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Finding all gene structures is a crucial step in obtaining valuable information from genomic 
sequences. It is still a challenging problem, especially for vertebrate genomes, such as the 
human genome. Expressed Sequence Tags (ESTs) provide a tremendous resource for 
determining intron-exon structures. However, they are short and error prone, which prevents 
existing methods from exploiting EST information efficiently. This dissertation addresses 
three aspects of using ESTs for gene structure annotation.  

The first aspect is using ESTs to improve de novo gene prediction. Probability models are 
introduced for EST alignments to genomic sequence in exons, introns, interknit regions, 
splice sites and UTRs, representing the EST alignment patterns in these regions. New gene 
prediction systems were developed by combining the EST alignments with comparative 
genomics gene prediction systems, such as TWINSCAN and N-SCAN, so that they can 
predict gene structures more accurately where EST alignments exist without compromising 
their ability to predict gene structures where no EST exists. The accuracy of 
TWINSCAN_EST and NSCAN_EST is shown to be substantially better than any existing 
methods without using full-length cDNA or protein similarity information.  

The second aspect is using ESTs and de novo gene prediction to guide biology experiments, 
such as finding full ORF-containing-cDNA clones, which provide the most direct 
experimental evidence for gene structures. A probability model was introduced to guide 
experiments by summing over gene structure models consistent with EST alignments.  

The last aspect is a novel EST-to-genome alignment program called QPAIRAGON to 
improve the alignment accuracy by using EST sequencing quality values. Gene prediction 
accuracy can be improved by using this new EST-to-genome alignment program. It can also 
be used for many other bioinformatics applications, such as SNP finding and alternative 
splicing site prediction. 
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Glossary 

AB INITIO METHOD: a collection of gene prediction methods only taking genomic 

sequences as inputs.  

AFFINE:  An affine score of length d is bdads *)1()( −−−= , while a is called the 

open penalty and b is the extension or continuous penalty. An affine score is usually 

used for gap penalty in sequence alignment.  

ALIGNMENT: A mapping of two or more sequences.  

ALIGNMENT SCORE: A value representing the similarity of aligned bases.  

ALIGNMENT SCORE SCHEME:  A way to measure the similarity of aligned 

symbols of the aligned sequences.  

AMINO ACID: One of the building blocks of proteins. Each combination of three 

continuous nucleotides determines one amino acid. There are 20 different types of 

amino acids corresponding to 64 different combinations of nucleotide sequence of 

length three.   

AMPLICON: The DNA product of a PCR reaction, usually an amplified segment of a 

gene or DNA. 

ANNOTATION: A set of biologically meaningful features of genomic sequences.  

BASE: The building block of DNAs and RNAs; also as a Nucleotide.  

BASE CALLING: A procedure to obtain DNA sequences from trace files output from 

sequencing machines.  

BACKWARD ALGORITHM:  An algorithm that can be used to find the total 

probability of all the possible paths for a HMM. See Forward Algorithm.  

CANONICAL INTRON: An intron that starts with “GT” or “GC” and ends with 

x 
 

 



 

“AG”.  

CDNA: Complementary DNA. It is a form of DNA prepared in a laboratory with an 

mRNA as the template by a procedure called reverse transcription (from an mRNA to a 

DNA).  

CDNA CLONE: A cloning vector, which can be a bacterial virus or plasmid, 

containing a segment of cDNA. A cloning vector can replicate itself and the contained 

DNA segment in a host bacterium.  

CHOROMSOME: A single, long, DNA molecule with its attendant proteins that 

moves as an independent unit during mitosis and meiosis.  

CODON: Three continuous nucleotides encoding an amino acid of a protein. 

COMPARATIVE GENOMICS: The study of genetics by comparisons of the genomes 

of different species. It is still a young field, but has great promise to produce insights 

into many aspects of the evolution of modern species.   

CONSERVATION:  A measurement of similarity that remains among different 

genomes due to evolution under natural selection pressure.   

