apply the final step. Thus, after applying the CFT method, minus the final

step, we will have the product of the approximated CFTs of the probability functions

in the Fourier domain. We may now complete our computations by computing the

product of the results from the DFT method and those from the CFT method. This

product will be the approximated CFT of the total convolution, to which we may

now apply the iFFT once (the final step of both methods). The result of the iFFT of

this product will be the approximation of the probability function of the convolution.

6.2 An Example

We will use the CFT results obtained in Chapter 5 without adjustment, as they

are precisely the same results that would be obtained by the combined method for

Parts B and C. We take the results just prior to applying the final iFFT in the CFT

method, as prescribed in Section 6.1. For the DFT results, we must compute the

sampled probability functions and then perform the DFT method on them, stopping

prior to the final step.

The probability function for Part A is the mixture probability function

fZ(z) =
π1

zσ1

√
2π
e
− 1

2
(
log z−µ1

σ1
)2

+
π2

zσ2

√
2π
e
− 1

2
(
log z−µ2

σ2
)2

(6.1)

where the πi, µi, and σi are those given in Figure 2.15. Whereas the probability

function for Part B is the lognormal probability function given by

fX(x) =
1

xσ
√

2π
e−

1
2
(log x−µ

σ
)2 (6.2)

where µ and σ are those given in Figure 2.16.

66

We need to compute these functions at the same input values as our other

distributions, but we need to clamp the distributions values to a range that will

not allow overflow. For instance, since we chose an output array size of 4096 values

(range of [0, 4095]) we could restrict each of our distributions (rather arbitrarily) to

a range of [0, 1023]. However, this would not be the best choice, since two of our

distributions have significant probability outside of this range and the others don’t.

A more appropriate choice might be to limit the two mixture distributions (which

have significant probability at values above 1000) to the range [0, 1499] and the other

two distributions to the range [0, 499]. This way, the largest values from each of the

distributions cannot produce a value with positive probability above 4095. Sometimes,

depending on the tail weight of the distributions in question, such clamping is not

necessary. This happens to be the case in our situation, since the probability of the

total resulting distribution exceeding 4095 is negligible.

Once we have evaluated the probability function at the points in our array, we

must normalize the array (so it sums to unity) by dividing each entry by the sum

of all entries in the array. This, in effect, creates a discrete frequency distribution

that is similar to the original continuous distribution that can be used as input to

the FFT algorithm. We then apply the FFT algorithm to each of the two newly

discretized distributions to obtain approximations to the CFTs. According to the

DFT method and the adjustments prescribed in this chapter, we should also take

the complex product of the two sets of output arrays prior to using the results in

the combined method, but this is not important. We could just as easily treat these

output arrays as sampled versions of the CFTs of the two distributions, and use these

CFTs in the the multiplication step of the CFT method directly. In either case, once

we take the product of these results with the product of the CFTs given by the CFT

method, we can then apply the iFFT algorithm to obtain the probability function of

67

0

0.002

0.004

0.006

0.008

0.01

0.012

0 500 1000 1500 2000 2500

fA+B+C+D

Figure 6.1: The Convolution PDF of all parts

the convolution. The results of applying this method for the example program are

shown in Figure 6.1.

68

Chapter 7

Testing the Models

We have described how to compute estimates of the distributions of the total execution

time using several methods. Now, we wish to test the resulting distributions by using

them to predict the WCET of the program for a set of simulated values (from the

same distributions used to generate our testing data). We will compare the average

excess time for our prediction and the number of times our deadline is missed to the

excess time for the Gumbel estimate. We will also use our estimated distribution to

compute a revised Gumbel estimate that makes use of the more detailed information

provided by our methods.

7.1 The Test Distributions

The distributions used to generate the training data provided in Appendix B are

listed in Figure 7.1. From these test distributions, we simulate a test data set that is

used to evaluate the WCET bounds determined several different ways. We simulate

100000 sample values from the total run-time distribution by simulating 100000 or-

dered 4-tuples with an element from each of the four component distributions. For

69

the two mixture distributions, the element is determined by simulating a uniform

random variate (on the unit interval) and one deviate from each of the two mixture

component distributions. We choose the deviate from the first mixture component if

the uniform deviate is less than π1, the second otherwise. Such a method accurately

models the mixture distribution as a random (nonuniform) sample from two separate

distributions.

Table 7.1: Underlying Test Distributions

Part Distribution Parameters

A Mixture (Normal)

π1 = 0.8 π2 = 0.2

µ1 = 40 µ2 = 1000

σ1 = 2 σ2 = 20

B Mixture (Gamma)

π1 = 0.85 π2 = 0.15

α1 = 25 α2 = 350

β1 = 2 β2 = 3

C Gamma α = 25 β = 4

D Lognormal µ = 5 σ = 0.1

Due to space constraints, the simulated values are not tabulated in this paper,

but are available on request from the author.

7.2 WCET Estimates

We use several WCET estimates and compare their performance in terms of the

number of times the WCET bound is exceeded by our samples, the average value of

70

observations that exceed the bound, and the average excess of the bound over the

total run-time. We contest that the WCET bound given by [7] is very high and

leads to wasted cycles when used for scheduling. However, the percentile method we

wished to use for our estimate of the WCET leads to bounds too low for practical use,

as a substantial number of observations exceed this bound. We instead recommend

a smaller-sample extreme value (EV) estimate similar in character to the Gumbel

estimate, except using the exact (approximated) EV distribution of a finite sample

size. The results of these various estimates of the WCET are compared in Figure 7.2.

The estimation methods for the WCET tabulated in Figure 7.2 are

Gumbel (sample). The Gumbel distribution WCET estimate (as described

in [7] with corrections1) based on the original sample of total run-times,

Gumbel (distribution). The same as Gumbel (sample), except using esti-

mates of µ and σ from the estimated total run-time distribution given by our

method,

Percentiles. The percentiles of the total run-time distribution as estimated

by our method,

Linear Combination. The WCET estimate given by a linear combination

of the the Percentile estimate and the Gumbel (distribution) estimate using the

coefficients 0.75 and 0.25 respectively,

1Some of the formulas given in [7] have errors in them. The most important of which is Equation
3, which should be

θi(x) =
G(x)−G(maxi)

1−G(maxi)
.

A more precise description of the problems of [7] would argue that their Theorem 1 is not valid. In
fact, the WCET estimate should be maxi +ωi if ωi is the value of their θi that gives θi(ωi) = 1− εi.

71

Gumbel (max locmax). The Gumbel WCET estimated found by using a µ

and σ estimated from only the portion of the distribution where the largest (in

x) local maximum is found in the density,

Fk(x). The WCET estimate given by the specified percentile of the excess

value distribution (see Section 7.3) for sample size k.

7.3 The Exact EV Distribution

The Gumbel distribution used in [7] is the asymptotic distribution of the maximum

value from a distribution. It represents the limit as the sample size tends to infinity of

the maximal outcome in a random sample from any exponential family distribution

(nearly all distributions of interest for our purposes are from this family). In simple

terms, it is the probability distribution for the largest value that one would ever expect

to see, given a few parameters about an existing sample. Because this distribution is

asymptotic, it is very conservative in the bounds it provides. As can be seen from the

data in Figure 7.2 for the Gumbel (sample) versus the F k(x) estimates, the average

amount by which the WCET from the Gumbel method exceeds the actual run-time

is much greater than that from the exact method.

The exact method is based on the same idea as the Gumbel distribution, but

makes use of the actual distribution of the individual observations, rather than just

the sample and a few sample statistics. Because of this, the real EV distribution based

on our estimate of the distribution function F (x) of the total run-time distribution

provides a much tighter bound on the WCET. In general, the distribution function

(probability that the variate does not exceed a given value) Fx(k)
(x) of the maximum

72

value x(k) of a sample of size k is given by

Fx(k)
(x) = (FX(x))k (7.1)

where FX(x) is the distribution function underlying the sample observations them-

selves.

The EV method used here raises the estimated total run-time distribution

function F (x) (of the convolution) to various powers of k and locates the pth percentile

of this distribution. The percentile is then used as the WCET estimate, providing a

much smaller bound than the Gumbel distribution. The method allows adjustment

both by changing k and by changing the desired percentile. Also, the underlying

accuracy of F (x) can be controlled by changing the number of points at which the

CFs are sampled (or at which the FFT is applied in the discrete case).

73
Table 7.2: WCET Estimates and Results

Estimate WCET Count Average Average
Type Confidence Bound Over Over Excess

90% 3193 − − 2607.37
Gumbel 95% 3448 − − 2862.37
(sample) 97.5% 3703 − − 3117.37

99% 4039 − − 3453.37

90% 3172 − − 2586.37
Gumbel 95% 3420 − − 2834.37

(distribution) 97.5% 3668 − − 3082.37
99% 3994 − − 3408.37

90% 1333 9769 1511.84 764.84
95% 1366 4971 1669.77 795.47Percentiles

97.5% 1400 2423 1973.97 828.28
99% 2294 974 2334.02 1708.76

90% 1793 1511 2309.68 1215.18
Linear 95% 1880 1511 2309.68 1300.87

Combination 97.5% 1967 1511 2309.68 1386.55
99% 2719 − − 2133.37

90% 2427 9 2435.47 1841.37
Gumbel 95% 2451 1 2453.64 1865.37

(max locmax) 97.5% 2475 − − 1889.37
99% 2506 − − 1920.37

90% 2421 11 2433.65 1835.37
F k(x) 95% 2432 7 2437.48 1846.37

k = 1, 000 97.5% 2443 1 2453.64 1857.37
99% 2455 − − 1869.37

90% 2455 − − 1869.37
F k(x) 95% 2464 − − 1878.37

k = 10, 000 97.5% 2473 − − 1887.37
99% 2484 − − 1898.37

90% 2483 − − 1897.37
F k(x) 95% 2492 − − 1906.37

k = 100, 000 97.5% 2499 − − 1913.37
99% 2509 − − 1923.37

90% 2509 − − 1923.37
F k(x) 95% 2517 − − 1931.37

k = 1, 000, 000 97.5% 2524 − − 1938.37
99% 2535 − − 1949.37

74

Chapter 8

Conclusion

We have shown that the use of our DFT and CFT methods are an efficient alternative

to the traditional methods of computing the convolutions that arise in the estimation

of run-time distributions built of several components. Additionally, we have shown

that a tighter bound on the WCET can be provided by assuming a less-than-infinite

sample size and using distributional estimates of the run-time distribution, along with

the theoretical fixed-sample distribution of the maximum observed value (the F k(t)

distribution function).

