
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-79

2003-12-10

The SimplePipe Toolset Manual The SimplePipe Toolset Manual

Vinayak Joshi and Mark A. Franklin

SimplePipe is a simulation framework/tool for analyzing performance effects of alternative task

allocations in network processors having multiple pipelines where pipeline stages are either

processors or dedicated hardware functions. Tasks are defined in terms of sequence of

separate C program executions with each sequence representing the functional requirements of

a flow, where a flow is defined as the set of packets having the same processing requirements.

The assignment of tasks to pipeline stages, selection of number of stages, and determination of

processor cache sizes are important designing decisions impacting performance.

... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Joshi, Vinayak and Franklin, Mark A., "The SimplePipe Toolset Manual" Report Number: WUCSE-2003-79
(2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1125

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1125?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1125

The SimplePipe Toolset Manual The SimplePipe Toolset Manual

Vinayak Joshi and Mark A. Franklin

Complete Abstract: Complete Abstract:

SimplePipe is a simulation framework/tool for analyzing performance effects of alternative task
allocations in network processors having multiple pipelines where pipeline stages are either processors
or dedicated hardware functions. Tasks are defined in terms of sequence of separate C program
executions with each sequence representing the functional requirements of a flow, where a flow is
defined as the set of packets having the same processing requirements. The assignment of tasks to
pipeline stages, selection of number of stages, and determination of processor cache sizes are important
designing decisions impacting performance.

https://openscholarship.wustl.edu/cse_research/1125?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1125?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages

The SimplePipe Toolset Manual (Version 1.0)1

Vinayak Joshi and Mark A. Franklin
Computer and Communications Research Center

Washington University in St.Louis, Missouri 63130�
vjoshi,jbf � @ccrc.wustl.edu

1 Introduction

Network processors (NPs) are being increasingly used on router line cards to provide flexibility and pro-
grammability in supporting networking functions. These network processors are often connected in a
pipelined fashion with each stage of the pipeline consisting of a processor. Having multiple such pipelines
further increases performance. Figure 1 illustrates a generic NP architecture that consists of three pipelines,
each having three stages. The notation ��� i � j � indicates the �	��
 stage in the �
��
 pipeline. Each pipeline ex-
ecutes a set of tasks associated with processing the incoming communications traffic. The incoming traffic
consists of a number of flows where a flow is defined as a set of packets that have the same processing
requirements (i.e., one flow might require IP lookup and encryption while another flow might require IP
lookup, transcoding and compression). Flows are associated with one or more of the pipelines, and the
packets for the flow proceed down the pipeline with each stage successively executing functions required
for the associated packet protocol. Each flow is partitioned into an ordered set of tasks. These tasks are
called phases.

Packets
AccumulatorDispatcher

Processor
S(1 , 3)S(1 , 1)

Processor

S(2 , 2)

S(1 , 2)

S(2 , 3)
Processor

S(3 , 1) S(3 , 2) S(3 , 3)
Processor Processor

Processor
S(2 , 1)

Specialized
H/W

Specialized

Specialized
H/W

H/W

Figure 1: Network Processor Design

Note that a pipeline stage can consist of a general RISC processor (microengine) or can consist of specialized
logic hardware. The dispatcher has the decision logic to select pipelines for each flow and packet. The
accumulator is the collection point of processed packets.

Network applications are partitioned into phases and, to obtain the highest throughput, these phases
need to be assigned to pipeline stages in an optimal or near optimal manner. SimplePipe is a simulation
tool that permits the modelling and simulation of pipeline of processors with tasks of various flows assigned
to them. SimplePipe is built upon SimpleScalar[2], which is a processor modelling and simulation toolset
and the sim-outorder tool of SimpleScalar toolset is utilized. More information on the motivation and use

1This work has been supported in part by NSF grant CCR-0217334

1

of SimplePipe can be found in the report titled “SimplePipe : A Simulation Tool for Task Allocation and
Design of Processor Pipelines with Application to Network Processors.”

2 Overview

An overview of structure of SimplePipe is shown in Figure 2.

Phases
Implementing
C Source Files

System Results

SimplePipe

SimpleScalarPerl Scripts

Temporary FilesDesciption File
Pipeline System

Statistics

Figure 2: Overview of SimplePipe

As indicated, SimplePipe takes two inputs. The first input consists of C source files implementing the phases
associated with different flows. Inter-phase communication is implemented with a simple file read-process-
write mechanism. That is, a phase ��� , after processing the data, writes the information needed by phase
������� into a temporary file that is subsequently read by ������� during its execution. The file operations are
implemented using the standard I/O library functions. The source code associated with each phase must be
compatible with the xgcc compiler. Timings for software based phases are based on the performance results
of SimpleScalar execution of the associated phase C code. Timings for hardware based phases are based on
the internal generation of timing by the C code itself. In some cases this may simply be a timing delay that
is associated with the hardware implementation of the phase. In other cases the timing may be the result
of execution of a model of the hardware (that just happens to be run on the SimpleScalar processor). The
second input is a text file describing the pipeline stage characteristics, assignment of phases to stages and
interstage delay specifications. The format of this file is described in detail in later sections.

