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1 Introduction

Reinforcement learning (RL) has shown itself to be a successful paradigm for solving optimal control prob-
lems. However, that success has been mostly limited to problems with a finite set of states and actions. The
problem of extending reinforcement learning techniques to the continuous state case has received quite a bit
of attention in the last few years.

One approach to solving reinforcement learning problems relies on approximating the value function of
an underlying Markov decision process. This solution technique is referred to as value-based reinforcement
learning, and will be discussed in more detail in Section 2. In this paper, we propose a finite support method
for value-based reinforcement learning based on the theory of manifolds. By constructing a representation
of the underlying state space topology, we can avoid some of the pitfalls that other value-based techniques
experience.

Consider the world in figure 1 as a two-dimensional navigation domain. Typically this state space is
represented as the product space of two real intervals, which is homeomorphic to a disk. What such a
representation doesn’t capture is the fact that the state space is actually topologically a cylinder, due to the
obstacle in the center of the environment. A failure to account for this may lead function approximators
on this domain to generalize through the obstacle, resulting in a poor approximation. Figure 2 illustrates
our approach to modelling the state space of the world in Figure 1. By breaking the world up into a set
of simpler (rectangular) models, we can preserve the appropriate connectivity of the state space. Note that
the rectangles on opposite sides of the obstacle do not overlap. The intuition behind our approach is that
representing the world by the union of many simple models we can capture the underlying topology of the
state space. We can then use this model to prevent the problem of inappropriate generalization.

This paper is organized as follows. In Section 2, we go into more detail regarding value-based Reinforce-
ment Learning and the continuous state space problem. Section 3 discusses related work. In sections 4 and 5
we cover our approach in depth, including several approaches to constructing manifold representations and
methods for using these representations for value function approximation. We provide empirical results of
our approach on the Mountain car benchmark domain [4] in section 6.
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Figure 1: A simple 2-dimensional navigation domain with a center obstacle [6]. The distance between A and B is the
same as that between A and C (shown in red), but is innacurate because of the obstacle. The blue line corresponds
to the distance on the surface of the cylinder (Right) that more accurately represents distances in this world.

Figure 2: Rectangle-based decomposition of the obstacle world.

2 Background

Reinforcement learning problems are most often modeled as Markov decision processes. A Markov decision
process consists of a set of states S, a set of actions A, a reward function R, and a transition function T .
We make the simplifying assumption that every action is applicable in every state. An MDP is said to be
finite whenever S and A are finite.

The reward function R : S × A × S → R maps a state, action, state triple (s, a, s′) to the immediate
utility of taking action a from state s and ending up in s′. For notational compactness, we will denote
R(s, a, s′) as Ra

ss′ , following Sutton and Barto [17]. The transition function T (s, a) maps each state-action
pair to a probability distribution over possible next states. We denote the probability of arriving in state s′

immediately after taking action a from state s as P a
ss′ . An MDP is deterministic if P a

ss′ is always 0 or 1 for
every pair of states s and s′ and action a.

A policy π recommends actions from each state of an MDP. For any policy, there exists a value function
V π(s), defined as follows, where π(st) = at:

V π(s) = E

{ ∞∑
t=0

γt
∑
s′∈S

P at

sts′
Rat

sts′
| st = s

}
(1)

The value function then is the expected sum of discounted future rewards obtained when following the policy
π. The optimal policy is that which maximizes the value function; such a policy is guaranteed to exist.

The discount factor γ ∈ [0, 1] adjusts how myopic the agent is in weighing future rewards; one interpre-
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tation of γ is that it is the prior probability of surviving until the next time step. The optimal policy π∗ is
such that V π∗(s) is maximal; such a policy is guaranteed to exist for any MDP. Finding this optimal policy
is the objective in a reinforcement learning problem.