CONSERVATION SEQUENCE: A sequence derived from two genome comparison to 

present the conservation patterns between these two genomes. 

DELETION: A type of genetic mutation by loss of one or more adjacent nucleotides in 

a DNA sequence. 

DNA: Deoxyribonucleic acid; the molecule inside the nucleus of a cell that carries 

genetic information.  DNA is double-stranded.  

DYNAMIC PROGRAMMING: A collection of algorithms that solve problems by 

combining the solutions to sub-problems. Dynamic programming is typically applied 

to optimization problems.  

xi 
 

 



 

EST: Expressed Sequence Tag. An EST is a single sequencing read from either end of 

a cDNA clone; so it is short and error prone.  

EXON: A DNA sequence segment in a gene that codes for a transcript product. The 

usage of the term “Exon” varies in different literatures. In this dissertation it stands for 

a protein coding region exon. It is called “UTR exon” if it is used to include the non-

coding regions of an mRNA in this dissertation.  

EXPRESSED:  A gene has been activated or “turned on”.   

FORWARD ALGORITHM:  An algorithm used to find the total probability of all the 

possible paths for a HMM. It can be used for posterior decoding when used with 

Backward Algorithm. See Backward Algorithm. 

FULL-LENGTH: Containing all the coding region of a gene.  

FULL-LENGTH CDNA: A cDNA containing all the transcribed region of a gene.  

FULL ORF: Full-length Open Reading Frame; an Open Reading Frame contains all the 

coding region of a gene. See ORF.  

FULL ORF-CONTAINING CDNA: A cDNA containing all the coding region of a 

gene. 

GAP: A symbol to represent an empty base in an alignment.  

GENE: A piece of DNA that represents a fundamental physical and functional unit of 

heredity. 

GENE PREDICTOR: A computer program for gene finding.  

GENOME: The complete genetic materials for an organism.    

GHMM: Generalized Hidden Markov Model; a variation of HMM that each state can 

emit multiple symbols instead of one symbol a time.  

GLOBAL ALIGNMENT: The alignment of sequences from one end to the other. See 

xii 
 

 



 

local alignment.  

HMM: Hidden Markov Model; a probability model similar to a finite state machine in 

which the transitions are probabilistic and each state emits an observation 

probabilistically too. HMM provides mathematical framework for many computational 

biology applications, including gene prediction and sequence alignment.  

HOMOLOGOUS: (Two sequences are) Similar and from a common ancestor.  

INDEL: Insertion and/or deletion. 

INSERTION: A type of genetic mutation by introduction of one or more adjacent 

nucleotides in a DNA sequence.   

INTRON: A DNA sequence segment in a gene that is not remained in the mature 

mRNA of the DNA. Introns separate exons. 

KILOBASE: one thousand bases; abbreviated as “Kb”. 

LOCAL ALIGNMENT: The best alignment of subsequences of the aligned sequences.  

MEGABASE: one million bases; abbreviated as “Mb”. 

MGC: Mammalian Gene Collection; a project to find at lease one full ORF-containing 

cDNA clone for each gene in human, mouse, rat, and cow genomes.  

MRNA: Messenger RNA; a single-stranded molecule of ribonucleic acid that is 

transcribed from a DNA and servers as a template for protein synthesis. 

MULTIZ: A multiple genomic sequence alignment program. It can align incompletely 

sequenced genomes as well as completed genomes. N-SCAN uses MULTIZ 

alignments to generate alignment sequences. 

NUCLEOTIDE: A building block of DNA or RNA, consisting of one nitrogenous 

base, one phosphate molecule and one sugar molecule.  

N-SCAN: A newer version of TWINSCAN with a phylogenetic conservation model 

xiii 
 

 



 

that models the conservation patterns among multiple genomes.   

OPEN READING FRAME (ORF): A portion of a gene’s sequence that is 

uninterrupted by a stop codon so that it encode a peptide or protein.  

PCR: Polymerase Chain Reaction; a technique for amplifying DNA sequence.  