3 Installation

To obtain SimplePipe e-mail your requests to vjoshi@ccrc.wustl.edu.

SimplePipe is written in the Perl scripting language and it runs on Perl interpreter Version 5 and above.
SimplePipe is built upon SimpleScalar Version 3.0 with some enhancements. SimplePipe itself does not
need any special procedure for installation. However, it needs installation of SimpleScalar along with xgcc
compilation tool. For instructions of installations of the above, please refer to [1].

2

4 Usage

4.1 Command Line Format

Typing the following command at the command-line runs SimplePipe:

$ perl simplepipe.pl

SimplePipe accepts the following command line arguments:

–h print the help message
–conf �����
����� read in and use a configuration (pipeline system description) file.

If this option is not specified, SimplePipe
looks for default configuration file named ’spconfig‘
in the current working directory.

–gccd ���! #"%$�� directory where xgcc compiler is located. Defaults
to current working directory.

–simd ���! #"%$�� directory where the sim-outorder tool of SimpleScalar
is located. Defaults to current working directory.

–utild ���! #"%$�� directory where the simple-util utilities are located.
Defaults to current working directory.

–srcd ���! &"'$!� directory where C source files are located. Defaults
to current working directory.

–rf �����
����� file into which simulation results are written. Defaults to
console.

–ic output the total number of instructions executed
–lds output the total number of loads executed.
–str output the total number of stores executed.
–cy output the total CPU cycles executed.
–cpi output CPI per simulation of one source file.
–et output the execution time statistics.

Also output latency statistics.
–il1m output L-1 instruction cache miss rate.
–dl1m output L-1 data cache miss rate.
–ul2m output L-2 unified cache miss rate.
–clk ����()�+*-,��+.0/213� clock frequency, in MHz for execution time calculation.

Defaults to 2 Ghz. Useful only with -et option.
–all all output messages generated by sim-outorder will be dumped

into result output file.

By default -ic, -lds, -str, -cy, -cpi and -et options are turned on. Explicitly specifying one of these options
turns it on and turns off the rest.

3

4.2 Input File Format

The configuration file, specified as part of the –conf argument above, contains the description of the pipeline
setup and information about how different phases are allocated to various stages of the pipeline. The entries
in the configuration file are not case sensitive. All characters after ’#’ in a line are treated as comments.

The file contains six sections; a pipeline description section, a processor description section, a flow
specification section, a phase-to-stage assignment section, a stage-to-stage overhead section and source files
sections. The sections must be ordered as in the prior sentence. A section begins with the keyword begin
followed by a colon and the keyword that identifies the section (section identifier). End of a section is
indicated with the keyword end. Configurations are entered in each section as entity and entity specification
pairs in the following format:

BEGIN : 4 SECTION IDENTIFIER 5
476�8�9!:'9!;<5 : 4>=&?@6BAC:ED@:FACGH9!:FI08J5476�8�9!:'9!;<5 : 4>=&?@6BAC:ED@:FACGH9!:FI08J5

...

...476�8�9!:'9!;<5 : 4>=&?@6BAC:ED@:FACGH9!:FI08J5
END

An entity may specify a part of the system, such as a stage or a phase. A specification may be a numerical
value, or a filename, or another entity-specification pair, or a sequence of pairs. If the specification consists
of multiple entity-specification pairs, each of those pairs should be entered in a new line.

Any entity that can be identified by a unique number is called a single dimensional entity and it is denoted by
an entity name followed by character ’-’ and an integer index.Indices begin with 1. For example, PIPELINE-
10 denotes the tenth pipeline. Pipelines, flows and processors are single dimensional entities. Entities which
require more that one dimension are denoted by multiple single dimensional entities separated by commas.
For example, “PIPELINE-1 , STAGE-1” denotes the first stage in the first pipeline and, “FLOW-1 , PHASE-
2” denotes the second phase in the first flow. Character ’*’ can be used as a short-hand notation to indicate
multiple values of indices. For example, “FLOW-1 , PHASE-*” denotes all phases in flow 1. The short-hand
notation is permitted only with single dimensional entities and the second dimension of two dimensional
entities. For example, the notation “FLOW-* , PHASE-1” is invalid because short-hand notation is not
allowed with the first dimension.

Short-hand notations can be used to denote certain entities. Table 1 lists the entities and their short-hand
notations.

Entity Short-hand notation
flow F
phase P
pipeline PIPE
processor PROC
stage S

Table 1: Short-hand notations

4

Unless otherwise mentioned, a source file can be specified in the following three ways.

1. Specify a C source file name. Whenever the file needs to be executed, it gets compiled with the xgcc
compiler with the default compiler options. This option is specified with the keyword SRC.