Dynamic programming solutions exist for computing the value function of a finite MDP. However, directly
computing the value function requires knowing the transition function, which we often do not have access
to. For instance, if the agent is learning to fly a helicopter, factors such as wind make it difficult to model
the transition function. In this paper we assume that we have no model of the transition function. One
popular solution to this problem is to compute the state-action value function Q(s, a), which is defined for
a fixed policy π as follows:

Qπ(s, a) =
∑
s′∈S

Ra
ss′ + γ

∑
s′∈S

P a
ss′V

π(s′) (2)

The optimal Q function can be computed by sampling the transition function using Watkins’s Q-learning [20],
or the Sarsa learning rule [15]. Given the optimal Q∗ function, the optimal policy π∗(s) = argmax

a∈A
Q∗(s, a).

Many real-world problems are most intuitively modeled with real-valued state. For example, in the case
of a robot moving about in the real world, we are likely to have at least three real-valued state features
corresponding to position and orientation. There are a couple of detriments to applying algorithms for the
finite MDP case to the continuous case. The methods for determining the optimal value function discussed
above rely on making an arbitrarily large number of iterative updates to a table of values. It is infeasible
both to keep a one-to-one table of values in the continuous case; it is also highly unlikely that the agent will
ever be in the same state twice. In this case, we must resort to value-function approximation.

Value-function approximation techniques rely on a relatively compact representation of the value function.
The most straight-forward approach is to aggregate states into a finite collection of subspaces, and treat
these subspaces as the problem state space. One problem with this approach is that the problem is no
longer Markov; discretization methods also tend to scale poorly as the number of dimensions (state features)
increases. These methods do have the benefit that the learning algorithms used for the finite case can be
applied, although the loss of the Markov property does remove convergence guarantees.

A second class of value-function approximation techniques use parameterized function approximators as
drop-in replacements for the value table. For example, we might use one artificial neural network with one
input for each state feature, and a single real-valued output. We could then train one network for each discrete
action, and use these to represent the Q function. Unfortunately, well-behaved function approximators may
diverge even for simple environments [4].

One reason that parameterized function approximators may fail in general is that they rely on Euclidean
neighborhoods in order to drive generalization. This can be a problem if the true value function varies too
much in this neighborhood; this can occur when the neighborhood is divided by an obstacle, for example.

In this paper we present a method for applying value-function approximation to problems with continuous,
bounded, infinite state. We assume that actions are discrete and finite. This method for VFA is based on
constructing a topological model of the state space: a manifold representation. Our goal is to approximate
the connectivity of the state space with respect to the transition function by covering the reachable portion
of the state space with a set of charts, and then placing simple function approximators on each chart.
In the next section, we describe the construction of these representations and how these can be used for
value-function approximation.
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3 Related Work

Reinforcement learning in continuous state spaces has received a great deal of attention recently. Much of
this effort has been focused on approximating the value function.

Variable resolution discretization [11, 19, 12] partition the state space into a finite set of states. Munos’s
method requires that the transition and reward functions are known in advance; both Munos’s VRD and
Continuous U-Tree may perform poorly in case of a poor discretization. Moore and Atkeson’s parti-game
adaptively partitions the space, and so avoids these problems, but requires that the user provides a greedy
controller as an input.

CMACs [1], or Tile Coding [16] have also been applied to value function approximation in the continuous
state case. This approach uses several coarse, exhaustive partitions of the state space as a discrete, locally
linear representation of the value function. This allows a greater effective resolution with a relatively small
number of predictive features, but both this and the variable resolution discretization methods scale poorly
as the dimension of the state space increases.

Memory-based approximators [2, 3] generalize from a set of stored training instances. Usually, a stored
training instance influences the value of nearby states as a function of distance from the training instance.
This generalization based on a distance metric can lead to poor approximation when, say, generalizing
between two close together states that are seperated by a wall.

Recently, Ratitch and Precup [14] introduced a finite-support value-based reinforcement learning strategy
based on sparse distributed memories. This approach is similar to our online chart allocation, discussed in
Section 5.1. Their framework dynamically allocates predictive features, and allows tuning of the number
and position of features.

Boyan and Moore [4] demonstrated empirically that value-function approximation may diverge even
for simple reinforcement learning problems, while Gordon [7] proved the non-divergence of SARSA(λ) for
averaging approximators. Szepesvári and Smart [18] proved the convergence of approximators obeying a
particular interpolative property under a fixed exploration policy.