PRIMER: A nucleic acid strand that serves as the starting point for DNA replication. A 

primer is required because most DNA polymerases can only begin synthesizing a new 

DNA sequence by adding to an existing strand of nucleotides. 

POSTERIOR PROBABILITY: The probability of a hypothesis given the observed 

data.  

PROMOTER: A short region occurring just upstream of the start of transcription.  

PSEUDOGENE: A DNA sequence that is similar to that of an active gene. A 

pseudogene can not be translated into a functional protein.   

RANDOM SEQUENCE: A sequence that each base in it is generated randomly 

according to a certain probability distribution and different bases are generated 

independently.  

REVERSE TRANSCRIPTION: A procedure that transfers genetic information from 

RNA to DNA. See Transcription.    

RNA: Ribonucleic acid, a single-strand molecule similar to DNA, which helps in 

process of decoding the genetic information carried by DNA.    

RNA SPLICING: The procedure to remove introns from pre-mRNA to produce 

mRNAs for translation into proteins. 

SEQUENCE FEATURE: A short piece of sequence with a particular biological 

meaning. 

STOP CODON: One of the three codons: TAA, TAG and TGA.  
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SUBSTITUTION: The replacing of one nucleotide base with one of the other three 

bases.  

TRANSCRIBE: Convert genetic information from a strand of DNA to an mRNA.  

TRANSCRIPTION: The procedure of converting genetic information from a DNA to 

an mRNA. 

TRANSLATE: The procedure of converting genetic information from an mRNA to a 

protein.   

TWINSCAN:  A GHMM-based ab initio gene prediction program using similarity 

information between two genomes as well as the target genomic sequence for gene 

prediction. 

UNTRANSLATED REGION (UTR): A gene region that is transcribed into mRNA but 

is not used for protein coding.  

WAM: Weighted Array Model; a natural generalization of WMM. The difference 

between WMM and WAM is that in WAM, the probability of generating a nucleotide 

in position depends on nucleotide(s) in position(s) adjacent to it.  

WMM: A probability model for a sequence of a certain length in which a nucleotide 

can be generated according to a position specific probability and a nucleotide in each 

position is generated independently. 
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Chapter 1  

Introduction 

Sequencing complete genomes is only the beginning of the long march to fully 

understanding them. One of the crucial steps in this march is to annotate the gene 

structures of the genomes, from which structural or functional information of genes 

and proteins can be inferred. With more than a thousand genomes sequenced or being 

sequenced, what is the current status of gene prediction systems to meet the demand of 

annotating all these genomes accurately and efficiently? The accuracy of de novo gene 

prediction systems, which can predict novel genes, has been improved greatly by 

using multiple-genome comparison, though it is still low for vertebrate genomes like 

the human genome. Gene prediction systems based on alignments of transcription 

products, such as mRNAs and proteins, can be very accurate. However, they can only 

predict genes with evidence. Since it is expensive and time consuming to produce 

these types of high quality resources, their coverage may be low for many genomes, 

especially for newly sequenced ones. On the other hand, Expressed Sequence Tags 

(ESTs), also as transcription products, can be generated quickly and inexpensively. 

Millions of ESTs have been created for many organisms. However, the challenge is 

how to effectively combine these fast growing ESTs with the genomic sequence 

resources for gene structure prediction since ESTs are short and error prone, which 

prevents many existing methods from using EST information effectively. 

The ultimate goal of gene prediction is to construct a system that can predict gene 

structures from genomic sequences accurately so that no further experimental 

verification is needed. However, we are still very far away from this goal. Currently, 

any gene structure predicted computationally needs to be verified experimentally. The 

 



 

2
most direct experimental evidence for gene structures comes from sequencing full-

length cDNA clones and aligning the cDNA sequences back to the genomic sequence 

(see Section 1.3.1 for definition of a cDNA). Full-length cDNA clones are also very 

important to other experimental investigations, such as functional analysis of genes 

and their products. Therefore, many large scale research projects for finding and 

sequencing full-length cDNAs have been started since the1990s, including the 

Mammalian Gene Collection (The MGC Project Team). The goal of the MGC project 

is to find at lease one full ORF-containing cDNA clone for each gene in human, 

mouse, rat, and cow genomes (Strausberg, Feingold et al. 1999; The MGC Project 

Team 2004). However, finding full ORF-containing cDNA clones is a time-

consuming and expensive procedure. With the current technology, genes that are 

expressed at low level can not be obtained by finding and sequencing full ORF-

containing cDNAs. Therefore, no genome has full ORF-containing cDNAs generated 

for all of its genes yet.  