8.1 Future Work

In the development of WCET estimates, it would be desirable to have estimates of,

or bounds on, the error of this estimate. Of course, an exact error estimate or bound

requires an assumption for the number of times the task is to be run. Alternatively, if

an asymptotic estimate is made, the number of times the task is to be run is assumed

to be infinite. This assumption of the number of runs should be consistent with the

underlying assumption of the WCET estimate.

75

In the estimate of the WCET error, it would also be desirable to understand

the relationship between the input parameters relating to sampling, bucketization,

and distribution choice and the underlying error of the estimate. Also, since there is

obviously a relationship of some sort between these items and the error of the estimate,

it would be nice to have a method of optimizing the choice of these parameters in

order to minimize the resulting error.

In our work, we have assumed that a breakdown of the task into independently

distributed components has been chosen appropriately. However, we have made no

effort to develop methods for choosing this breakdown. It would be beneficial to have

some theoretical support and some well defined algorithms or heuristics for the choice

of this breakdown and the evaluation of the independence of the elements.

8.2 Some Observations

During the course of our research, we have made some observations for which we

have no theoretical support, but nonetheless would like to present here. First of all,

we have noticed that the separation of the task into several independent components

has a profound effect on the sampling burden needed for confidence in the resulting

distribution. We call this effect the independent sampling effect (ISE). The ISE

can be understood through a simple example. Consider a task that can be broken

up into three independent components. If we sample each of these components 10

times, this is equivalent (under the assumption of independence) to sampling the total

distribution 1000 times.

The obvious advantage of the ISE is the number of samples required for con-

fidence when using independent components is much smaller than the number of

samples required for the same level of confidence in an estimate of only the total

76

run-time distribution. This greatly reduces the sampling burden and allows us to

make relatively accurate estimates of the total run-time distribution with relatively

few sampling runs of the program. Using the example of the last paragraph, we could

run the program ten times, sampling it as three separate components (a total of 30

samples), and have the same level of confidence in the resulting estimate as we would

have in an estimate using only the total run-time and a sample size (number of pro-

gram executions) of 1000 runs. Of course, if it is expensive to run the program, the

ISE is of substantial benefit to us.

In addition to the obvious advantage of the ISE, another advantage is the

exhaustion effect of the ISE. For instance, in the case of the three components, 10

samples each as given in previous paragraphs, consider that two of the three compo-

nents had distributions that are mixtures with a high and a low distribution. Consider

also that the high elements of the mixtures are much less likely to occur than the low

elements, for instance an 80% likelihood of the low element and a 20% likelihood of

the high. Consider, as would be expected, that two of the observations from the 10

samples of each of these two components arose from the high distribution, but that

none of the total run-time samples (runs) exhibited high elements from both of the

two mixture distributions. In this case, the Gumbel method would use a maximum

as a parameter of its estimate that is actually not anywhere close to the maximum of

the theoretical distribution, since none of the runs exhibited the “high-high” behav-

ior. However, when the components are convolved and the ISE occurs, an “artificial”

maximum arises from the pairs of high samples that were encountered. Even though

they occurred on different runs, the assumption of independence and the ISE allowed

them to be used in the analysis together. In this small-sample case where there are

gaping holes in the sample distribution, the ISE provides a great benefit and leads to

a much greater accuracy in our estimate of WCET.

77

One final conclusion related to the ISE is that increasing the number of com-

ponents into which the total distribution is broken gives much greater benefit than

increasing the number of runs of the program used for sampling. This is a very nice

result, assuming good methods are available for choosing appropriate breakdowns

into independent components. One caveat, however, is that there is always a risk of

reducing the sample size (number of sampling runs) to a point that features of the

component distributions are missed. For instance, in the example of this chapter, if

the sample size is reduced by too much, the likelihood of seeing any “high” elements

in the components becomes relatively small. Also, if the “high” elements are much

less likely (for instance 1% of the time, rather than 20% as in our example), the

sampling burden is much higher on the component level and in turn the number of

runs required will be much higher. That being said, the number of runs for the same

level of confidence at the total run-time level only would be much higher, again due

to the ISE.

78

Appendix A

Maximum Likelihood Estimation

In this appendix, we derive formulas and methods for the MLEs of the three distribu-

tions we use in this thesis. In all sections of this appendix, we assume the following:

1. a set of observations x = {xi}Ni=1,

2. a random variable X representing the distribution from which the observations

are sampled, and

3. a vector of parameters Ψ for MLE fitting.

A.1 Normal Distribution

The MLE vector for the Normal distribution is Ψ = (µ, σ). We wish to compute the

estimate of this vector, Ψ̂ = (µ̂, σ̂). The likelihood function L(Ψ) is defined by

L(Ψ; x) =
N∏

i=1

1

σ
√

2π
e−

1
2
(x−µ

σ
)2 . (A.1)

79

The log-likelihood function `(Ψ; x) is given by

−`(Ψ; x) = N log σ
√

2π +
1

2σ2

N∑
i=1

(xi − µ)2, (A.2)

with partial derivatives (with respect to the parameters) given by

∂`(Ψ)

∂µ
=

1

σ2

N∑
i=1

(xi − µ) (A.3)

and

−∂`(Ψ)

∂σ
=
N

σ
− 1

σ3

N∑
i=1

(xi − µ)2, (A.4)

leading to the MLE estimates

µ̂ = x̄ =
1

N

N∑
i=1

xi (A.5)

and

σ̂2 = S2 =
1

N

N∑
i=1

(xi − µ̂)2. (A.6)

A.2 Log-Normal Distribution

The MLE vector for the Log-Normal distribution is Ψ = (µ, σ). We wish to compute

the estimate of this vector, Ψ̂ = (µ̂, σ̂). The likelihood function L(Ψ) is defined by

L(Ψ; x) =
N∏

i=1

1

xσ
√

2π
e−

1
2
(log x−µ

σ
)2 . (A.7)

The log-likelihood function `(Ψ; x) is given by

−`(Ψ; x) = N log(σ
√

2π) +
N∑

i=1

log xi +
1

2σ2

N∑
i=1

(log xi − µ)2, (A.8)

80

with partial derivatives (with respect to the parameters) given by

∂`(Ψ)

∂µ
=

1

σ2

N∑
i=1

(log xi − µ) (A.9)

and

−∂`(Ψ)

∂σ
=
N

σ
− 1

σ3

N∑
i=1

(log xi − µ)2, (A.10)

leading to the MLE estimates

µ̂ = z̄ =
1

N

N∑
i=1

zi (A.11)

and

σ̂2 = S2
log x =

1

N

N∑
i=1

(zi − µ̂)2, (A.12)

where

zi = log xi.

A.3 Gamma Distribution

In this section, we provide a method for computing the maximum likelihood estima-

tors of α and β, the parameters of the two-parameter Gamma distribution specified

by the probability density function

f(t;α, β) =
tα−1e−t/β

Γ(α)βα
.

81

We will compute on the observation vector x three statistics x̄, s2, and l(x).

We will define these statistics as

x̄ =
1

N

∑
i

xi , (A.13)

s2 =
1

N − 1

∑
i

(xi − x̄)2 , (A.14)

l(x) =
1

N

∑
i

log xi . (A.15)

Our goal is to maximize the likelihood function L(Ψ) for the parameters Ψ =

{α, β}. The likelihood function in this case is

L(Ψ) =
∏

i

xα−1
i e−xi/β

Γ(α)βα
=

(
Γ(α)βα

)−N

·
(∏

i

xi

)α−1

· exp

(
− 1

β

∑
i

xi

)
.

As it is generally simpler to maximize the log-likelihood function, we calculate

the log-likelihood function

`(Ψ) = logL(Ψ) = −N
[
log Γ(α) + α log β

]
+ (α− 1)

∑
i

log xi −
1

β

∑
i

xi

= −N
[
log Γ(α) + α log β

]
+N (α− 1) l(x)− Nx̄

β
.

In order to make the optimization simpler, we can instead minimize the nega-

tive log-likelihood (NLL) divided by N (since N is a constant). We are then interested

in minimizing the function

Z = log Γ(α) + α log β − (α− 1)l(x) +
x̄

β
. (A.16)

82

The vector Ψ will be optimal if

F (Ψ) =

Zα(Ψ)

Zβ(Ψ)

 = 0, (A.17)

where the notation Zx(Ψ) denotes the partial derivative of Z with respect to the

variable x evaluated at Ψ.

The partial derivatives of Z are given by

Zα(Ψ) = ψ(α) + log β − l(x) (A.18)

and

Zβ(Ψ) =
1

β2
(αβ − x̄) , (A.19)

where ψ(α) is the derivative of log Γ(α).

However, since we are solving the system of equations F = 0, we can multiply

Zβ by β2 to eliminate the distributed fraction (β is defined to be nonzero by the

Gamma distribution).

Using these changes, we are interested in solving the system

F̃ (Ψ) =

ψ(α) + log β − l(x)

αβ − x̄

 = 0. (A.20)

Newton’s method for systems states ([4]) that the system can be solved by

starting with an initial guess Ψ(0), and iterating using the equation

Ψ(k+1) = Ψ(k) + ∆(k) (A.21)

83

where

∆(k) = −J−1(Ψ(k))F̃ (Ψ(k)) (A.22)

with J being the Jacobian of the system (F̃).

Let us write F̃1 and F̃2 for the first and second elements of F̃ as defined by

Equation A.20. Given this notation, and using the partial derivative notation as

earlier, we can define the Jacobian of the system as

J(Ψ) =

(F̃1)α (F̃1)β

(F̃2)α (F̃2)β

 =

ψ(1)(α) 1
β

β α

 (A.23)

with ψ(1)(α) the first derivative of ψ(α). The Jacobian has the inverse J−1(Ψ) given

by

J−1(Ψ) =
1

αψ(1)(α)− 1

 α − 1
β

−β ψ(1)(α)

 . (A.24)

Writing T1, T2, and T3 as

T1 = ψ(α) + log β − l(x) (A.25)

T2 = αβ − x̄ (A.26)

T3 = αψ(1)(α)− 1, (A.27)

we can write

∆ = −J−1F̃ =
1

T3

 −αT1 + T2/β

βT1 − ψ(1)(α)T2

 (A.28)

84

so that our update equations for α(k+1) and β(k+1) are given by

α(k+1) = α(k) +
1

T
(k)
3

(
−α(k)T

(k)
1 + T

(k)
2 /β(k)

)
(A.29)

β(k+1) = β(k) +
1

T
(k)
3

(
β(k)T

(k)
1 − ψ(1)(α(k))T

(k)
2

)
(A.30)

where the Tj are given by

T
(k)
1 = ψ(α(k)) + log β(k) − l(x) (A.31)

T
(k)
2 = α(k)β(k) − x̄ (A.32)

T
(k)
3 = α(k)ψ(1)(α(k))− 1. (A.33)

A.3.1 The Process

Armed with the results of this section, we can numerically compute the MLE of the

parameters (α and β) by the following procedure.