4 Manifolds

We propose a value function approximation strategy based on the theory of manifolds. Loosely speaking,
our approach constructs a manifold representation of the state space that is composed of local subspaces.
The manifold representation is defined by these subspaces and their overlaps; each of these subspaces is
paired with a function approximator that is trained only on training instances that originate in the paired
subspace.

In order to help build an intuition for what a manifold representation does, consider an atlas of the earth’s
surface. The atlas contains a set of maps, each showing some small portion of the surface. It is possible to
plot a course between two cities on the same map directly; to plot a course between cities on different maps
that intersect you can choose a point in the overlap, and navigate from the first city to that point, and from
that point to the goal city. Essentially, the atlas is a manifold; Euclidean distance is valid within a single
map, but not between maps due to differences of scale.

More formally, each point on x on a manifold M has a Euclidean neighborhood, denoted Ux. These Uxs
are the local subspaces mentioned above, or the portions of the world represented by a map in our atlas.
For Ux to be Euclidean, there must be a homeomorphism ϕx : Ux → Rn. ϕx is called a chart, and can be
thought of as a coordinate transform from manifold to the n-dimensional reals. This chart is analogous to
the maps in the examle above; the collection of these charts Φ = {ϕx : x ∈M} is called an atlas.
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We are interested in the subclass of manifolds that are differential. This means that it is possible to
perform analysis (calculus) on the manifold surface. Formally, a differential manifold is a manifold such
that if Ux ∩ Uy 6= ∅, then ϕy ◦ ϕ−1

x is a C∞ function from Rn to Rn. Essentially, this means that there is
a well-defined tranformation between the coordinate systems of Ux and Uy. For instance, the earlier atlas
example is an example of a differential manifold. Suppose two maps overlap, and that a centimeter on one
map corresponds to d1 kilometers, and d2 kilometers in the other. Then the composite map is just a scale
by a factor of d1

d2
to go from the first to the second map.

5 Constructing and Using Manifolds

The two significant aspects of our manifold representation are the value functon approximation and the
chart allocation. Section 5.1 describes in detail several approaches to actually constructing our manifold
representations. Section 5.2 describes our approach to embedding function function approximators on a
manifold representation. This covers both using an embedded approximator for prediction as well as training
an embedded approximator.

Our manifold representation consists of a set of chart domains covering the state space S of a reinforcement
learning problem. For reasons of computational tractability we restrict the class of domains we consider to
hypercubes. The chart ϕ for a chart domain then is just a translation and scale from the state space to the
open unit cube (−1, 1)n.

5.1 Chart Allocation

The first problem that we need to address is how we go about constructing a manifold representation. We
approach this chart allocation problem in both a batch setting and an online setting. In the batch setting the
manifold is allocated prior to training, while in the online setting chart allocation is interleved with training.

5.1.1 Batch Allocation

All of our chart allocation schemes assume that we have access to the system dynamics and reward only
through sampling, which is the case in most realistic settings. We will discuss three methods for batch
allocation, two of which assume a large available sample set, or alternatively, the ability to arbitrarily
sample the environment.

The simplest batch allocation does not require any samples, but only that we know some bounded
subspace U ⊆ Rn such that S ⊆ U . We can then cover U with fixed-width charts placed uniformly at
random. We refer to this simple strategy as “random allocation”. Of course, this strategy does not take into
account any properties of S beyond the requirement that S is bounded.

A second strategy is walk-based allocation. In this allocation strategy charts are allocated until the space
is covered; each chart is allocated by first choosing an uncovered state in the state space, and then taking
a series of random walks from that state. The smallest axis-aligned bounding box containing all observed
states along each of these walks becomes the domain of a new chart. Each walk is terminated after either a
minimum number of steps or a minimum path length has been met; the path length of a trajectory is just
the sum of Euclidean distances between the start and endpoint of each observed transition along the walk.