In 1991, Venter and colleagues developed the Expressed Sequence Tag (EST) 

(Waterston, Lindblad-Toh et al.) strategy to generate cDNA resources. Expressed 

Sequence Tags (ESTs) (Adams 1991; Boguski, Lowe et al. 1993) are single 

sequencing reads from either one or both ends of cDNA clones; they can be generated 

quickly and inexpensively. The importance of ESTs for full-length cDNA finding and 

gene structure identification was recognized immediately. A public accessible 

database of ESTs (dbEST division of GenBank) was set up in 1993 to accept ESTs 

produced worldwide.  Since then, the number of EST sequences has been growing 

exponentially, from about 22 thousand from 7 organisms in 1993 to more than 32 

million from more than 1000 organisms in January 2006.  

Since ESTs are generated from cDNA, they contain only coding regions and/or 

Untranslated Regions (UTRs). Their alignments to genomic sequences indicate the 

intron-exon structure of the gene they covers. Therefore, they provide tremendous 

resources for gene identification. However, it is difficult to improve gene prediction 
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accuracy by integrating them into existing non-EST-alignment-based gene prediction 

systems (Ashburner 2000; Reese, Kulp et al. 2000; Salamov and Solovyev 2000; Yeh, 

Lim et al. 2001). Because ESTs are short, it means one EST usually does not cover a 

complete gene. Furthermore, their sequencing error rate is high, which causes an 

accurate EST-to-genome alignment non-trivial. Also, multiple ESTs aligned to a same 

genomic region may be in conflict with each other especially when they are from 

alternative splicing. Furthermore, for most genomes, their existing ESTs only cover a 

small portion of the total genes they have. Even for extensive EST sequenced 

genomes, such as human genome, there are still about 15% of genes not covered by 

any ESTs.   

1.1 Goals 

This thesis addresses three aspects of how to use ESTs to improve gene annotation. 

The first is a new approach to integrate EST-to-genome alignments with our de novo 

gene prediction systems based on multiple genome alignments. The new systems can 

predict gene structures more accurately where ESTs exist without compromising their 

ability to predict novel genes. The second is an algorithm to use the gene prediction 

methods and EST alignment information to guide molecular biology experiment like 

full ORF-containing cDNA clone selection. The last is a new EST-genomic-sequence 

alignment algorithm using sequencing quality values of ESTs to improve the accuracy 

of EST-to-genome alignment.  

1.2 Organization 

This dissertation contains 6 chapters and two Appendices. For readers with little 

biology background, appendix A is a good place to start with. Chapter 1 describes the 

background and the importance of the research presented in this dissertation and 

chapter 2 covers models and algorithms used in this dissertation. The following 

chapters are organized according to the three goals described above: chapter 3 covers 

integrating ESTs to improve gene predictions; chapter 4 describes using EST-
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genomic-sequence alignment and de novo gene structure prediction to guide biology 

experiments; and chapter 5 presents a new EST-genomic-sequence alignment 

algorithm using sequencing quality values to improve the alignment accuracy. From 

chapter 3 through chapter 5, each chapter is organized to include introduction of the 

models, the implementation details, the results, and a discussion. While containing one 

research goal, each of these three chapters may stand alone by itself and connect to the 

others to show the use of ESTs to improve gene structure annotation. Chapter 6 

contains the overall conclusion. It discusses the application of the spliced-alignment in 

chapter 5, including gene prediction and some potential applications beyond gene 

prediction. 