2. Specify the name of a makefile and the name of the executable file to be generated. The makefile is
used by SimplePipe to obtain the executable file. This option is specified with the keyword MAKE.

3. Specify the name of a precompiled executable file itself. This method avoids repeated compilations.
This option is specified with the keyword EXEC.

All the three methods provide a way to pass command line arguments when the source files are executed.
The examples shown below describe the three methods.

C Source file example- The file myphase1.c gets compiled with
xgcc, with the default compiler options. The string “100 200”
is passed on the command line during execution.
SRC : myphase1.c : 100 200

Makefile and executable file example- The file “mymakefile” is
used and results in the executable file named “myexec1”.
The string “xyz” is the command line argument.
MAKE : mymakefile : myexec1 : xyz

Precompiled executable file example- The executable “myexec2”
implements -h and -k command line options.
EXEC : myexec2 : -h 20 -k 50

4.2.1 Pipeline Description

The pipeline description section specifies the number of pipelines, number of stages in each pipeline and the
hardware entities each stage consists of. This section is identified by the keyword PIPELINE-DESCRIPTION-
SECTION.

The pipeline system in Figure 1 having identical processors and identical specialized hardware elements
is described by the following section:

BEGIN : PIPELINE-DESCRIPTION-SECTION

NUMBER-OF-PIPELINES : 3

NUMBER-OF-STAGES :
PIPELINE-1 : 3
PIPELINE-2 : 3
PIPELINE-3 : 3

STAGE-DEFINITION :
PIPELINE-1 :

STAGE-1 : SIMPLE-PROCESSOR-1
STAGE-2 : SPECIAL-PROCESSOR-1
STAGE-3 : SIMPLE-PROCESSOR-1

PIPELINE-2 :
STAGE-1 : SIMPLE-PROCESSOR-1
STAGE-2 : SPECIAL-PROCESSOR-1
STAGE-3 : SIMPLE-PROCESSOR-1

PIPELINE-3 :

5

STAGE-1 : SIMPLE-PROCESSOR-1
STAGE-2 : SPECIAL-PROCESSOR-1
STAGE-3 : SIMPLE-PROCESSOR-1

END

4.2.2 Processor Description

The processor description section, identified by the keyword PROCESSOR-DESCRIPTION-SECTION, de-
scribes the hardware setup of each pipeline stage in the system. If it is a simple processor (i.e., the blocks
labeled “processor” in Figure 1) the SimpleScalar specification for CPU description should be given. The
processor currently simulated by SimpleScalar Version 3.0 is a RISC processor (DEC ALPHA). Processor
characteristics that are configurable include the structure of processor core (e.g., number of available float-
ing point ALUs), the structure of the memory system (e.g., L1 data cache size) and the branch predictor
algorithm to be used.

If a special processor (i.e., the blocks labeled “Specialized H/W” in Figure 1) is specified then a source
file specification that models the special processor hardware should be entered. When phases allocated to
stages that consist of a special processor need to be modelled by SimplePipe, it executes the corresponding
source file. The model is executed on the native CPU (not on a SimpleScalar simulated CPU). Flow number
and phase number are passed as the first two command line arguments of the executable that models the
special processor. The source file, along with modelling the special processor, also needs to estimate an
execution time of the the model. The estimated executed time should be printed on the standard output. The
printed value is read by SimplePipe from the standard output for system execution time statistics calcula-
tions. SimplePipe ignores all other messages printed by the model. The execution time should be printed by
the model with a C statement (e.g., “ printf(“ K n SIMPLEPIPE-DATA-EXEC-TIME: L d K n”, exec time);”) which results in a
single print line with format:

SIMPLEPIPE-DATA-EXEC-TIME : 4 Execution time expressed in microseconds 5

The SimplePipe keyword SIMPLEPIPE-DATA-EXEC-TIME distinguishes the execution time message from
other messages. The example shown below contains the messages printed by one such model. The message
displaying an execution time of 2000 microseconds is processed by SimplePipe and the rest are ignored.

Starting model 1...
...
...

SIMPLEPIPE-DATA-EXEC-TIME : 2000
...
...

The example processor description section shown below describes the hardware elements shown in
Figure 1. Here the processors have an L1 data cache of 256 sets each with 4-way associativity and line size
of 32 bytes. LRU is the cache replacement algorithm. The notation employed here follows that required by
SimpleScalar. The specialized hardware is implemented by the file hw.c. That is, the file contains source
code to perform the functions of the specialized hardware. The functions include reading a file to which
data is written by phases allocated to stage 1 and writing data to a file which is read by phases allocated to
stage 3.