This allocation strategy requires quite a bit of access to the state space. We must be able to find uncovered
points in the state space, and have the ability to arbitrarily sample the state space. Unfortunately, this is
not a reasonable requirement in most realistic environments; however, this strategy will later prove useful in
the discussion of online allocation methods.
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The third batch chart allocation strategy actually describes a family of strategies. Given a sample set Ξ,
where each sample ξ is a tuple consisting of (s, a, r, s′), the chart allocation algorithm uses Ξ to iteratively
grow charts based on some measure of sample-set similarity between an initial chart domain and adjacent
portions of the state space.

For example, one such sample set similarity measure is the expectation that the step size in each region

exceeds some threshold θ. Step size σ(ξ) =
√∑d

i=1(si − s′i)2 is just the Euclidean distance between the
start and end states of the sample ξ = (s, a, r, s′). The expectation that step size exceeds θ for some U ⊆ S
is defined as follows, where ΞU is the set of samples in Ξ with initial state in U :

E[σ(ξ) > θ|ΞU ] =
|{ξ ∈ ΞU : σ(ξ) > θ}|

|ΞU |
(3)

In other words, this expectation is just the number of samples with start state in U with step size exceeding
θ normalized by the total number of samples with start state in U . This statistic is useful for measuring the
locality of the transition function in the sense that it is a measure of how likely taking an action in U will
move the agent a “long” distance in terms of θ.

Given such a sample set statistic, the idea behind this growth-based chart allocation is that while we can
find an uncovered state s, we place a small initial chart domain U centered about s. We then try to extend
each face of the hyperrectangle U ; if the distribution of our selected statistic is not significantly different
between U and this region that we try to include, then U is extended in that direction. If the distributions
are significantly different, then U will not be extended, and we will not try to extend that face again. The
process of extending faces of U continues until every face has failed exactly once, at which point we allocate
a chart with domain U . Chart allocation continues until the state space is covered.

When used with this algorithm, the step size statistic above allows the extension of a possible chart
domain only when it is either similarly likely or unlikely that the agent will take a large step from both the
chart domain and the region that chart would contain if extended. Significant changes in this statistic are
likely when there are obstacles in an environment for example. Significant differences in this statistic also
occur in regions of transition from short to long steps; in this case the θ parameter acts as a threshold for
chart boundary placement along the transition from short to long steps.

This final method is useful in that it often places charts where it seems intuitive to do so. However, it
has the unfortunate drawback of being extremely sample intensive, and is likely to be feasible only for cases
in which a simulator of the actual environment is available to the agent.

Aside from issues of sample complexity, one of the problems that these methods share is an exponential
dependence on state space dimension. Any method that covers all of S is likely to suffer greatly the curse of
dimensionality. For example, any covering with fixed-width charts of width δ requires at least 1

δ

n charts to
cover the unit hypercube (0, 1)n.

Online allocation is one solution to this potential problem. One characteristic of high-dimensional control
problems is that often the actual state space lies on a low-dimensional manifold. This means that there may
be large portions of seemingly valid state vectors that will never be observed in practice, so covering these
states with charts is a waste. By only covering the observed states, we are likely to only allocate charts that
are necessary. This is the idea behind online allocation.

5.1.2 Online Allocation

In online allocation setting, the samples collected by an agent interacting with the environment are used to
construct the manifold representation incrementally on-the-fly. Whenever the agent encounters a state that
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is not on its current manifold representation, it will begin allocating a new chart that will be added to the
manifold; samples observed off of the manifold can be used first to update the representation, and then later
to train the approximators embedded on the manifold.

We have two schemes for performing chart allocation in the event that the agent walks off of its manifold
representation. These are a fixed-size allocation and a walk-based allocation analogous to the random and
walk-based batch allocations discussed earlier. Both of these methods are inexpensive to compute in terms
of both time and samples.

In the fixed-size allocation the agent simply covers any uncovered state with a fixed-size chart domain
centered at that state. This strategy is parameterized on the chart extent in each dimension; in practice we
use hypercube charts, e.g., the extent in each dimension is the same.

The second online allocation scheme is also fairly straightforward. Suppose the agent follows a trajectory
s0, a0, s1, a1, . . . st, at . . . through the environment. If the state st is the earliest state along the trajectory
not on the current manifold, we then allocate a chart domain that is the smallest bounding box containing
{st−1, st, . . . , st+k}, where k is a user-defined parameter. This is then repeated for the remaining trajectory
until the entire trajectory is covered.