1. Let β(0) = s2

x̄

2. Let α(0) = β(0)

x̄

3. Let k = 0

4. Compute T
(k)
1 , T

(k)
2 , and T

(k)
3 using Equations A.31, A.32 and A.33

5. Compute α(k+1) and β(k+1) using Equations A.29 and A.30.

6. Compute δ(k+1) =
((
α(k+1) − α(k)

)2
+
(
β(k+1) − β(k)

)2)1/2

7. Increment k

8. If δ(k) > ε then goto step 4, otherwise – output α(k) and β(k) as answer.

85

A.4 Adjustments for the EM Algorithm

In order to compute the MLE estimates of the parameters for a mixture distribution,

we use the EM algorithm. The EM algorithm puts the computation of the MLE

estimates for the distribution into a “missing data” context. The missing data are

indicators identifying which of the mixture components gave rise to each data point.

During each iteration of the EM algorithm, we are compute an estimate of the zij

(the indicator variables). These estimates, denoted ẑij are then used along with the

observations (the xi) to estimate both the component proportions and the parameters

of the component distributions. In this section, we present the adjustments that

must be made in light of this new information, to allow the computation of the MLE

estimates for the parameters of the mixture.

A.4.1 The Mixture Proportions (πj)

The mixture proportions can be directly estimated by computing the ratio of the

number of observations that were expected to have come from component j to the

total number of observations. This estimate is given by

π̂j =
1

N

N∑
i=1

ẑij. (A.34)

A.4.2 The Component Parameters

The component parameters must be estimated differently for each component distri-

bution. In order to estimate the component parameters, we must adjust the statis-

tics used by the MLE estimators given by Equations A.5, A.6, A.11, A.12, A.13,

A.14 and A.15. These equations must be replaced by the similarly labeled equations

86

x̄ =

∑N
i=1 ẑijxi∑N
i=1 ẑij

(A.5*, A.13*)

and

S2 =

∑N
i=1 ẑij(xi − x̄)2∑N

i=1 ẑij

(A.6*, A.14*)

for the Normal and Gamma distributions, and

z̄ = l(x) =

∑N
i=1 ẑij log xi∑N

i=1 ẑij

(A.11*, A.15*)

for the Log-Normal and Gamma distributions, and

S2
log X =

∑N
i=1 ẑij(log xi − z̄)2∑N

i=1 ẑij

(A.12*)

for the Log-Normal distribution.

87

Appendix B

Training Data and Tabular Results

Table B.1: Example timing data for the example program

Obs. A B C D Total

1 981.87 44.57 123.48 144.99 1294.91
2 42.22 55.27 81.29 154.91 333.69
3 40.58 49.82 96.25 155.65 342.3
4 37.63 1031.44 109.84 160.73 1339.64
5 45.34 44.69 79.14 147.14 316.31
6 38.38 48.78 77.55 155.62 320.33
7 1040.32 49.86 102.44 160.86 1353.48
8 999.95 38.42 84.23 136.52 1259.12
9 38.88 42.87 98.95 144.89 325.59

10 36.72 50.18 106.65 141.68 335.23
11 41.14 1078.53 105.73 145.86 1371.26
12 39.51 48.66 106.82 135 329.99
13 38.46 49.6 74.72 143.86 306.64
14 41.86 46.43 124.39 162.19 374.87
15 39.6 64.17 123.74 153.74 381.25
16 43.56 38.98 83.27 128.37 294.18
17 34.62 59.57 111.3 145.36 350.85
18 37.58 56.12 93.11 155.16 341.97
19 40.52 43.22 68.95 146.22 298.91
20 971.61 61.83 95.89 138.51 1267.84
21 40.41 52.37 117.12 141.33 351.23
22 40.95 65.61 81.78 134.89 323.23
23 994.83 34.28 118.03 136.3 1283.44
24 40.83 46.81 120.58 156.48 364.7
25 38.87 66.6 113.64 144.59 363.7
26 38.32 38.85 111.28 163.42 351.87

88
Table B.1: Example timing data for the example program

Obs. A B C D Total

27 37.67 51.44 131.75 171.11 391.97
28 40.11 46.52 117.14 151.18 354.95
29 41.81 49.66 119.37 143.77 354.61
30 43.54 48.26 94.96 169.67 356.43
31 36.92 1049.41 97.22 131.35 1314.9
32 39.01 39.15 90.15 132.28 300.59
33 1007.41 41.17 120.35 165.2 1334.13
34 40.11 47.89 98.6 165.85 352.45
35 981.36 1074.21 138.83 150.78 2345.18
36 42.65 39.19 126.49 123.22 331.55
37 36.81 41.92 89.25 171.79 339.77
38 987.98 58.37 94.22 118.63 1259.2
39 39.45 39.37 100.23 191.85 370.9
40 39.37 49.42 99.82 157.02 345.63
41 39.92 45.98 95.07 127.77 308.74
42 1010.35 55.95 101.87 183.1 1351.27
43 42.58 57.11 118.75 148.33 366.77
44 39.05 58.32 101.4 147.24 346.01
45 36.18 41.16 102.13 158.75 338.22
46 34.21 49.13 177.42 174.79 435.55
47 39.29 55.52 94.46 143.45 332.72
48 39.07 51.26 63.79 132.53 286.65
49 42.24 42.94 82.96 156.57 324.71
50 40.41 69.36 67.53 150.92 328.22
51 39.39 46 115.22 150.76 351.37
52 989.21 62.72 96.97 153.47 1302.37
53 42.21 45.33 108.4 162.4 358.34
54 37.92 38.69 91.42 141.98 310.01
55 37.88 54.11 95.53 170.43 357.95
56 39.04 1102.68 83.56 148.11 1373.39
57 36.56 46.51 101.04 136.64 320.75
58 38.56 51.96 99.64 152.55 342.71
59 40.84 46.06 94.14 153.98 335.02
60 42.09 50.7 113.38 151.12 357.29
61 993.7 50.12 97.88 165.8 1307.5
62 38.83 42.6 108.14 185.25 374.82
63 37.63 56.96 116.86 138.88 350.33
64 1002.91 1002.17 99.88 144.39 2249.35
65 39.87 43.36 130.45 174.64 388.32
66 42.35 42.42 109.53 153.53 347.83
67 42.45 47.68 63.34 131.53 285
68 38.84 1041.85 99.9 150.28 1330.87
69 38.67 1054.31 88.41 152.6 1333.99
70 43.27 68.4 108.88 144.14 364.69

89
Table B.1: Example timing data for the example program

Obs. A B C D Total

71 1044.11 41.98 93.36 130.72 1310.17
72 36.06 32.64 124.94 138.72 332.36
73 39.4 49.32 73.88 132.73 295.33
74 39.45 1111.46 106.74 142.23 1399.88
75 44.11 42.7 101.41 145.57 333.79
76 40.72 48.82 93.31 141.51 324.36
77 39.6 62.89 100.39 136.06 338.94
78 42.22 25.16 128.75 130.99 327.12
79 39.52 46.79 105.94 149.2 341.45
80 41.36 52.37 111.23 146.78 351.74
81 1014.24 30.97 102.51 151.26 1298.98
82 37.6 42.52 73.78 176.97 330.87
83 46.49 44.55 106.09 118.6 315.73
84 39.71 35.96 130.43 122.39 328.49
85 36.85 57.39 91.42 139.39 325.05
86 38.83 54.51 132.32 149.36 375.02
87 39.45 1034.04 114.3 139.44 1327.23
88 40.96 38.17 74.48 155.89 309.5
89 41.43 56.9 59.25 125.63 283.21
90 38.67 49.13 121.23 144.23 353.26
91 41.11 56.67 128.39 145.78 371.95
92 39.88 49.23 104.18 134.14 327.43
93 43.12 55.61 94.23 140.03 332.99
94 41.47 57.94 111.33 152.39 363.13
95 42.04 53.53 95.52 137.64 328.73
96 37.92 52.05 114.84 186.46 391.27
97 41.45 1048.8 143.85 149.79 1383.89
98 38.88 52.19 104.43 144.52 340.02
99 39.29 45.19 112.2 159.4 356.08

100 35.44 50.82 107.2 144.02 337.48

90
Table B.2: Unsmoothed Distribution for Part A

x p̂A(x) x p̂A(x) x p̂A(x)

34 0.01 35 0.02 36 0.02
37 0.05 38 0.11 39 0.21
40 0.12 41 0.13 42 0.10
43 0.04 44 0.03 45 0.01
46 0.01 972 0.01 981 0.01

982 0.01 988 0.01 989 0.01
994 0.01 995 0.01 1000 0.01

1003 0.01 1007 0.01 1010 0.01
1014 0.01 1040 0.01 1044 0.01

Table B.3: Unsmoothed Distribution for Part B

x p̂B(x) x p̂B(x) x p̂B(x)

25 0.01 31 0.01 33 0.01
34 0.01 36 0.01 38 0.02
39 0.06 41 0.02 42 0.03
43 0.07 45 0.05 46 0.04
47 0.04 48 0.03 49 0.08
50 0.06 51 0.04 52 0.05
54 0.02 55 0.02 56 0.04
57 0.05 58 0.03 60 0.01
62 0.01 63 0.02 64 0.01
66 0.01 67 0.01 68 0.01
69 0.01 1002 0.01 1031 0.01

1034 0.01 1042 0.01 1049 0.02
1054 0.01 1074 0.01 1079 0.01
1103 0.01 1111 0.01

91
Table B.4: Unsmoothed Distribution for Part C

x p̂C(x) x p̂C(x) x p̂C(x)

59 0.01 63 0.01 64 0.01
68 0.01 69 0.01 74 0.03
75 0.01 78 0.01 79 0.01
81 0.01 82 0.01 83 0.02
84 0.02 88 0.01 89 0.01
90 0.01 91 0.02 93 0.03
94 0.04 95 0.02 96 0.04
97 0.02 98 0.01 99 0.02

100 0.06 101 0.03 102 0.03
103 0.01 104 0.02 106 0.03
107 0.04 108 0.02 109 0.01
110 0.02 111 0.04 112 0.01
113 0.01 114 0.02 115 0.02
117 0.03 118 0.01 119 0.02
120 0.01 121 0.02 123 0.01
124 0.02 125 0.01 126 0.01
128 0.01 129 0.01 130 0.02
132 0.02 139 0.01 144 0.01
177 0.01