1.3 Background 

This chapter introduces the current-existing gene-prediction methods first. 

Then, the full ORF-containing cDNA clone selection and EST-to-genome alignment is 

reviewed briefly.  

1.3.1 Gene Prediction Methods 

Gene structure prediction has been an active research field for decades. Numerous 

algorithms have been developed for gene structure prediction based on the data source 

available at the time. Although its accuracy has been improved greatly in recent years, 

it is still a challenging problem, especially on vertebrate genomes (Burset and Guigo 

1996; Guigó, Agarwal et al. 2000; Stormo 2000; Zhang 2002; Brent and Guigo 2004; 

Brent 2005). Gene prediction systems can be divided into different generations 

approximately by the time they were developed. The first generation of gene 

prediction systems had been developed since early 1980s. They could find 

approximately the boundary of protein-coding regions and non-protein-coding regions 

in genomic DNAs, but could not assemble the coding regions into translatable 
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mRNAs. The most frequently used information was from some small regions of 

particular features or signals, which include splice sites and promoter sites. The 

compositional difference of coding and non-coding regions, such as codon usage bias, 

was widely used in the first generation gene prediction programs, too. The most 

popular first generation gene prediction programs might be TestCode (Fickett 1982), 

which used base distribution on different codon positions, and GRAIL (Uberbacher 

and Mural 1991), which used a neural network to combine 7 different types of 

sequence content information.  

The second generation of gene prediction systems could predict the whole gene 

structure from the start of translation to the stop of translation. They were available in 

early 1990s. The earliest such programs might be gm (Fields and Soderlund 1990) for 

C. elegans gene prediction and Gelfand method (Gelfand 1990) for mammalian genes. 

Since then, a number of such programs have appeared, such as GeneID (Guigó, 

Knudsen et al. 1992), GeneParser (Snyder and Stormo 1993; Snyder and Stormo 

1995), FGENSH (Solovyev, Salamov et al. 1994), GRAIL II and GAP (Xu, Einstein 

et al. 1994). Most of these second generation programs could only predict a single 

gene on a relative short genomic sequence.  

Starting from mid-to-later 1990s, the third generation of gene prediction systems could 

predict multiple complete or partial gene structures in a long genomic sequence. One 

of the most successful such programs was GENSCAN (Burge and Karlin 1997), which 

used a generalized Hidden Markov Model framework for gene prediction. It had 

dominated in mammalian gene prediction for years until new gene prediction systems 

based on comparative genomics came on the stage.   

The success of comparative-genomic-based gene prediction systems is one of the most 

important progresses in gene prediction for the past several years. For this type of 

methods, the growing number of genomes sequenced or being sequenced produces not 
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only a challenge but also a great opportunity. They hold great promise with more 

genomes sequenced or begin sequence.   

Classification of Gene Prediction Methods  

Gene prediction approaches could also be classified by the type of the information 

they used.  They can be divided into ab initio, transcript-alignment based and hybrid 

methods which combines ab initio and transcript-alignment based approaches.  

Ab initio Methods 

Ab initio methods, such as GENSCAN (Burge 1997; Burge and Karlin 1997) , 

GeneFinder (Green unpublished) and Fgenesh (Solovyev and Salamov 1997; Salamov 

and Solovyev 2000), use only the DNA sequence and gene structure models. 

Information in a DNA sequence includes those characteristic of splice donor and 

acceptor sites, translation initiation and termination sites, and codon usage within 

exons.  

Transcript-alignment-based Methods 

Transcript-alignment-based methods, such as ENSEMBL (Birney, Clamp et al. 2004), 

use alignments of transcript products, such as proteins, cDNA sequences, mRNA 

sequences and ESTs, to a genome sequence as the primary basis for gene predictions. 