It would be a straightforward modification to allocate charts that bound walks of length θ rather than
walks of k steps. The choice between these methods most likely depends on the environment; if there are
regions in which step size is small, bounding the number of steps is likely to result in a large number of small
charts, while bounding the path length is likely to result in charts of more uniform volume.

5.2 Manifold-Based Value-Function Approximation

In the previous section we described several methods for allocating a set of chart domains covering the state
space S. In this section we describe how to use this representation for value-function approximation.

The idea of our approach is that, for every chart ϕ in our atlas Φ, we will define two functions: a blend
function bϕ and a local embedded approximator fϕ. The global function approximation at a point will then
just be a blended combination of the predictions of these local approximators. A bit more formally, given a
chart ϕ : Uϕ → Rn, we have a C∞ blend function bϕ : S → R that is defined to be non-zero only on states in
Uϕ, with all derivatives vanishing at the boundary of the chart domain. The local embedded approximator
fϕ : Rn × A → R predicts the value of states in Ui after the change of coordinates defined by ϕ has been
applied. See the appendix for a definition of the blend function that we employ in our implementation.

Given the functions described above, the value-function approximated at a point is defined as follows.

Q(s, a) =

∑
ϕ∈Φ bϕ(s)fϕ(ϕ(s), a)∑

ϕ∈Φ bϕ(s)
(4)

In other words, the prediction at a point is just a linear combination of the contribution of each local ap-
proximator at that point. Since each blend function is defined to be zero everywhere outside of its associated
chart domain, only local approximators embedded on charts containing s contribute to the prediction of
Q(s, a).

That covers the method for value-function prediction given our manifold representation, but leaves the
question of updating the prediction given transition samples. We adapt both the Q-learning and SARSA
update equations to update manifold-based approximators.

Given a transition sample (s, a, r, s′), the Q-learning update equation is defined as follows.

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)] (5)
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This update rule moves the value of Q(s, a) towards δ = r + γmax
a′∈A

Q(s′, a′) at a rate governed by the gain

α. The straightforward application of this rule in manifold-based approximation is to supply the training
instance (s, δ) to each approximator fϕ such that s ∈ Uϕ. The details of this update are dependent upon
the approximator fϕ.

Given a transition sample (s, a, r, s′, a′), where a′ is the action taken from state s′, the SARSA update
equation is defined as follows.

Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, a′)] (6)

Again, we adapt this training rule to the manifold-based case in the straightforward way, defining δ =
r + γQ(s′, a′).

In order to illustrate how these updates work, suppose that for each action a, fϕ(·, a) is an unthresholded
linear unit with a vector of weights w of dimension n. The perceptron training rule for updating these
weights is

w ← w + α(δ − fϕ(s, a))s (7)

6 Experiments

6.1 Experiment Design

We ran a detailed series of experiments to evaluate the performance of manifold-based value-function ap-
proximation on the Mountain car domain [4]. The emphasis of these tests was to examine the effect of
the various batch and online chart allocation strategies on the quality of learned policies. We compare
the performance of the manifold-based methods with a tile-coding approximator used by Sutton [16]. We
expect our performance to be comparable to that of the tile-coding approximator, but with substantially
less hand-tuning of the approximator representation. The tile-coding approximator consists of 10 9x9 state
space partitions.

We use a dense reward function description of the mountain car problem, with an action penalty of -1
on each time step except at the goal. The agent receives a reward of 0 at the goal, which is to reach the top
of the rightmost hill. The position and velocity ranges are normalized to (0,1).

In both batch and online settings we experimented with fitting constants on charts, as well as unthresh-
olded linear units as the local embedded functions. The former method of fitting a constant on a chart uses
the usual table-based update equations; the only real distinction between fitting a constant and table-based
approximation is that we allow overlapping chart domains, while table-based approximation’s predictive
features are cells in an exhaustive partition.