Table B.5: Unsmoothed Distribution for Part D

x p̂D(x) x p̂D(x) x p̂D(x)

119 0.02 122 0.01 123 0.01
126 0.01 128 0.02 131 0.03
132 0.02 133 0.02 134 0.01
135 0.02 136 0.02 137 0.02
138 0.01 139 0.05 140 0.01
141 0.01 142 0.04 143 0.01
144 0.06 145 0.05 146 0.04
147 0.03 148 0.02 149 0.02
150 0.02 151 0.06 152 0.01
153 0.03 154 0.03 155 0.02
156 0.04 157 0.02 159 0.02
161 0.02 162 0.02 163 0.01
165 0.01 166 0.02 170 0.02
171 0.01 172 0.01 175 0.02
177 0.01 183 0.01 185 0.01
186 0.01 192 0.01

92
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

237 0.0002 238 0.0004 239 0.0004
240 0.0011 241 0.0027 242 0.0052
243 0.0041 244 0.0062 245 0.0096
246 0.0135 247 0.0158 248 0.0191
249 0.0243 250 0.0329 251 0.0439
252 0.0497 253 0.0633 254 0.0841
255 0.1141 256 0.1417 257 0.1641
258 0.2114 259 0.2718 260 0.3390
261 0.3747 262 0.4633 263 0.5646
264 0.6717 265 0.7960 266 0.9294
267 1.0989 268 1.2714 269 1.4821
270 1.6902 271 1.9703 272 2.2495
273 2.5639 274 2.9319 275 3.3193
276 3.7113 277 4.1960 278 4.7719
279 5.2993 280 5.9352 281 6.5611
282 7.3236 283 8.1553 284 8.9724
285 9.8698 286 10.7848 287 11.8535
288 12.8981 289 14.0605 290 15.4063
291 16.8229 292 18.1428 293 19.5799
294 21.1170 295 22.6542 296 24.4520
297 26.3358 298 28.1292 299 30.0043
300 32.1011 301 34.1585 302 36.3618
303 38.8238 304 40.9726 305 43.2978
306 45.8496 307 48.4962 308 51.1038
309 53.9138 310 56.8506 311 59.4863
312 62.3378 313 65.3592 314 68.4863
315 71.8616 316 75.2697 317 78.5651
318 81.5531 319 84.7625 320 88.0450
321 91.4246 322 94.7984 323 98.2855
324 101.4492 325 104.3412 326 107.5390
327 110.4036 328 113.2060 329 115.7463
330 117.9942 331 120.0053 332 121.8344
333 123.8301 334 125.5206 335 126.7851
336 127.3886 337 127.7312 338 127.8387
339 127.8949 340 128.0835 341 127.7878
342 126.8418 343 125.9688 344 124.5087
345 123.0813 346 121.6520 347 119.9535
348 117.8609 349 115.7310 350 113.5304
351 111.0966 352 108.8883 353 106.1318
354 103.5156 355 100.4236 356 97.6227
357 94.6687 358 91.8898 359 88.8445
360 85.6816 361 82.7584 362 79.4105
363 76.5277 364 73.4477 365 70.4693

93
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

366 67.2713 367 64.4909 368 61.2848
369 58.3587 370 55.6777 371 52.9517
372 50.3328 373 47.7679 374 45.1724
375 42.4426 376 40.1944 377 37.7433
378 35.5680 379 33.4140 380 31.4748
381 29.4864 382 27.7476 383 25.8973
384 24.2039 385 22.5704 386 20.9388
387 19.6468 388 18.2725 389 17.0943
390 15.9051 391 14.9498 392 13.7596
393 12.8619 394 11.9711 395 11.0870
396 10.3833 397 9.6908 398 9.0543
399 8.4506 400 7.9508 401 7.4091
402 6.9829 403 6.5763 404 6.1956
405 5.8541 406 5.5203 407 5.1287
408 4.8430 409 4.6002 410 4.3841
411 4.1758 412 3.9745 413 3.6762
414 3.4186 415 3.2159 416 3.0191
417 2.8832 418 2.7374 419 2.5464
420 2.3935 421 2.2150 422 2.0191
423 1.8882 424 1.7743 425 1.6174
426 1.5065 427 1.4219 428 1.2836
429 1.2202 430 1.1090 431 1.0075
432 0.9365 433 0.8560 434 0.7985
435 0.7447 436 0.7017 437 0.6449
438 0.6138 439 0.5543 440 0.5220
441 0.4774 442 0.4431 443 0.4159
444 0.3866 445 0.3538 446 0.3215
447 0.3098 448 0.2913 449 0.2805
450 0.2704 451 0.2545 452 0.2166
453 0.2078 454 0.1842 455 0.1664
456 0.1604 457 0.1539 458 0.1431
459 0.1296 460 0.1104 461 0.0864
462 0.0738 463 0.0597 464 0.0571
465 0.0543 466 0.0459 467 0.0404
468 0.0357 469 0.0284 470 0.0258
471 0.0220 472 0.0162 473 0.0128
474 0.0106 475 0.0086 476 0.0075
477 0.0065 478 0.0043 479 0.0031
480 0.0018 481 0.0009 482 0.0005
483 0.0002 484 0.0001 1175 0.0002

1178 0.0001 1179 0.0003 1180 0.0002
1181 0.0002 1182 0.0002 1183 0.0004
1184 0.0010 1185 0.0007 1186 0.0006

94
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1187 0.0010 1188 0.0021 1189 0.0027
1190 0.0021 1191 0.0028 1192 0.0042
1193 0.0073 1194 0.0051 1195 0.0065
1196 0.0092 1197 0.0125 1198 0.0149
1199 0.0157 1200 0.0191 1201 0.0230
1202 0.0310 1203 0.0317 1204 0.0368
1205 0.0455 1206 0.0540 1207 0.0615
1208 0.0716 1209 0.0813 1210 0.0931
1211 0.1115 1212 0.1225 1213 0.1415
1214 0.1591 1215 0.1847 1216 0.2102
1217 0.2351 1218 0.2649 1219 0.2907
1220 0.3352 1221 0.3785 1222 0.4146
1223 0.4623 1224 0.5279 1225 0.5746
1226 0.6290 1227 0.7043 1228 0.7702
1229 0.8390 1230 0.9369 1231 1.0176
1232 1.0992 1233 1.2359 1234 1.3501
1235 1.4425 1236 1.5763 1237 1.7000
1238 1.8290 1239 2.0006 1240 2.1810
1241 2.3212 1242 2.4791 1243 2.6983
1244 2.8724 1245 3.0593 1246 3.3337
1247 3.5378 1248 3.7464 1249 4.0060
1250 4.2824 1251 4.5256 1252 4.8227
1253 5.1377 1254 5.3911 1255 5.6947
1256 6.0514 1257 6.3810 1258 6.7250
1259 7.1313 1260 7.4398 1261 7.7499
1262 8.1438 1263 8.5305 1264 8.9335
1265 9.3658 1266 9.8288 1267 10.1653
1268 10.5753 1269 10.9944 1270 11.4251
1271 11.9306 1272 12.3039 1273 12.7136
1274 13.1116 1275 13.5149 1276 14.0145
1277 14.4199 1278 14.8983 1279 15.2419
1280 15.5909 1281 15.9533 1282 16.3755
1283 16.8412 1284 17.1761 1285 17.5463
1286 17.7569 1287 18.0332 1288 18.3675
1289 18.6977 1290 18.9861 1291 19.2023
1292 19.3515 1293 19.4641 1294 19.7032
1295 19.9265 1296 20.1320 1297 20.1877
1298 20.3045 1299 20.3505 1300 20.4329
1301 20.5719 1302 20.6657 1303 20.6820
1304 20.6257 1305 20.6402 1306 20.6920
1307 20.7140 1308 20.7917 1309 20.7521
1310 20.6333 1311 20.6214 1312 20.5181
1313 20.5288 1314 20.4849 1315 20.4818

95
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1316 20.4148 1317 20.2674 1318 20.2491
1319 20.0621 1320 20.0895 1321 19.9523
1322 19.8909 1323 19.7624 1324 19.5186
1325 19.4881 1326 19.4924 1327 19.3809
1328 19.2281 1329 19.0301 1330 18.7255
1331 18.6713 1332 18.5893 1333 18.4763
1334 18.2507 1335 18.0415 1336 17.7795
1337 17.5316 1338 17.4149 1339 17.1286
1340 16.9036 1341 16.5974 1342 16.3333
1343 16.0724 1344 15.8184 1345 15.5254
1346 15.3252 1347 14.9458 1348 14.6700
1349 14.3735 1350 14.0653 1351 13.8909
1352 13.6097 1353 13.3971 1354 13.0274
1355 12.8640 1356 12.6049 1357 12.3944
1358 12.1839 1359 11.9232 1360 11.5976
1361 11.2897 1362 11.1081 1363 10.8708
1364 10.6985 1365 10.4018 1366 10.1438
1367 9.8625 1368 9.6437 1369 9.4317
1370 9.1920 1371 8.9489 1372 8.7079
1373 8.4752 1374 8.2889 1375 8.0813
1376 7.8925 1377 7.6981 1378 7.5026
1379 7.3834 1380 7.1991 1381 7.0844
1382 6.9077 1383 6.7985 1384 6.6173
1385 6.4824 1386 6.3747 1387 6.2773
1388 6.2220 1389 6.1004 1390 5.9512
1391 5.7910 1392 5.6909 1393 5.5491
1394 5.4813 1395 5.3770 1396 5.2440
1397 5.1077 1398 4.9662 1399 4.8213
1400 4.6776 1401 4.5614 1402 4.4236
1403 4.3312 1404 4.1933 1405 4.0592
1406 3.9127 1407 3.7838 1408 3.6318
1409 3.5057 1410 3.3659 1411 3.2577
1412 3.1579 1413 3.0327 1414 2.8972
1415 2.7807 1416 2.6744 1417 2.5381
1418 2.4672 1419 2.3303 1420 2.2215
1421 2.1189 1422 2.0019 1423 1.8999
1424 1.7984 1425 1.7202 1426 1.6297
1427 1.5646 1428 1.4599 1429 1.3684
1430 1.2758 1431 1.2015 1432 1.1230
1433 1.0750 1434 1.0130 1435 0.9700
1436 0.9172 1437 0.8397 1438 0.7782
1439 0.7182 1440 0.6741 1441 0.6258
1442 0.5973 1443 0.5463 1444 0.5161