One advantage of these methods is that they can predict genes with very high accuracy 

if those genes have their own transcripts sequenced or they are very similar to some 

sequenced transcripts. With the enormous increase in the number of known protein 

coding genes, the accuracy of transcript-alignment-based gene prediction programs 

has been improved a lot. Since later 1990s, transcript-alignment-based methods have 

been used routinely for gene prediction (Stormo 2000). However, transcript-

alignment-based methods can only predict genes where transcription evidence exits 

(Birney, Clamp et al. 2004). This is a significant limitation, since sequencing cDNA 
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libraries generally produces only about 50-60% of the genes in a genome (Seki, Satou 

et al. 2004). Even when genes partially covered by ESTs are included, that number of 

genes may be only up to 70-85%.  cDNA sequences of genes that are expressed at a 

low level or in a small number of tissues may not be sequenced even after sequencing 

libraries very deeply (Guigó, Dermitzakis et al. 2003; The MGC Project Team 2004).    

Hybrid Methods  

A recent trend is toward hybrid methods that combine all the possible information for 

gene prediction (Allen, Pertea et al. 2004). Hybrid methods that integrate EST, cDNA 

or protein similarities into ab initio methods have been developed, such as Genie 

(Kulp, Haussler et al. 1996), Fgenesh++ (Solovyev and Salamov 1997) and 

Genomescan (Yeh, Lim et al. 2001). Since hybrid methods can use both information 

from genome sequences and sources other than genome sequences, they have great 

promise. However, it turned out that it is not easy to improve the prediction accuracy 

by incorporating EST alignments into the pure ab initio gene prediction methods since 

ESTs are short and error prone (Reese, Hartzell et al. 2000; Reese, Kulp et al. 2000; 

Salamov and Solovyev 2000; Parra, Agarwal et al. 2003). Most hybrid methods focus 

on using proteins, mRNAs and full ORF-containing cDNAs. Some authors found that 

ESTs are not useful for their gene prediction systems (Salamov and Solovyev 2000; 

Yeh, Lim et al. 2001). Several authors did present evaluations of the effects of using 

ESTs alone without using protein sequences (Krogh 2000; Reese, Hartzell et al. 2000; 

Reese, Kulp et al. 2000; Howe, Chothia et al. 2002; Stanke, Schoffmann et al. 2006). 

Krogh reported no improvement in predictions for fly genome using HMMGene, a 

HMM-based ab initio gene predictor and Reese reported an increase in sensitivity 

accompanied by a smaller decrease in specificity (Reese, Kulp et al. 2000). Better 

results were reported from a program called GAZE (Howe, Chothia et al. 2002). It 

obtained both sensitivity and specificity increase on Caenorhabditis elegans genome. 

GAZE takes in features like potential exons generated by an ab initio gene predictor 

GeneFinder (Green, unpublished) and similarity alignments, as input instead of 
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genomic sequences. It provides frameworks using dynamic programming to combine 

these features from different sources. More positive results about using ESTs for gene 

prediction were recently reported from AUGUSTUS+ (Stanke, Schoffmann et al. 

2006), a GHMM-based gene prediction program used proteins, ESTs or both as extra 

sources of hints. AUGUSTUS+ extends AUGUSTUS (Stanke and Waack 2003), a 

GHMM-based gene prediction program that is very similar to GENSCAN but with 

more realistic intron length distributions. EST or protein alignments were converted 

into 6 types of hints, which include translation start site, stop codon, donor splice site, 

acceptor splice site, coding region and fragment of a coding region; and hints from 

different sources were assigned with different weights to represent the reliability of the 

sources.  Then the optimal gene structures were computed based on these hints and the 

target genomic sequence. Only hints on coding regions or boundaries of coding 

regions can be used in AUGUSTUS+, and hints like ESTs have to be preprocessed to 

get the coding region information first, which itself may be a tricky procedure. Some 

usefully information of ESTs may also become lost during this procedure.  

More researchers tried to use multiple gene prediction systems to produce different 

sets of predictions, and then combine the resulting predictions together (Lander, 

Linton et al. 2001; Rogic, Ouellette et al. 2002; Stein, Bao et al. 2003; Allen, Pertea et 

al. 2004). The problem with this type of methods is that every source needs to be 

weighted appropriately and it often can be very complicate, especially when they are 

adapted for new organisms. Although all these methods could improve the accuracy of 

gene predictors, it does not mean we should stop improve the underlying gene 

prediction systems.  