All of our experiments train the agent over a series of 10,000 trials. In each trial, the agent is placed
at the environment rest state – the valley between left and right hills. The agent then follows an ε-greedy
exploration policy, where ε = 1

trial . Each trial is terminated when the agent reaches the goal or after 4000
steps have been taken, whichever occurs first. Experiences observed during the trial are stored until the trial
is terminated, at which time the entire trajectory is “replayed” from end to beginning, using the SARSA
update equation.

We present results for batch allocation with random, walk-based, and growth-based allocations. Examples
of each of these allocations are shown in figure 3.

In our experiments with growth-based chart allocation we used the step size statistic discussed in Sec-
tion 5.1. We varied the step-size threshold θ, using settings 0.01, 0.05, and 0.1. The initial charts have a
width of 0.01, and candidate expansion regions are defined by extending a chart by 0.01 along either the
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Figure 3: Random (left), walk-based (center), and growth-based (right) allocations for the mountain car domain.
The random allocation uses charts with side-length 0.1. A path length threshold of 0.1 and a single walk was used
to generate the walk-based allocation. The growth-based allocation was generated using θ = 0.1.

Random 239
Walk 3491
Growth 251

Table 1: Number of charts allocated by three batch allocation schemes

position or velocity dimension on each growth iteration. We assumed the ability to arbitrarily sample the
environment in order to obtain these allocations, as was also the case for walk-based allocation.

We experimented with both the fixed-size and walk-based online allocations as well. In the tests with
fixed-size online allocation we use chart half-widths of 0.05 and 0.1. In the walk-based online allocation tests
we varied the number of steps that would be used to construct a chart from 5 to 10.

6.2 Batch Allocation Results

Table 1 shows the number of charts allocated by each of the three batch allocation schemes. The first, random,
uses 0.1× 0.1 charts. The walk-based numbers are for charts constructed around one walk threshholded at
length 0.1. The growth allocation uses the expectation measure 3 with θ = 0.05.

We show here the results for linear approximation on batch-allocated manifolds. Results for constant
approximation are not shown for batch allocations, as the global approximation was not stable except for
very small charts. As can be seen in Figure 4, the performance of our manifold-based methods is competitive
with the tile coding approximator.

The tile coding approximator uses 810 tiles with no hashing, therefore it is significant that the random
allocation is competitive with only 239 charts. The fact that the tile coding learner finds a good policy
significantly faster than the walk-based manifold learner can be explained by the larger number of predictive
features in the walk-based allocation.

Growth-based allocation results are not shown; neither constant nor linear approximation are sufficiently
stable to obtain meaningful results. The true value function for the mountain car problem is well-represented
with linear approximation on many of the larger charts, resulting in unstable, poor performance.
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Figure 4: Average step-to-goal over 10 runs for random and walk-based batch allocations. The random allocation
shown uses a chart half-width of 0.05; the walk-based allocation uses 1 walk threshholded at path length 0.1. Tile-
coding approximator used for baseline comparison. Left: Results over 10,000 trials. Right: detail of the first 1000
trials.

Figure 5: Average step-to-goal over 30 runs for online allocation with fixed-width charts. Left: constant vs. linear
approximation with charts of half-width 0.1. Right: constant vs. linear approximation with charts of half-width 0.05.
Confidence intervals bound the mean at the 95% level.
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Figure 6: Average step-to-goal for online allocation with fixed-width charts compared to a tile coding learner. Left:
small vs. large charts with linear approximation. Right: detail from the first 100 trials. Confidence intervals bound
the mean at the 95% level.

6.3 Online Allocation Results

The results for online chart allocation with fixed-width charts are shown in Figures 5 and 6. The low
representative power of fitting a constant value on a chart is well-illustrated in the case of the larger charts,
while linear approximation quickly converges to a good policy for either chart size. Fitting a constant on
each chart is too unstable to be practical for large charts.