6

BEGIN: PROCESSOR-DESCRIPTION-SECTION
SIMPLE-PROCESSOR-1 :

-cache:dl1 dl1:256:4:32:l
SPECIAL-PROCESSOR-1 :

SRC : hw.c
END

4.2.3 Flow Specification

The flow specification section specifies the total number of flows and the number of phases associated with
each flow. This section is identified by the keyword FLOW-SPECIFICATION-SECTION. For example, if
there are three flows divided into three phases each, the flow specification section should be:

BEGIN: FLOW-SPECIFICATION-SECTION
NUMBER-OF-FLOWS: 3

NUMBER-OF-PHASES:
FLOW-1 : 3
FLOW-2 : 3
FLOW-3 : 3

END

4.2.4 Phase-To-Stage Assignment

The phase-to-stage assignment section describes the assignment of the phases to the stages of different
pipelines. This section is identified by the keyword PHASE-TO-STAGE-ASSIGNMENT-SECTION. The
following example describes a setup where the three phases of the first flow in the example above are
assigned to the three stages of the first pipeline, the three phases of the second flow are assigned to the three
stages of the second pipeline and so on.

BEGIN : PHASE-TO-STAGE-ASSIGNMENT-SECTION

PIPELINE-1 :
STAGE-1 :

NUMBER-OF-PHASES : 1
FLOW-1 , PHASE-1

STAGE-2 :
NUMBER-OF-PHASES : 1

FLOW-1 , PHASE-2
STAGE-3 :

NUMBER-OF-PHASES : 1
FLOW-1 , PHASE-3

PIPELINE-2 :
STAGE-1 :

NUMBER-OF-PHASES : 1
FLOW-2 , PHASE-1

STAGE-2 :
NUMBER-OF-PHASES : 1

FLOW-2 , PHASE-2
STAGE-3 :

NUMBER-OF-PHASES : 1
FLOW-2 , PHASE-3

PIPELINE-3 :
STAGE-1 :

NUMBER-OF-PHASES : 1
FLOW-2 , PHASE-1

STAGE-2 :
NUMBER-OF-PHASES : 1

FLOW-2 , PHASE-2
STAGE-3 :

7

NUMBER-OF-PHASES : 1
FLOW-2 , PHASE-3

END

4.2.5 Stage-To-Stage Overhead

The stage-to-stage overhead section specifies the overhead for each flow incurred in passing data from one
pipeline stage to the next stage. This section is identified by the keyword STAGE-TO-STAGE-OVERHEAD-
SECTION. If the overhead is fixed then delay type is specified with keyword FIXED and the delay, in
microseconds, is entered. If not, the delay type is specified with the keyword MODELLED and a C source
file that models the data passing behavior and prints a delay time in microseconds on the standard output.
The delay time should be printed in the format similar to the one described in section 4.2.2, however,
with one exception; the keyword SIMPLEPIPE-DATA-EXEC-TIME should be replaced by the keyword
SIMPLEPIPE-DATA-INTERSTAGE-DELAY. During the simulation of a flow, the model is executed when
data has to be passed across stages. If the delay is not specified for a flow, zero delay is assumed.

The example shown below specifies a fixed delay of 30 microseconds between the first and the second
stages of all the three pipelines, for all three flows. The delay between the stages 2 and 3 are not specified
and hence is taken to be zero. The delay between the third and the output (a hypothetical stage indicated as
“STAGE-OUT”) of all pipelines, for all three flows is modelled by a file delay.c. That is, phases executed on
the third stage write their output data into an intermediate file. This data is read and processed by the model
implemented in the file delay.c.

BEGIN: STAGE-TO-STAGE-OVERHEAD-SECTION

PIPELINE-1 :
STAGE-1 M!5 STAGE-2 :

FLOW-1 : FIXED : 30
FLOW-2 : FIXED : 30
FLOW-3 : FIXED : 30

STAGE-3 M!5 STAGE-OUT :
FLOW-1 : MODELLED : SRC : delay.c
FLOW-2 : MODELLED : SRC : delay.c
FLOW-3 : MODELLED : SRC : delay.c

PIPELINE-2 :
STAGE-1 M!5 STAGE-2 :

FLOW-1 : FIXED : 30
FLOW-2 : FIXED : 30
FLOW-3 : FIXED : 30

STAGE-3 M!5 STAGE-OUT :
FLOW-1 : MODELLED : SRC : delay.c
FLOW-2 : MODELLED : SRC : delay.c
FLOW-3 : MODELLED : SRC : delay.c

PIPELINE-3 :
STAGE-1 M!5 STAGE-2 :

FLOW-1 : FIXED : 30
FLOW-2 : FIXED : 30
FLOW-3 : FIXED : 30

STAGE-3 M!5 STAGE-OUT :
FLOW-1 : MODELLED : SRC : delay.c
FLOW-2 : MODELLED : SRC : delay.c
FLOW-3 : MODELLED : SRC : delay.c

END

8

4.2.6 Source Files

The source files section lists the C source files implementing the phases that are allocated to stages with
simulated processors. This section is identified by the keyword SOURCE-FILES-SECTION.

The example source files section shown below lists the source files implementing the phases in the above
example.