96
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1445 0.4833 1446 0.4397 1447 0.3996
1448 0.3727 1449 0.3470 1450 0.3222
1451 0.3061 1452 0.2785 1453 0.2548
1454 0.2300 1455 0.2181 1456 0.2049
1457 0.1930 1458 0.1788 1459 0.1690
1460 0.1560 1461 0.1424 1462 0.1304
1463 0.1300 1464 0.1278 1465 0.1261
1466 0.1235 1467 0.1067 1468 0.0972
1469 0.0917 1470 0.0865 1471 0.0862
1472 0.0871 1473 0.0815 1474 0.0770
1475 0.0701 1476 0.0608 1477 0.0556
1478 0.0557 1479 0.0461 1480 0.0506
1481 0.0478 1482 0.0412 1483 0.0392
1484 0.0327 1485 0.0283 1486 0.0246
1487 0.0204 1488 0.0208 1489 0.0211
1490 0.0175 1491 0.0161 1492 0.0151
1493 0.0142 1494 0.0124 1495 0.0101
1496 0.0109 1497 0.0107 1498 0.0091
1499 0.0086 1500 0.0073 1501 0.0075
1502 0.0096 1503 0.0073 1504 0.0098
1505 0.0078 1506 0.0054 1507 0.0047
1508 0.0031 1509 0.0033 1510 0.0044
1511 0.0052 1512 0.0058 1513 0.0056
1514 0.0040 1515 0.0032 1516 0.0020
1517 0.0014 1518 0.0016 1519 0.0023
1520 0.0013 1521 0.0013 1522 0.0010
1523 0.0004 1524 0.0003 1525 0.0001
1526 0.0001 2152 0.0002 2155 0.0001
2156 0.0003 2157 0.0002 2159 0.0002
2160 0.0002 2161 0.0007 2162 0.0004
2163 0.0001 2164 0.0006 2165 0.0010
2166 0.0010 2167 0.0009 2168 0.0012
2169 0.0014 2170 0.0018 2171 0.0020
2172 0.0018 2173 0.0019 2174 0.0031
2175 0.0031 2176 0.0037 2177 0.0045
2178 0.0041 2179 0.0053 2180 0.0059
2181 0.0068 2182 0.0061 2183 0.0075
2184 0.0100 2185 0.0090 2186 0.0108
2187 0.0131 2188 0.0131 2189 0.0143
2190 0.0161 2191 0.0162 2192 0.0187
2193 0.0233 2194 0.0224 2195 0.0215
2196 0.0275 2197 0.0302 2198 0.0309
2199 0.0365 2200 0.0351 2201 0.0370

97
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2202 0.0444 2203 0.0500 2204 0.0512
2205 0.0508 2206 0.0571 2207 0.0594
2208 0.0648 2209 0.0763 2210 0.0767
2211 0.0802 2212 0.0898 2213 0.0946
2214 0.0949 2215 0.1045 2216 0.1169
2217 0.1181 2218 0.1301 2219 0.1391
2220 0.1385 2221 0.1533 2222 0.1640
2223 0.1706 2224 0.1822 2225 0.1924
2226 0.1989 2227 0.2076 2228 0.2259
2229 0.2378 2230 0.2488 2231 0.2638
2232 0.2677 2233 0.2781 2234 0.2986
2235 0.3190 2236 0.3313 2237 0.3399
2238 0.3510 2239 0.3705 2240 0.3868
2241 0.4115 2242 0.4248 2243 0.4351
2244 0.4611 2245 0.4699 2246 0.4914
2247 0.5083 2248 0.5277 2249 0.5560
2250 0.5761 2251 0.6014 2252 0.6059
2253 0.6296 2254 0.6522 2255 0.6731
2256 0.7114 2257 0.7179 2258 0.7456
2259 0.7765 2260 0.7843 2261 0.8166
2262 0.8351 2263 0.8563 2264 0.8861
2265 0.9092 2266 0.9289 2267 0.9453
2268 0.9760 2269 1.0033 2270 1.0299
2271 1.0516 2272 1.0521 2273 1.0720
2274 1.1058 2275 1.1373 2276 1.1698
2277 1.1794 2278 1.1734 2279 1.1929
2280 1.2065 2281 1.2583 2282 1.2821
2283 1.2738 2284 1.2928 2285 1.2732
2286 1.3083 2287 1.3394 2288 1.3536
2289 1.3602 2290 1.3442 2291 1.3627
2292 1.3573 2293 1.3828 2294 1.3907
2295 1.3826 2296 1.3937 2297 1.3794
2298 1.3884 2299 1.3944 2300 1.3892
2301 1.3973 2302 1.3942 2303 1.3765
2304 1.3666 2305 1.3677 2306 1.3717
2307 1.3874 2308 1.3713 2309 1.3415
2310 1.3213 2311 1.3322 2312 1.3457
2313 1.3326 2314 1.3317 2315 1.2898
2316 1.2750 2317 1.2839 2318 1.2793
2319 1.2880 2320 1.2585 2321 1.2489
2322 1.2308 2323 1.2222 2324 1.2277
2325 1.2050 2326 1.2063 2327 1.1825
2328 1.1846 2329 1.1607 2330 1.1534

98
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2331 1.1564 2332 1.1382 2333 1.1312
2334 1.0970 2335 1.0923 2336 1.0788
2337 1.0842 2338 1.0736 2339 1.0560
2340 1.0281 2341 0.9998 2342 0.9981
2343 0.9887 2344 0.9936 2345 0.9701
2346 0.9374 2347 0.9202 2348 0.9089
2349 0.8994 2350 0.8854 2351 0.8722
2352 0.8543 2353 0.8277 2354 0.8210
2355 0.7984 2356 0.7939 2357 0.7717
2358 0.7615 2359 0.7461 2360 0.7226
2361 0.7091 2362 0.6873 2363 0.6844
2364 0.6588 2365 0.6466 2366 0.6179
2367 0.6054 2368 0.5952 2369 0.5836
2370 0.5637 2371 0.5359 2372 0.5198
2373 0.5024 2374 0.4966 2375 0.4758
2376 0.4643 2377 0.4451 2378 0.4276
2379 0.4121 2380 0.4035 2381 0.3840
2382 0.3769 2383 0.3589 2384 0.3536
2385 0.3342 2386 0.3238 2387 0.3116
2388 0.3030 2389 0.2975 2390 0.2791
2391 0.2745 2392 0.2586 2393 0.2561
2394 0.2421 2395 0.2366 2396 0.2247
2397 0.2170 2398 0.2073 2399 0.2029
2400 0.1957 2401 0.1833 2402 0.1781
2403 0.1667 2404 0.1651 2405 0.1534
2406 0.1542 2407 0.1408 2408 0.1407
2409 0.1283 2410 0.1254 2411 0.1167
2412 0.1129 2413 0.1103 2414 0.1052
2415 0.0978 2416 0.0915 2417 0.0922
2418 0.0816 2419 0.0824 2420 0.0756
2421 0.0762 2422 0.0668 2423 0.0668
2424 0.0603 2425 0.0580 2426 0.0555
2427 0.0529 2428 0.0514 2429 0.0452
2430 0.0444 2431 0.0395 2432 0.0415
2433 0.0354 2434 0.0357 2435 0.0306
2436 0.0324 2437 0.0286 2438 0.0275
2439 0.0245 2440 0.0234 2441 0.0239
2442 0.0203 2443 0.0190 2444 0.0167
2445 0.0173 2446 0.0159 2447 0.0159
2448 0.0116 2449 0.0127 2450 0.0113
2451 0.0108 2452 0.0096 2453 0.0094
2454 0.0083 2455 0.0072 2456 0.0074
2457 0.0067 2458 0.0065 2459 0.0046

99
Table B.6: Unsmoothed Distribution for Convolution

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2460 0.0056 2461 0.0051 2462 0.0049
2463 0.0034 2464 0.0040 2465 0.0041
2466 0.0040 2467 0.0032 2468 0.0033
2469 0.0028 2470 0.0029 2471 0.0030
2472 0.0024 2473 0.0025 2474 0.0022
2475 0.0022 2476 0.0020 2477 0.0022
2478 0.0013 2479 0.0021 2480 0.0013
2481 0.0014 2482 0.0011 2483 0.0016
2484 0.0007 2485 0.0011 2486 0.0010
2487 0.0009 2488 0.0006 2489 0.0005
2490 0.0007 2491 0.0005 2492 0.0002
2493 0.0003 2494 0.0007 2495 0.0004
2496 0.0001 2497 0.0002 2498 0.0004
2499 0.0003 2500 0.0001 2501 0.0001
2502 0.0002 2503 0.0004 2504 0.0001
2505 0.0002 2506 0.0001 2507 0.0003
2509 0.0002 2510 0.0001 2511 0.0001
2512 0.0001 2513 0.0001 2514 0.0001
2515 0.0001 2516 0.0001 2517 0.0001
2518 0.0001 2520 0.0001 2524 0.0001

Table B.7: Smoothed Distribution for Part A

x p̂A(x) x p̂A(x) x p̂A(x)

32 0.0015 33 0.0050 34 0.0100
35 0.0195 36 0.0380 37 0.0755
38 0.1060 39 0.1360 40 0.1355
41 0.1205 42 0.0865 43 0.0590
44 0.0355 45 0.0170 46 0.0095
47 0.0035 48 0.0015 970 0.0015

971 0.0020 972 0.0030 973 0.0020
974 0.0015 979 0.0015 980 0.0035
981 0.0050 982 0.0050 983 0.0035
984 0.0015 986 0.0015 987 0.0035
988 0.0050 989 0.0050 990 0.0035
991 0.0015 992 0.0015 993 0.0035
994 0.0050 995 0.0050 996 0.0035
997 0.0015 998 0.0015 999 0.0020

1000 0.0030 1001 0.0035 1002 0.0035
1003 0.0030 1004 0.0020 1005 0.0030
1006 0.0020 1007 0.0030 1008 0.0035

100
Table B.7: Smoothed Distribution for Part A

x p̂A(x) x p̂A(x) x p̂A(x)

1009 0.0035 1010 0.0030 1011 0.0020
1012 0.0030 1013 0.0020 1014 0.0030
1015 0.0020 1016 0.0015 1038 0.0015
1039 0.0020 1040 0.0030 1041 0.0020
1042 0.0030 1043 0.0020 1044 0.0030
1045 0.0020 1046 0.0015

Table B.8: Smoothed Distribution for Part B

x p̂B(x) x p̂B(x) x p̂B(x)