Figure 6 compares the performance of linear local approximation against the tile coding learner; the tile
coding learning quickly converges to a reasonable policy, while the online learners converge significantly more
slowly, which is to be expected, since the tile coding learner is provided with a domain representation a priori.
The autonomous manifold representation construction allows the manifold-based learners performance to
catch up to the tile coding learner performance within the first 20 trials. As expected, when comparing the
two manifold-based learners, the smaller charts allow for a significant performance improvement over the
larger charts. Figure 7 compares linear and constant approximation on walk-based online allocation. Here
linear approximation is significantly better than fitting a single weight on each chart. This is as expected; if
a chart bounds k steps it will often be the case that values may differ by γk for any two states on a chart that
does not contain a reward-bearing in its domain. We again use the tile coding approximator as a baseline
for comparison; it converges much more quickly to a successful policy; however, the linear approximator
performs significantly better with more experience.

Figure 8 simply illustrates the performance for constant and linear approximation. These results are for
varying the number of steps provided as a parameter to the walk-based allocation. This serves to illustrate
the relative stability and consistency of linear approximation as compared to fitting a single constant on a
chart.

Figure 9 compares the performance of online allocation with linear approximation. The chart shows the
best performing fixed-width and walk-based allocation parameter settings, each with linear approximation.
Fixed-width allocation is significantly better early on; this is likely due to a larger chart size, resulting in
faster generalization early on. Later the walk-based allocation dominates as more experiences have been
observed; the change in dominant strategies is again due to the difference in chart size, as well as the
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Figure 7: Average step-to-goal over 30 runs for online allocation with online walk-based allocation. Left: Constant
vs. linear approximation for 6-step allocation. Right: Constant vs. linear approximation for 7-step allocation. 95%
confidence intervals are shown.

Figure 8: Average step-to-goal over 30 runs for online walk-based allocation. Left: Fitting a constant. Right: Linear
local approximation.

Walk-based online allocation
Steps 5 6 7 8 9
Charts 1050 776 618 503 409

Fixed-width online allocation
Half-width 0.05 0.1
Charts 251 70

Table 2: Maximum charts allocated for each online allocation scheme.
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Figure 9: Comparision of results for the best observed online allocation performance. Both use linear approximation;
The fixed-size allocation uses charts with half-width of 0.05, while the walk-based allocation uses 7-step allocation.

difference in chart count (see Table 2). The larger number of smaller charts gives the walk-based learner a
higher effective resolution which increases the representational power of manifold-based approximation.

7 Conclusions

Our results for batch allocation show that the manifold method is competitive with a good hand-tuned
approximation strategy for the mountain car domain. However, batch allocation methods will suffer the
curse of dimensionality, since batch allocation methods cover the state space. This difficulty is compounded
by the sample complexity of methods other than random allocation.

Both the batch and the online allocation results support the idea that more complex approximation can
be tied to a local representation to improve performance. Using just a simple unthresholded linear unit
on each chart gives us a substantially more stable approximation than a single weight on each chart. The
results also support the hypothesis that a tradeoff exists between chart size and approximator complexity,
as a single weight approximation was unstable except for small charts.

One of the most compelling results is the quality of policies found by online allocation. One of the
weakness of value-function approximation strategies is that often a great deal of low-level “tweaking” of
various is necessary in order to get good performance. However, particularly in the case of fixed-width
online allocation, we were able to obtain strong results by varying only a single parameter, the chart size.

7.1 Future Work

One weakness of our current online allocation approach is that we have no way to bound the number of charts
that are allocated; pruning methods such as those in [14] may be beneficial in this regard. Another direction
for improvement may be adjustment of the chart placement after allocation, although results from using
radial basis function networks for value-based RL have shown that this may actually harm performance [9].
However, Kretchmar’s work only used minimization of temporal difference error as the metric for improving
basis function placement; methods based on utile distinction [10, 19] may be more productive.
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The manifold representation is useful for more than just value-function approximation, however. One use
for the representation is as a practical means of implementing reward shaping via potential functions [13].
By using the connectivity of the manifold representation, one a goal state has been identified it is possible
to embed a potential function on the manifold, which can be used to speed up learning.

Another use for the manifold representation is as a vehicle for experience reuse. Assuming that we can
identify when two charts are “the same” in terms of the reward and system dyanmics, it may be possible to
define a mapping that carries experiences gained in one chart to the other. In this way, we can effectively
synthesize experience, which is particularly useful in real-world domains where experiences are expensive to
generate.