BEGIN: SOURCE-FILES-SECTION

PIPELINE-1 :
STAGE-1 :

FLOW-1 , PHASE-1 : f11.c
STAGE-3 :

FLOW-1 , PHASE-3 : f13.c

PIPELINE-2 :
STAGE-1 :

FLOW-2 , PHASE-1 : f21.c
STAGE-3 :

FLOW-2 , PHASE-3 : f23.c

PIPELINE-3 :
STAGE-1 :

FLOW-2 , PHASE-1 : f31.c
STAGE-3 :

FLOW-2 , PHASE-3 : f33.c
END

As mentioned earlier, data is passed between phases with a read-process-write mechanism. While the phases
may spend considerable execution time doing file operations needed to support this mechanism, to obtain
correct system timings, file operation times should be excluded by SimplePipe when determining the execu-
tion times of phases.

If multiple phases of a flow are assigned to the same stage, those phases need to be combined into a
single executable unit by compiling the source files of the phases together. The phases need to be executed
as successive steps within the unit so that it can be treated as a single entity in the stage. Instead of using the
read-process-write technique, inter phase communication has to be achieved through direct procedure calls.

Figure 3 shows an example where phases NBO M@P �EN�O)�EN�ORQ P , ... N ORQCSTQ P of a flow are assigned to the three
stages of a pipeline. Phase N0O M@P is assigned to stage i-1, phases NBOU�ENCORQ P ... N O2QCS are assigned to stage i and
phase N�V QCSWQ P is assigned to stage i+1. N@O M@P has to write its results to a file for the use of phase NXO in stage
i. After N O processes the data, it has to call a procedure of N ORQ P for the next step of processing. The next
phase N@O2Q P has to call a procedure of N0O2QCY and so on. Finally when the data reaches N ORQCS it has to write its
results to a file for use by N ORQCSWQ P in the following stage.

Pj , Pj+1, ...Pj+k Pj+k+1

Packets

Stage i−1 Stage i Stage i+1

Pj−1

Figure 3: Assignment of Multiple Phases of a Flow to one Pipeline Stage

9

Earlier in section 4.2 three methods for specifying the source files were presented. However, when
aggregating phases to be placed as unit on a single stage different rules must be followed. For this case the
precompiled executable and makefile options are not available. SimplePipe itself compiles the C source files
using xgcc.

Additionally,

Z Every source file should be divided into three logical sections; an input section, a processing sec-
tion and an output section, which implement the read-process-write mechanism of the phase. The
input section should be placed under the preprocessor directive #ifdef SIMPIPE INPUT i where i
is the phase number. Similarly output section should be placed under the preprocessor directive
SIMPIPE OUTPUT i. SimplePipe enables the flags as appropriate. If the flag SIMPIPE OUTPUT i
is not enabled then the processing section should call a function in the processing section of the next
phase. If not it should call a function in its own output section to write the output.

Z The processing section of every phase must be placed between two function calls SIMPIPE stat start()
and SIMPIPE stat stop(). That is, before proceeding to the processing section, there should be a call
to SIMPIPE stat start() in the input section. The first statement of the output section should be a call
to the function SIMPIPE stat stop(). SimplePipe gathers execution time statistics only for the code
that lies between the two function calls. The functions are available in the header file “simplepipe.h”
which comes as a part of the SimplePipe toolset distribution.

The source files (phase1.c, phase2.c and phase3.c) implementing the first three phases of an example
flow are given in Figure 4. For this simple example, each phase reads an integer from a file (input), incre-
ments it (processing) and writes it back to the file (output). If all three phases are assigned to the same stage
they are compiled together resulting in one executable. The preprocessor flags SIMPIPE INPUT 1 and
SIMPIPE OUTPUT 3 are enabled and SIMPIPE OUTPUT 1, SIMPIPE INPUT 2, SIMPIPE OUTPUT 2
and SIMPIPE INPUT 3 are disabled during compilation. The flowchart in Figure 5 shows the sequence
of functions (along with the filenames and the line numbers where they are defined) called when the final
executable runs.

Similarly, if phase 1 and phase 2 are assigned to the same stage, the preprocessor flags SIMPIPE INPUT 1
and SIMPIPE OUTPUT 2 are enabled and the flags SIMPIPE OUTPUT 1 and SIMPIPE INPUT 2 are dis-
abled during compilation.

4.3 Output file format

The output file contains execution time statistics for individual phases and the system as a whole. CPU
related statistics are displayed only for those phases that are simulated on SIMPLE PROCESSOR. An indi-
vidual phase here is denoted by a six tuple consisting of flow number, phase number, pipeline number stage
number, processor number and source file name. For example, the tuple [F-1,P-1,Pipe-1,S-1,Proc-1,f11.c]
indicates phase 1 of flow 1 allocated to stage 1 of pipeline 1 which is of processor type 1 and the phase is
implemented by source file f11.c.