23 0.0015 24 0.0020 25 0.0030
26 0.0020 27 0.0015 29 0.0015
30 0.0020 31 0.0045 32 0.0055
33 0.0065 34 0.0065 35 0.0055
36 0.0075 37 0.0150 38 0.0195
39 0.0250 40 0.0235 41 0.0315
42 0.0270 43 0.0375 44 0.0345
45 0.0395 46 0.0345 47 0.0455
48 0.0480 49 0.0540 50 0.0540
51 0.0460 52 0.0350 53 0.0230
54 0.0235 55 0.0255 56 0.0335
57 0.0320 58 0.0265 59 0.0155
60 0.0090 61 0.0070 62 0.0100
63 0.0100 64 0.0100 65 0.0085
66 0.0080 67 0.0085 68 0.0085
69 0.0065 70 0.0035 71 0.0015

1000 0.0015 1001 0.0020 1002 0.0030
1003 0.0020 1004 0.0015 1029 0.0015
1030 0.0020 1031 0.0030 1032 0.0035
1033 0.0035 1034 0.0030 1035 0.0020
1036 0.0015 1040 0.0015 1041 0.0020
1042 0.0030 1043 0.0020 1044 0.0015
1047 0.0030 1048 0.0040 1049 0.0060
1050 0.0040 1051 0.0030 1052 0.0015
1053 0.0020 1054 0.0030 1055 0.0020
1056 0.0015 1072 0.0015 1073 0.0020
1074 0.0030 1075 0.0020 1076 0.0015
1077 0.0015 1078 0.0020 1079 0.0030
1080 0.0020 1081 0.0015 1101 0.0015
1102 0.0020 1103 0.0030 1104 0.0020
1105 0.0015 1109 0.0015 1110 0.0020
1111 0.0030 1112 0.0020 1113 0.0015

101
Table B.9: Smoothed Distribution for Part C

x p̂C(x) x p̂C(x) x p̂C(x)

57 0.0015 58 0.0020 59 0.0030
60 0.0020 61 0.0030 62 0.0035
63 0.0050 64 0.0050 65 0.0035
66 0.0030 67 0.0035 68 0.0050
69 0.0050 70 0.0035 71 0.0015
72 0.0045 73 0.0075 74 0.0110
75 0.0090 76 0.0080 77 0.0050
78 0.0050 79 0.0065 80 0.0070
81 0.0095 82 0.0120 83 0.0135
84 0.0115 85 0.0070 86 0.0045
87 0.0035 88 0.0065 89 0.0100
90 0.0105 91 0.0140 92 0.0175
93 0.0230 94 0.0280 95 0.0295
96 0.0275 97 0.0220 98 0.0260
99 0.0275 100 0.0340 101 0.0315

102 0.0290 103 0.0175 104 0.0170
105 0.0175 106 0.0230 107 0.0235
108 0.0235 109 0.0230 110 0.0205
111 0.0210 112 0.0190 113 0.0180
114 0.0135 115 0.0160 116 0.0145
117 0.0170 118 0.0145 119 0.0175
120 0.0125 121 0.0125 122 0.0105
123 0.0115 124 0.0115 125 0.0105
126 0.0095 127 0.0070 128 0.0095
129 0.0090 130 0.0125 131 0.0095
132 0.0090 133 0.0040 134 0.0030
137 0.0015 138 0.0020 139 0.0030
140 0.0020 141 0.0015 142 0.0015
143 0.0020 144 0.0030 145 0.0020
146 0.0015 175 0.0015 176 0.0020
177 0.0030 178 0.0020 179 0.0015

Table B.10: Smoothed Distribution for Part D

x p̂D(x) x p̂D(x) x p̂D(x)

117 0.0030 118 0.0040 119 0.0060
120 0.0055 121 0.0065 122 0.0050
123 0.0050 124 0.0050 125 0.0035
126 0.0060 127 0.0060 128 0.0075
129 0.0085 130 0.0120 131 0.0160
132 0.0175 133 0.0195 134 0.0170
135 0.0180 136 0.0170 137 0.0225

102
Table B.10: Smoothed Distribution for Part D

x p̂D(x) x p̂D(x) x p̂D(x)

138 0.0215 139 0.0235 140 0.0225
141 0.0220 142 0.0265 143 0.0320
144 0.0420 145 0.0410 146 0.0400
147 0.0315 148 0.0250 149 0.0275
150 0.0265 151 0.0315 152 0.0285
153 0.0290 154 0.0265 155 0.0275
156 0.0245 157 0.0200 158 0.0140
159 0.0120 160 0.0110 161 0.0145
162 0.0120 163 0.0115 164 0.0100
165 0.0085 166 0.0080 167 0.0055
168 0.0060 169 0.0055 170 0.0095
171 0.0090 172 0.0080 173 0.0065
174 0.0055 175 0.0075 176 0.0060
177 0.0060 178 0.0020 179 0.0015
181 0.0015 182 0.0020 183 0.0045
184 0.0055 185 0.0065 186 0.0050
187 0.0035 188 0.0015 190 0.0015
191 0.0020 192 0.0030 193 0.0020
194 0.0015

103
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

234 0.0001 235 0.0001 236 0.0003
237 0.0005 238 0.0009 239 0.0015
240 0.0023 241 0.0034 242 0.0047
243 0.0064 244 0.0086 245 0.0112
246 0.0145 247 0.0187 248 0.0238
249 0.0304 250 0.0387 251 0.0493
252 0.0627 253 0.0795 254 0.1006
255 0.1264 256 0.1579 257 0.1956
258 0.2404 259 0.2932 260 0.3550
261 0.4273 262 0.5114 263 0.6087
264 0.7209 265 0.8493 266 0.9954
267 1.1609 268 1.3478 269 1.5582
270 1.7942 271 2.0581 272 2.3521
273 2.6784 274 3.0396 275 3.4386
276 3.8781 277 4.3609 278 4.8897
279 5.4670 280 6.0951 281 6.7757
282 7.5106 283 8.3009 284 9.1484
285 10.0560 286 11.0274 287 12.0672
288 13.1790 289 14.3644 290 15.6229
291 16.9533 292 18.3550 293 19.8291
294 21.3783 295 23.0056 296 24.7129
297 26.5008 298 28.3693 299 30.3178
300 32.3457 301 34.4522 302 36.6361
303 38.8969 304 41.2348 305 43.6515
306 46.1479 307 48.7230 308 51.3740
309 54.0972 310 56.8913 311 59.7585
312 62.7028 313 65.7256 314 68.8219
315 71.9789 316 75.1793 317 78.4076
318 81.6537 319 84.9130 320 88.1817
321 91.4514 322 94.7061 323 97.9233
324 101.0769 325 104.1409 326 107.0909
327 109.9045 328 112.5624 329 115.0489
330 117.3515 331 119.4581 332 121.3529
333 123.0150 334 124.4212 335 125.5531
336 126.4035 337 126.9781 338 127.2892
339 127.3487 340 127.1615 341 126.7276
342 126.0460 343 125.1220 344 123.9677
345 122.6008 346 121.0391 347 119.2991
348 117.3947 349 115.3377 350 113.1388
351 110.8066 352 108.3498 353 105.7775
354 103.1020 355 100.3375 356 97.5004
357 94.6040 358 91.6598 359 88.6763
360 85.6617 361 82.6255 362 79.5775

104
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

363 76.5281 364 73.4856 365 70.4585
366 67.4553 367 64.4869 368 61.5644
369 58.6984 370 55.8952 371 53.1564
372 50.4806 373 47.8661 374 45.3149
375 42.8327 376 40.4288 377 38.1121
378 35.8894 379 33.7623 380 31.7294
381 29.7859 382 27.9279 383 26.1527
384 24.4609 385 22.8553 386 21.3390
387 19.9138 388 18.5781 389 17.3277
390 16.1562 391 15.0582 392 14.0291
393 13.0669 394 12.1706 395 11.3395
396 10.5719 397 9.8650 398 9.2150
399 8.6178 400 8.0693 401 7.5652
402 7.1013 403 6.6729 404 6.2759
405 5.9068 406 5.5634 407 5.2446
408 4.9488 409 4.6738 410 4.4158
411 4.1705 412 3.9348 413 3.7073
414 3.4890 415 3.2814 416 3.0855
417 2.9005 418 2.7242 419 2.5542
420 2.3889 421 2.2282 422 2.0736
423 1.9264 424 1.7879 425 1.6586
426 1.5380 427 1.4252 428 1.3193
429 1.2198 430 1.1266 431 1.0398
432 0.9599 433 0.8872 434 0.8215
435 0.7621 436 0.7081 437 0.6583
438 0.6119 439 0.5685 440 0.5277
441 0.4895 442 0.4539 443 0.4211
444 0.3911 445 0.3639 446 0.3396
447 0.3179 448 0.2982 449 0.2797
450 0.2619 451 0.2441 452 0.2264
453 0.2092 454 0.1928 455 0.1776
456 0.1635 457 0.1499 458 0.1364
459 0.1226 460 0.1087 461 0.0951
462 0.0825 463 0.0714 464 0.0620
465 0.0541 466 0.0474 467 0.0415
468 0.0361 469 0.0311 470 0.0265
471 0.0223 472 0.0185 473 0.0152
474 0.0124 475 0.0100 476 0.0081
477 0.0064 478 0.0049 479 0.0037
480 0.0027 481 0.0018 482 0.0012
483 0.0007 484 0.0004 485 0.0002
486 0.0001 1175 0.0001 1176 0.0001