8 Appendix

• Charts: The blend function we use was derived by Bruno and Kunyansky [5]; it is defined as follows:

h(s) = e
2e−1/s

1−s (8)

b(t) =


1 0 ≤ t ≤ δ

h((t−δ)/a)
h((t−δ)/a)+h(1−(t−δ)/a) δ < t < 1− δ

0 t ≤ δ

(9)

where a = 1− 2δ. In our implementation we use δ = 0.

• Manifolds: In our implementation a manifold is a chart container that supports point membership
operations. Currently charts are stored in a list, so membership queries take O(dn) time, where n is
the number of charts and d is the manifold’s dimension. This can be sped up using techniques from
spatial indexing, particularly the R-tree [8].

Representational Equivalence Since we define our manifold representations in terms of subspaces of
the state space along with an approximator on each state space, it is straightforward to represent other value
function approxmation approaches with a manifold representation.

For instance, consider a CMAC. There are a couple of ways that we could construct a manifold represen-
tation that is analogous to the CMAC. The most trivial is to simply embed a CMAC on a single chart with
domain S, the RL state space. The second method would be to define a chart domain for each tile in the
CMAC, and embed a single real-valued weight on each. Ignoring chart boundary conditions, the manifold
update equation for fitting a single weight reduces to the CMAC update equation.

The only real concern in showing that the manifold representation encompasses the representational
power of the CMAC is that of dealing with the boundary conditions. In order to adhere to the definition of
a manifold, chart domains must be open or closed, while tiles in a CMAC are half-open. Therefore, an exact
equivalence is not possible; however, we can approximate the CMAC arbitrarily closely by dilating charts by
some ε.

In a similar fashion we can construct manifold representations that are analogous to variable resolution
discretizations of the state space, including the näıve uniform discretization. There is also a non-trivial
means of representing a radial basis function network with a manifold representation. In this case, our chart
domains are unbounded, allowing us to use infinite support. By constructing one domain for each basis
function, and embedding one basis function on each chart, we obtain the RBFN representation.
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[12] Rémi Munos and Andrew W. Moore. Variable resolution discretization in optimal control. Machine
Learning, 1999.

[13] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the 16th International Conference on
Machine Learning, pages 278–287, 1999.

[14] Bohdana Ratitch and Doina Precup. Sparse distributed memories for on-line value-based reinforcement
learning. In Proceedings of the 15th European Conference on Machine Learning, 2004.

[15] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems, 1994.

15



[16] Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 1038–1044. The MIT Press, 1996.

[17] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adaptive Compu-
tations and Machine Learning. The MIT Press, Cambridge, MA, 1998.

[18] Csaba Szepesva’ri and William D. Smart. Interpolation-based q-learning. In Proceedings of the Twenty-
first International Conference on Machine Learning, 2004.

[19] William T. B. Uther and Manuela M. Veloso. Tree based discretization for continuous state space
reinforcement learning. In AAAI/IAAI, pages 769–774, 1998.

[20] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

16


	Manifold Representations for Continuous-State Reinforcement Learning
	Recommended Citation
	Manifold Representations for Continuous-State Reinforcement Learning

	tmp.1469562486.pdf.EEu0P

	Abstract: Abstract: Reinforcement learning (RL) has shown itself to be an effective
paradigm for solving optimal control problems with a finite number of states.  Generalizing RL techniques to problems with a continuous state space has proven a difficult task.  We present an approach to modeling the RL value function using a manifold representation.  By explicitly modeling the topology of the value function domain, traditional problems with discontinuities and resolution can be addressed without resorting to complex function approximators.  We describe how manifold techniques can be applied to value-function approximation, and present methods for constructing manifold representations in both batch and online settings. We present empirical results demonstrating the effectiveness of our approach.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: May 1, 2005
	Author: Authors: Glaubius, Robert; Smart, William D.
	Title: Manifold Representations for Continuous-State Reinforcement Learning
	ReportNumber: 2005-19
	DepartmentName: Department of Computer Science & Engineering