4.3.1 Execution Time Statistics

Execution time statistics generated by SimplePipe are useful in analyzing the the performance of pipelines.
Performance of the most heavily loaded stage (bottleneck stage) in a pipeline determines the performance
of the entire pipeline. SimplePipe identifies the bottleneck stage using two methods; the maximum of
maximums method and the maximum of averages method.

10

4.3.2 Maximum of Maximums Method

This method is suitable for performance analysis of pipelines for the worst case behavior. That is, the
maximum possible delay experienced by a packet moving down the pipeline is calculated with this method.
Let

� � P , �CY , �@[,..., � 8 � denote the N stages of a pipeline P. Let
�]\ P , \ Y , \ [,..., _^ � be the M distinct flows

assigned to stage � V where `bac�dafe . That is, one or more phases of each of the M flows are executed on
stage � V . As described in the source files section, if more than one phase of a flow are assigned to a stage,
the phases are combined together to form a single executable.

Let gihkj+hV O be the execution time of the phases of flow
\ O assigned to stage � V , where `lam�napo . Let

grqXs]tV O be the interstage message passing delay between stages � V and � V Q P , for flow
\ O .

The maximum delay experienced by a packet belonging to any of the M flows in stage � V is given by:

u qwv jV x
^y{z-|OR} P

~ g h
j+hV O�� g q�s�tV O � (1)

Hence the maximum delay experienced by a packet moving down pipeline P (bottleneck delay) is given by:

u q�v j? x 8y{z-|V } P
~ u qwv jV � (2)

4.3.3 Maximum of Averages Method

This method is useful in analyzing the average performance of pipelines. Assuming the average packet
arrival rates of M flows to be equal, the average delay experienced by a packet in stage � V is given by:

u vF�E�V x

^�
OR} P

~ g hkj+hV O � g qXs]tV O��
o (3)

Hence the maximum average delay experienced by a packet moving down pipeline P in this case is given
by: u vE�F�? x 8y{z-|V } P

~ u vE�E�V � (4)

5 Example

An example of generation of execution time statistics is shown below. Statistics are generated for a single
pipeline with three stages which are identical processors. All CPUs have an instruction clock frequency of
500 MHz. A single flow is divided into four phases and the four phases are implemented in source files
phase1.c, phase2.c, phase3.c and phase4.c respectively. For this example, phases just perform dummy
functions each having a different execution time. The first two phases are allocated to the first stage and
the remaining phases are allocated to the second and the third stages respectively. The processors have
an L1 data cache of 256 sets each with 4-way associativity and line size of 32 bytes. LRU is the cache
replacement algorithm. The message passing overhead between stage 1 and stage 2 for the flow is a constant
value of 10 microseconds. Similarly the overhead between stage 3 and the output is a constant value of 100
microseconds. The overhead between stage 2 and stage 3 is modelled by a file delay.c which outputs an
overhead value of 20 microseconds on the standard output.

11

The configuration file describing the above setup is shown below.

BEGIN: PIPELINE-DESCRIPTION-SECTION

NUMBER-OF-PIPELINES : 1

NUMBER-OF-STAGES :
PIPELINE-1 : 3

STAGE-DEFINITION :
PIPELINE-1 :

STAGE-1 : SIMPLE-PROCESSOR-1
STAGE-2 : SIMPLE-PROCESSOR-1
STAGE-3 : SIMPLE-PROCESSOR-1

END

BEGIN: PROCESSOR-DESCRIPTION-SECTION
SIMPLE-PROCESSOR-1 :

-cache:dl1 dl1:256:4:32:l
END

BEGIN: FLOW-SPECIFICATION-SECTION
NUMBER-OF-FLOWS: 1

NUMBER-OF-PHASES:
FLOW-1 : 4

END

BEGIN: PHASE-TO-STAGE-ASSIGNMENT-SECTION

PIPELINE-1 :
STAGE-1 :

NUMBER-OF-PHASES : 2
FLOW-1 , PHASE-1
FLOW-1 , PHASE-2

STAGE-2 :
NUMBER-OF-PHASES : 1

FLOW-1 , PHASE-3
STAGE-3 :

NUMBER-OF-PHASES : 1
FLOW-1 , PHASE-4

END

BEGIN: STAGE-TO-STAGE-OVERHEAD-SECTION

PIPELINE-1 :
STAGE-1 M!5 STAGE-2 :

FLOW-1 : FIXED : 10
STAGE-2 M!5 STAGE-3 :

FLOW-1 : MODELLED : SRC : delay.c
STAGE-3 M!5 STAGE-OUT :

FLOW-1 : FIXED : 100
END

BEGIN: SOURCE-FILES-SECTION

PIPELINE-1 :
STAGE-1 :

FLOW-1 , PHASE-1 : phase1.c
FLOW-1 , PHASE-2 : phase2.c

STAGE-2 :
FLOW-1 , PHASE-3 : phase3.c

STAGE-3 :
FLOW-1 , PHASE-4 : phase4.c

END

12

Statistics obtained with “–et” option is shown in Figure 6. In the figure, lines 4-20 show the execution times
of individual and combined phases. Starting from line 22 various latency statistics are printed. The latency
experienced by a packet on flow 1, without taking message passing overhead into account, is 76.258 mi-
croseconds, which is the sum of execution times of all four phases. Considering the message passing delays
across all stages, the flow latency is �������U�U� � `T�	��� � ���	��� � `T�U�	��� x ���)�����U�U� microseconds. Since there is
only one flow, the average stage latencies follow from the execution times of individual and combined flows
assigned to the stages.