1177 0.0001 1178 0.0001 1179 0.0002

105
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1180 0.0002 1181 0.0003 1182 0.0004
1183 0.0005 1184 0.0007 1185 0.0009
1186 0.0012 1187 0.0015 1188 0.0019
1189 0.0025 1190 0.0031 1191 0.0038
1192 0.0047 1193 0.0058 1194 0.0071
1195 0.0086 1196 0.0104 1197 0.0126
1198 0.0152 1199 0.0181 1200 0.0215
1201 0.0255 1202 0.0301 1203 0.0353
1204 0.0414 1205 0.0483 1206 0.0562
1207 0.0651 1208 0.0753 1209 0.0867
1210 0.0995 1211 0.1139 1212 0.1302
1213 0.1484 1214 0.1686 1215 0.1912
1216 0.2162 1217 0.2438 1218 0.2744
1219 0.3081 1220 0.3453 1221 0.3862
1222 0.4309 1223 0.4795 1224 0.5322
1225 0.5890 1226 0.6505 1227 0.7169
1228 0.7887 1229 0.8666 1230 0.9509
1231 1.0419 1232 1.1398 1233 1.2443
1234 1.3555 1235 1.4736 1236 1.5990
1237 1.7325 1238 1.8743 1239 2.0247
1240 2.1838 1241 2.3517 1242 2.5286
1243 2.7151 1244 2.9114 1245 3.1179
1246 3.3345 1247 3.5614 1248 3.7986
1249 4.0462 1250 4.3044 1251 4.5731
1252 4.8525 1253 5.1426 1254 5.4437
1255 5.7559 1256 6.0788 1257 6.4112
1258 6.7519 1259 7.0999 1260 7.4553
1261 7.8193 1262 8.1931 1263 8.5773
1264 8.9712 1265 9.3729 1266 9.7805
1267 10.1925 1268 10.6082 1269 11.0268
1270 11.4478 1271 11.8700 1272 12.2926
1273 12.7153 1274 13.1380 1275 13.5601
1276 13.9802 1277 14.3960 1278 14.8057
1279 15.2080 1280 15.6030 1281 15.9907
1282 16.3696 1283 16.7372 1284 17.0905
1285 17.4276 1286 17.7479 1287 18.0519
1288 18.3397 1289 18.6103 1290 18.8622
1291 19.0946 1292 19.3083 1293 19.5050
1294 19.6861 1295 19.8517 1296 20.0012
1297 20.1336 1298 20.2493 1299 20.3492
1300 20.4344 1301 20.5056 1302 20.5631
1303 20.6080 1304 20.6416 1305 20.6658
1306 20.6813 1307 20.6876 1308 20.6832

106
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1309 20.6674 1310 20.6407 1311 20.6056
1312 20.5647 1313 20.5197 1314 20.4702
1315 20.4148 1316 20.3523 1317 20.2819
1318 20.2042 1319 20.1199 1320 20.0299
1321 19.9346 1322 19.8351 1323 19.7324
1324 19.6269 1325 19.5176 1326 19.4022
1327 19.2779 1328 19.1437 1329 19.0004
1330 18.8504 1331 18.6951 1332 18.5338
1333 18.3641 1334 18.1828 1335 17.9885
1336 17.7813 1337 17.5625 1338 17.3337
1339 17.0958 1340 16.8495 1341 16.5956
1342 16.3353 1343 16.0696 1344 15.7994
1345 15.5248 1346 15.2467 1347 14.9666
1348 14.6870 1349 14.4106 1350 14.1395
1351 13.8744 1352 13.6153 1353 13.3614
1354 13.1117 1355 12.8652 1356 12.6199
1357 12.3741 1358 12.1259 1359 11.8754
1360 11.6238 1361 11.3732 1362 11.1250
1363 10.8794 1364 10.6353 1365 10.3916
1366 10.1480 1367 9.9050 1368 9.6639
1369 9.4257 1370 9.1913 1371 8.9615
1372 8.7371 1373 8.5193 1374 8.3091
1375 8.1073 1376 7.9146 1377 7.7310
1378 7.5565 1379 7.3903 1380 7.2314
1381 7.0790 1382 6.9323 1383 6.7917
1384 6.6575 1385 6.5302 1386 6.4088
1387 6.2916 1388 6.1758 1389 6.0593
1390 5.9411 1391 5.8216 1392 5.7020
1393 5.5828 1394 5.4636 1395 5.3428
1396 5.2191 1397 5.0919 1398 4.9617
1399 4.8300 1400 4.6984 1401 4.5679
1402 4.4384 1403 4.3092 1404 4.1790
1405 4.0474 1406 3.9144 1407 3.7812
1408 3.6489 1409 3.5190 1410 3.3920
1411 3.2680 1412 3.1463 1413 3.0265
1414 2.9082 1415 2.7911 1416 2.6756
1417 2.5616 1418 2.4491 1419 2.3382
1420 2.2291 1421 2.1222 1422 2.0182
1423 1.9178 1424 1.8211 1425 1.7279
1426 1.6375 1427 1.5494 1428 1.4631
1429 1.3794 1430 1.2990 1431 1.2230
1432 1.1520 1433 1.0856 1434 1.0229
1435 0.9627 1436 0.9040 1437 0.8467

107
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

1438 0.7910 1439 0.7378 1440 0.6877
1441 0.6411 1442 0.5976 1443 0.5569
1444 0.5183 1445 0.4815 1446 0.4466
1447 0.4137 1448 0.3831 1449 0.3548
1450 0.3287 1451 0.3044 1452 0.2819
1453 0.2611 1454 0.2419 1455 0.2246
1456 0.2088 1457 0.1946 1458 0.1815
1459 0.1696 1460 0.1588 1461 0.1492
1462 0.1410 1463 0.1338 1464 0.1273
1465 0.1212 1466 0.1150 1467 0.1087
1468 0.1026 1469 0.0969 1470 0.0918
1471 0.0872 1472 0.0829 1473 0.0786
1474 0.0740 1475 0.0691 1476 0.0643
1477 0.0597 1478 0.0555 1479 0.0517
1480 0.0481 1481 0.0446 1482 0.0411
1483 0.0374 1484 0.0337 1485 0.0301
1486 0.0269 1487 0.0241 1488 0.0218
1489 0.0199 1490 0.0182 1491 0.0167
1492 0.0153 1493 0.0140 1494 0.0129
1495 0.0118 1496 0.0109 1497 0.0102
1498 0.0096 1499 0.0091 1500 0.0087
1501 0.0084 1502 0.0081 1503 0.0078
1504 0.0073 1505 0.0068 1506 0.0061
1507 0.0055 1508 0.0050 1509 0.0047
1510 0.0046 1511 0.0045 1512 0.0044
1513 0.0042 1514 0.0038 1515 0.0033
1516 0.0028 1517 0.0024 1518 0.0020
1519 0.0017 1520 0.0014 1521 0.0012
1522 0.0009 1523 0.0007 1524 0.0005
1525 0.0003 1526 0.0002 1527 0.0001
1528 0.0001 2152 0.0001 2153 0.0001
2154 0.0001 2155 0.0001 2156 0.0001
2157 0.0002 2158 0.0002 2159 0.0003
2160 0.0003 2161 0.0004 2162 0.0005
2163 0.0006 2164 0.0007 2165 0.0008
2166 0.0009 2167 0.0011 2168 0.0013
2169 0.0015 2170 0.0017 2171 0.0019
2172 0.0022 2173 0.0025 2174 0.0029
2175 0.0033 2176 0.0037 2177 0.0042
2178 0.0047 2179 0.0053 2180 0.0059
2181 0.0066 2182 0.0073 2183 0.0082
2184 0.0091 2185 0.0101 2186 0.0112
2187 0.0123 2188 0.0135 2189 0.0148

108
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2190 0.0162 2191 0.0177 2192 0.0194
2193 0.0211 2194 0.0230 2195 0.0250
2196 0.0272 2197 0.0295 2198 0.0320
2199 0.0347 2200 0.0376 2201 0.0406
2202 0.0438 2203 0.0471 2204 0.0506
2205 0.0543 2206 0.0583 2207 0.0626
2208 0.0673 2209 0.0723 2210 0.0775
2211 0.0829 2212 0.0884 2213 0.0943
2214 0.1005 2215 0.1071 2216 0.1141
2217 0.1215 2218 0.1291 2219 0.1371
2220 0.1454 2221 0.1540 2222 0.1630
2223 0.1724 2224 0.1820 2225 0.1921
2226 0.2026 2227 0.2135 2228 0.2249
2229 0.2365 2230 0.2485 2231 0.2607
2232 0.2733 2233 0.2864 2234 0.2999
2235 0.3139 2236 0.3282 2237 0.3429
2238 0.3580 2239 0.3737 2240 0.3898
2241 0.4064 2242 0.4232 2243 0.4403
2244 0.4576 2245 0.4754 2246 0.4938
2247 0.5130 2248 0.5327 2249 0.5528
2250 0.5731 2251 0.5934 2252 0.6139
2253 0.6348 2254 0.6563 2255 0.6783
2256 0.7008 2257 0.7235 2258 0.7462
2259 0.7689 2260 0.7915 2261 0.8142
2262 0.8370 2263 0.8599 2264 0.8830
2265 0.9062 2266 0.9294 2267 0.9527
2268 0.9757 2269 0.9983 2270 1.0205
2271 1.0422 2272 1.0639 2273 1.0856
2274 1.1072 2275 1.1282 2276 1.1484
2277 1.1677 2278 1.1863 2279 1.2045
2280 1.2224 2281 1.2399 2282 1.2564
2283 1.2718 2284 1.2860 2285 1.2996
2286 1.3125 2287 1.3248 2288 1.3359
2289 1.3457 2290 1.3541 2291 1.3613
2292 1.3677 2293 1.3734 2294 1.3782
2295 1.3821 2296 1.3850 2297 1.3871
2298 1.3882 2299 1.3886 2300 1.3880
2301 1.3864 2302 1.3839 2303 1.3808
2304 1.3772 2305 1.3733 2306 1.3689
2307 1.3636 2308 1.3576 2309 1.3509
2310 1.3439 2311 1.3368 2312 1.3295
2313 1.3215 2314 1.3128 2315 1.3037
2316 1.2946 2317 1.2856 2318 1.2768

109
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2319 1.2680 2320 1.2586 2321 1.2489
2322 1.2388 2323 1.2286 2324 1.2186
2325 1.2086 2326 1.1986 2327 1.1884
2328 1.1781 2329 1.1677 2330 1.1569
2331 1.1457 2332 1.1340 2333 1.1220
2334 1.1099 2335 1.0978 2336 1.0857
2337 1.0732 2338 1.0601 2339 1.0462
2340 1.0319 2341 1.0174 2342 1.0032
2343 0.9890 2344 0.9746 2345 0.9597
2346 0.9443 2347 0.9287 2348 0.9131
2349 0.8976 2350 0.8823 2351 0.8668
2352 0.8512 2353 0.8355 2354 0.8198
2355 0.8042 2356 0.7888 2357 0.7733
2358 0.7577 2359 0.7418 2360 0.7256
2361 0.7092 2362 0.6927 2363 0.6761
2364 0.6594 2365 0.6427 2366 0.6260
2367 0.6093 2368 0.5926 2369 0.5758
2370 0.5588 2371 0.5418 2372 0.5249
2373 0.5085 2374 0.4924 2375 0.4767
2376 0.4613 2377 0.4460 2378 0.4310
2379 0.4163 2380 0.4022 2381 0.3885
2382 0.3753 2383 0.3624 2384 0.3500
2385 0.3379 2386 0.3262 2387 0.3149
2388 0.3040 2389 0.2934 2390 0.2831
2391 0.2731 2392 0.2633 2393 0.2538
2394 0.2445 2395 0.2354 2396 0.2266
2397 0.2181 2398 0.2097 2399 0.2016
2400 0.1936 2401 0.1858 2402 0.1782
2403 0.1708 2404 0.1638 2405 0.1570
2406 0.1504 2407 0.1439 2408 0.1376
2409 0.1314 2410 0.1254 2411 0.1197
2412 0.1143 2413 0.1090 2414 0.1040
2415 0.0991 2416 0.0943 2417 0.0898
2418 0.0854 2419 0.0813 2420 0.0772
2421 0.0733 2422 0.0695 2423 0.0659
2424 0.0623 2425 0.0590 2426 0.0558
2427 0.0528 2428 0.0499 2429 0.0471
2430 0.0444 2431 0.0419 2432 0.0394
2433 0.0371 2434 0.0350 2435 0.0329
2436 0.0310 2437 0.0291 2438 0.0274
2439 0.0256 2440 0.0240 2441 0.0224
2442 0.0209 2443 0.0195 2444 0.0182
2445 0.0169 2446 0.0158 2447 0.0146

110
Table B.11: Convolution After Smoothing

z p̂Z(z) z p̂Z(z) z p̂Z(z)

(Z = A+B + C +D, represented in 0.0001’s)

2448 0.0136 2449 0.0126 2450 0.0116
2451 0.0108 2452 0.0100 2453 0.0092
2454 0.0085 2455 0.0079 2456 0.0073
2457 0.0067 2458 0.0062 2459 0.0058
2460 0.0053 2461 0.0050 2462 0.0046
2463 0.0044 2464 0.0041 2465 0.0039
2466 0.0037 2467 0.0035 2468 0.0033
2469 0.0031 2470 0.0029 2471 0.0028
2472 0.0026 2473 0.0025 2474 0.0023
2475 0.0022 2476 0.0020 2477 0.0019
2478 0.0018 2479 0.0017 2480 0.0015
2481 0.0014 2482 0.0013 2483 0.0012
2484 0.0011 2485 0.0010 2486 0.0009
2487 0.0008 2488 0.0007 2489 0.0006
2490 0.0006 2491 0.0005 2492 0.0005
2493 0.0004 2494 0.0004 2495 0.0003
2496 0.0003 2497 0.0003 2498 0.0003
2499 0.0002 2500 0.0002 2501 0.0002
2502 0.0002 2503 0.0002 2504 0.0002
2505 0.0002 2506 0.0002 2507 0.0002
2508 0.0001 2509 0.0001 2510 0.0001
2511 0.0001 2512 0.0001 2513 0.0001
2514 0.0001 2515 0.0001 2516 0.0001
2517 0.0001 2518 0.0001 2519 0.0001

111

References

[1] Joseph Abate, Gagan L. Choudhury, and Ward Whitt. An introduction to numer-

ical transform inversion and its application to probability models. In W. Grass-

man, editor, Computational Probability. Kluwer Academic Publishers, Boston,

2000.

[2] Johann Blieberger. Data-flow frameworks for worst-case execution time analysis.

Real-Time Syst., 22(3):183–227, 2002.

[3] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Source-level execution

time estimation of c programs. In Proceedings of the ninth international sympo-

sium on Hardware/software codesign, pages 98–103. ACM Press, 2001.

[4] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS Publishing

Company, Boston, 5th edition, 1993.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. MIT Press, Cambridge, 1998.

[6] Paul L. DeVries. A First Course in Computational Physics. John Wiley and

Sons, New York, 1994.

[7] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In Real-

Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, 3-6

Dec. 2001, pages 215–224. IEEE Computer Society, 2001.

[8] A. W. F. Edwards. Likelihood. The Johns Hopkins University Press, Baltimore,

1992.

[9] Andreas Ermedahl, Friedhelm Stappert, and Jakob Engblom. Clustered calcula-

tion of worst-case execution times. In Proceedings of the international conference

112

on Compilers, architectures and synthesis for embedded systems, pages 51–62.

ACM Press, 2003.

[10] R. Ernst and W. Ye. Embedded program timing analysis based on path clus-

tering and architecture classification. In Proceedings of the 1997 IEEE/ACM

international conference on Computer-aided design, pages 598–604. IEEE Com-

puter Society, 1997.

[11] N. Gehani and K. Ramamritham. Real-time concurrent c: a language for

programming dynamic real-time systems. The Journal of Real-Time Systems,

1(3):377–405, 1991.

[12] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes.

Oxford University Press, Oxford, 3rd edition, 2001.

[13] A. Hergenhan and W. Rosenstiel. Static timing analysis of embedded software

on advanced processor architectures. In Proceedings of the conference on Design,

automation and test in Europe, pages 552–559. ACM Press, 2000.

[14] Francis B. Hildebrand. Introduction to Numerical Analysis. Dover Publications,

New York, 2nd edition, 1987.

[15] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics.

Prentice-Hall, Englewood Cliffs, NJ, 5th edition, 1995.

[16] P. Holgate. The lognormal characteristic function. Commun. Statist.-Theory

Meth., 18(12):4539–4548, 1989.

[17] Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot. Loss Models -

From Data to Decisions. John Wiley & Sons, Inc., New York, 1998.

[18] Roy P. Leipnik. On lognormal random variables: I – the characteristic function.

J. Austral. Math. Soc. Ser. B, 32(1):327–347, 1991.

[19] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation

of embedded software with instruction cache modeling. ACM Trans. Des. Autom.

Electron. Syst., 4(3):257–279, 1999.

[20] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and

Extensions. John Wiley & Sons, Inc., New York, 1997.

113

[21] Geoffrey J. McLachlan and David Peel. Finite Mixture Models. John Wiley &

Sons, Inc., New York, 2000.

[22] A. K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight

execution time bounds of programs by annotations. In Proceedings of the IEEE

Workshop on Real-Time Operating Systems and Software, pages 74–80. IEEE

Computer Society, 1989.

[23] Kelvin D. Nilsen and Bernt Rygg. Worst-case execution time analysis on modern

processors. In Proceedings of the ACM SIGPLAN 1995 workshop on Languages,

compilers, & tools for real-time systems, pages 20–30. ACM Press, 1995.

[24] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C - The Art of Scientific Computing. Cambridge

University Press, Cambridge, UK, 2nd edition, 1992.

[25] B. W. Silverman. Density Smoothing for Statistics and Data Analysis. Number 26

in Monographs on Statistics and Applied Probability. Chapman & Hall / CRC,

Boca Raton, FL, 1986.

[26] D. S. Sivia. Data Analysis - A Bayesian Tutorial. Oxford University Press, New

York, 1996.

[27] Alan Stuart and J. Keith Ord. Kendall’s Advanced Theory of Statistics - Volume

1 - Distribution Theory. Oxford University Press, New York, 6th edition, 1994.

[28] Alan Stuart and J. Keith Ord. Kendall’s Advanced Theory of Statistics - Volume

2a - Classical Inference and the Linear Model. Oxford University Press, New

York, 6th edition, 1999.

[29] George B. Thomas and Ross L. Finney. Calculus and Analytic Geometry.

Addison-Wesley, Reading, MS, 8th edition, 1992.

[30] M. P. Wand and M. C. Jones. Kernel Smoothing. Number 60 in Monographs on

Statistics and Applied Probability. Chapman & Hall / CRC, Boca Raton, FL,

1995.

[31] David V. Wedder. Advanced Calculus. Dover Publications, New York, 2nd

edition, 1989.

114

Vita
Kelly P. Leahy

Date of Birth September 19, 1976

Place of Birth St. Louis, MO U.S.A

Degrees B.S. Cum Laude, Actuarial Science, May 1994

May 2005

	Efficient Estimation of Tighter Bounds for Worst Case Execution Time of Programs
	Recommended Citation

	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	The Model
	Our Methods
	Convolution using Discrete Distributions
	Convolution by Discrete Fourier Transform
	Convolution by Characteristic Function

	Examples
	Mathematical Preliminaries
	Our Contribution

	Estimating the Component Distributions
	Introduction
	Fitting the Simple Distributions
	Maximum Likelihood Estimation
	MLE Estimates for the Training Data

	Fitting the Complex Distributions
	Maximum Likelihood Estimation
	MLE Estimates for the Training Data

	Summary of Results

	Discrete Convolution
	The Convolution Process
	Extension to M Distributions
	Using the Results of Convolution
	Smoothing Using a Kernel

	An Example

	Convolution by Discrete Fourier Transform
	The Discrete Fourier Transform
	The Fast Fourier Transform
	The DFT Method
	Step 1 --- Prepare the FFT Input
	Step 2 --- Compute the FFT
	Step 3 --- Multiply the FFT Output
	Step 4 --- Compute the iFFT

	An Example
	Computing the DFT of the Probability Functions
	Computing the DFT of the Convolution
	Computing the Probability Function

	Computational Cost of the Method
	The Cost of Smoothing

	Convolution by Characteristic Function
	CFs of Common Distributions
	The CFT Method
	Step 1 --- Estimate the Distributions
	Step 2 --- Sample the CF
	Step 3 --- Multiply the Results
	Step 4 --- Calculate the iFFT

	Computational Cost of the Method

	Combining the DFT and CFT Methods
	The Combined Method
	Preparing the Distributions
	Computing the Convolution Distribution

	An Example

	Testing the Models
	The Test Distributions
	WCET Estimates
	The Exact EV Distribution

	Conclusion
	Future Work
	Some Observations

	Appendix A Maximum Likelihood Estimation
	Normal Distribution
	Log-Normal Distribution
	Gamma Distribution
	The Process

	Adjustments for the EM Algorithm
	The Mixture Proportions
	The Component Parameters

	Appendix B Training Data and Tabular Results
	References
	Vita

	Abstract: Abstract: In this paper, we will present a framework for the statistical analysis of the execution time of program units. We will show alternative methods for computing the distribution of the execution times and provide justification for the use of each of the methods presented. We will estimate the worst-case execution time (WCET) of the program units using several methods and compare the results of these methods. We will also present a new method for estimating the WCET, based on the theory of extreme value distributions.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: December 15, 2004
	Author: Authors: Leahy, Kelly
	Title: Efficient Estimation of Tighter Bounds for Worst Case Execution Time of Programs (Masters Thesis)
	ReportNumber: 2005-27
	DepartmentName: Department of Computer Science & Engineering