Starting from line 39, the performance statistics of the entire pipeline is printed. Since there is only one
flow, the values calculated with the two methods described in the previous section are identical. In both
cases, the maximum latency, without considering message passing delays, is 39.2725 microseconds and
it appears in stage one. It is the sum of execution times of first two phases. The maximum latency with
message passing delays, `+�����U�U�U� � `T�U�	��� x `U`+�����U�U�U� microseconds, appears in stage 3. Hence the true
bottleneck of the system is in stage 3.

Since the stage with the maximum latency determines the performance of the pipeline, at steady state the
system produces one output per 115.6535 microseconds. Hence, in the worst case, the throughput of the
system is `]��`U`+�����U�U�U� x �	����` outputs per microsecond.

6 Use of SimplePipe in Pipeline Design

SimplePipe is useful in evaluating alternative assignments of phases to stages. It provides facilities for exe-
cuting the phases associated with each of the stages in sequence, permitting control and data information to
pass between the stages, and capturing the associated performance (e.g., stage latency, cache miss rates, etc.)
of the phases executing on each of the processor stages. This process can be repeated with alternative assign-
ments and the best assignment selected. With many phases, stages and flows the optimal assignment cannot
be done in this manner since the problem is within the class of NP hard task scheduling problems. However,
basic timing information can be obtained which is useful in applying advanced assignment algorithms.

SimplePipe is now being expanded so that the effects of shared memory contention in various memory
and cache architectures can be explored. A companion tool GreedyPipe[3] is also available to perform near
optimum task/phase to pipeline stage assigments.

References

[1] SimpleScalar Documentation. www.simplescalar.com.

[2] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An Infrastructure for Computer System Mod-
elling. In IEEE Computer, February 2002.

[3] Seema Datar and Mark A. Franklin. Task Scheduling of Processor Pipelines with Application to Net-
work Processors . Technical Report 60, Dept of Computer Science and Engineering, Washington Uni-
versity in St Louis, Missouri, 2003.

13

1: #include <stdio.h>
2: #include "./simpipe.h"
3:
4: /*If this file doesnt write output then

6: extern void phase3_process(int x);
7:
8: /* Processing section of this phase. */
9: void phase2_process(int x)
10: {
11: x++;
12: #ifdef SIMPIPE_OUTPUT_2
13: phase2_output(x);
14: #else
15: phase3_process(x);
16: #endif
17: }
18:
19: #ifdef SIMPIPE_OUTPUT_2
20: /* Output section of this phase. */
21: static void phase2_output(int x)
22: {
23: FILE *fp_out;
24:
25: SIMPIPE_stat_stop();
26:
27: fp_out = fopen("valuefile", "w");
28: fprintf(fp_out ,"%d\n", x);
29: fclose(fp_out);
30: }
31: #endif
32:
33: #ifdef SIMPIPE_INPUT_2
34: int main(void)
35: {
36: int value;
37: FILE *fp_in;
38:
39: /* Perform input */
40: fp_in = fopen("valuefile" , "r");
41: fscanf(fp_in ,"%d", &value);
42: fclose(fp_in);
43:
44: /* Begin statistics gathering */
45: SIMPIPE_stat_start();
46: phase2_process(value);
47: }
48: #endif

5: the processing function of phase 3 is called.*/

File: phase2.c File: phase3.c

1: #include <stdio.h>
2: #include "./simpipe.h"
3:
4: /* If this phase doesnt write output then
5: the processing function of phase 4 is called.*/
6: extern void phase4_process(int x);
7:
8: /* Processing section of this phase. */
9: void phase3_process(int x)
10: {
11: x++;
12: #ifdef SIMPIPE_OUTPUT_3
13: phase3_output(x);
14: #else
15: phase4_process(x);
16: #endif
17: }
18:
19: #ifdef SIMPIPE_OUTPUT_3
20: /* Output section of this phase. */
21: static void phase3_output(int x)
22: {
23: FILE *fp_out;
24:
25: SIMPIPE_stat_stop();
26:
27: fp_out = fopen("valuefile", "w");
28: fprintf(fp_out ,"%d\n", x);
29: fclose(fp_out);
30: }
31: #endif
32:
33: #ifdef SIMPIPE_INPUT_3
34: int main(void)
35: {
36: int value;
37: FILE *fp_in;
38:
39: /* Perform input */
40: fp_in = fopen("valuefile" , "r");
41: fscanf(fp_in ,"%d", &value);
42: fclose(fp_in);
43:
44: /* Start statistics gathering. */
45: SIMPIPE_stat_start();
46: phase3_process(value);
47: }
48: #endif

1: #include <stdio.h>
2: #include "./simpipe.h"
3:
4: /* If this file doesnt write output then

6: extern void phase2_process(int x);
7:
8: /* Processing section of this phase.*/
9: static void phase1_process(int x)
10: {
11: x++;
12: #ifdef SIMPIPE_OUTPUT_1
13: phase1_output(x);
14: #else
15: phase2_process(x);
16: #endif
17: }
18:
19: #ifdef SIMPIPE_OUTPUT_1
20: /* Output section of this phase.*/
21: void phase1_output(int x)
22: {
23: FILE *fp_out;
24:
25: SIMPIPE_stat_stop();
26:
27: fp_out = fopen("valuefile", "w");
28: fprintf(fp_out ,"%d\n", x);
29: fclose(fp_out);
30: }
31: #endif
32:
33: #ifdef SIMPIPE_INPUT_1
34: int main(void)
35: {
36: int value;
37: FILE *fp_in;
38:
39: /* Perform input */
40: fp_in = fopen("valuefile" , "r");
41: fscanf(fp_in , "%d", &value);
42: fclose(fp_in);
43:
44: /* Begin statistics gathering */
45: SIMPIPE_stat_start();
46: phase1_process(value);
47: }
48: #endif

5: the processing functions of phase 2 is called. */

 File : phase1.c

Figure 4: Source Files for Phase-1, Phase-2 and Phase-3

phase1.c:34

main()

START
(input)

phase1_process()

phase1.c:9
(processing, x++)

phase2_process()

phase2.c:9
(processing, x++)

phase3_process()

phase3.c:9
(processing, x++)

STOP
(output)

phase3.c:21

phase3_output()

Figure 5: Sequence of Function Calls with all Phases on a Single Stage (phase#.c: line#)

14

4: Pipeline : 1
5:
6: Stage : 1
7:
8: [F−1,P−1,Pipe−1,S−1,Proc−1,phase1.c] :
9: [F−1,P−2,Pipe−1,S−1,Proc−1,phase2.c] :
10: Execution Time = 39.2725 microsecs
11:
12: Stage : 2
13:
14: [F−1,P−3,Pipe−1,S−2,Proc−1,phase3.c] :
15: Execution Time = 21.332 microsecs
16:
17: Stage : 3
18:
19: [F−1,P−4,Pipe−1,S−3,Proc−1,phase4.c] :
20: Execution Time = 15.6535 microsecs
21:
22: Pipeline Latency :
23: Latency Per Flow :

25: WITHOUT Message Passing Overhead : 76.258 microsecs
26: WITH Message Passing Overhead : 206.258 microsecs
27:
28: Average Latency Per Stage :

30: WITHOUT Message Passing Overhead : 39.2725 microsecs
31: WITH Message Passing Overhead : 49.2725 microsecs

33: WITHOUT Message Passing Overhead : 21.332 microsecs
34: WITH Message Passing Overhead : 41.332 microsecs
35: Stage : 3
36: WITHOUT Message Passing Overhead : 15.6535 microsecs
37: WITH Message Passing Overhead : 115.6535 microsecs
38:
39: Maximum Stage Latency :
40: Maximum of Maximums Method:
41: WITHOUT Message Passing Overhead : 39.2725 microsecs in Stage 1
42: WITH Message Passing Overhead : 115.6535 microsecs in Stage 3
43:
44: Pipeline Throughput = 0.01 outputs/microsec
45:
46: Maximum of Averages Method:
47: WITHOUT Message Passing Overhead : 39.2725 microsecs in Stage 1
48: WITH Message Passing Overhead : 115.6535 microsecs in Stage 3
49:
50: Pipeline Throughput = 0.01 outputs/microsec

1: ===

3: ===
2: = SimplePipe Statistics =

24: Flow : 1

29: Stage : 1

32: Stage : 2

Figure 6: SimplePipe Output

15

	The SimplePipe Toolset Manual
	Recommended Citation
	The SimplePipe Toolset Manual

	tmp.1471023011.pdf.Y1Ao7

	Abstract: Abstract: SimplePipe is a simulation framework/tool for analyzing performance effects of alternative task allocations in network processors having multiple pipelines where pipeline stages are either processors or dedicated hardware functions. Tasks are defined interms of sequence of seperate C program executions with each sequence representing the functional requirements of a flow, where a flow is defined as the set of packets having the same processing requirements.

 The assignment of tasks to pipeline stages, selection of number of stages, and determination of processor cache sizes are important designing decisions impacting perfromance.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: December 10, 2003
	Author: Authors: Vinayak Joshi and Mark A. Franklin
	Title: The SimplePipe Toolset Manual
	ReportNumber: 2003-79
	DepartmentName: Department of Computer Science & Engineering