The author improved the accuracy of the ab initio gene prediction system 

TWINSCAN on C. elegans by using another worm (C. briggsae) as informant, 

incorporating a more realistic intron length distribution and employing more general 

splice site models (Wei, Lamesch et al. 2005). The experimental result showed that 

more than a thousand complete novel genes up to date could be derived by RT-PCR 
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from predicted gene structures.  In fact, identifying genes by RT-PCR from predicted 

gene structures is feasible and has been successfully used for some genomes (Flicek, 

Keibler et al. 2003; Guigó, Dermitzakis et al. 2003; Wu, Shteynberg et al. 2004; Wei, 

Lamesch et al. 2005). This puts the de novo methods in a more important position. 

The limitations of existing methods are also discussed in a recent review by (Brent 

2005). 

As of April 9, 2005, there were more than 1000 genomes being sequenced, of which 

88 were for animals and 33 were for plants. 

(http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html). This fast growing number 

of genomes being sequenced put efficient and reliable automatic gene prediction 

systems in high demand. Meanwhile, the sequencing of multiple close-related 

genomes also produces exciting opportunities for researchers to conduct gene structure 

prediction based on two or multiple genome alignments. However, the challenge 

remains concerning how to effectively combine these genomic sequence resources and 

the fast growing EST sequences for gene structure prediction.   

1.3.2 Full ORF-containing cDNA Clone Selection 

All gene structures predicted computationally need to be verified experimentally. A 

full-length cDNA clone provides the best experimental evidence of a gene structure. It 

is also a particularly powerful material for functional study of a gene and its 

corresponding protein. In the MGC project, candidate cDNA clones were chosen 

based on their 3’ and 5’ ESTs, then they were fully sequenced to high accuracy, which 

is a time consuming and expensive procedure compared to EST sequencing. Because 

of the polyA tail next to the transcription end, reverse transcription mostly starts from 

the 3’ end. It may stop before it goes through the start of translation. 5’ ESTs can be 

sequenced to evaluate if the cDNA contains the start of translation. In the MGC 

project, each 5’ EST was aligned to RefSeq sequences (Tatusova, Karsch-Mizrachi et 

al. 1999; Pruitt, Katz et al. 2000; Pruitt, Tatusova et al. 2005), protein sequences and 

gene predictions by GENOMESCAN (Yeh, Lim et al. 2001) to evaluate if it contains 
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the start of translation. If one of the alignments verified that this 5’ EST contained a 

start of translation, the cDNA clone of this EST would be selected to be fully 

sequenced to high accuracy. However, in this target selection method used in MGC 

project, the property that ESTs contain only coding regions or UTRs was ignored in 

the gene prediction step. On the other hand, the algorithm developed here can integrate 

EST alignments into a gene prediction algorithm instead of using them only in post-

gene-prediction step. In this way, the sensitivity and specificity of target clone 

selection could be improved, and this could eventually reduce more cost and time for 

full ORF-containing-cDNA finding. The algorithm developed here can also be 

extended to other biology experiments which are expensive and/or time consuming or 

both. Many unsuccessful experiments may be avoided by using highly accurate gene 

prediction models to guide the experiments.  

1.3.3 EST-to-genome Alignment 

The accuracy of EST-genome alignment is critical to many bioinformatics 

applications, including the above two applications, gene prediction and full ORF-

containing-cDNA finding. The high error rate of EST sequences makes the EST-

genome alignment algorithm non-trivial. Any increase in the alignment accuracy will 

improve our understanding of genomic biology procedures such as splicing and 

consequent wet lab experiment results as well. A sequencing quality value is value 

assigned by the base-calling program to each base of a sequence to represent the error 

probability of the base. The quality value of a base shows the reliability of this base. 

However, the quality values of EST sequence were omitted for all existing EST-to-

genome alignment programs. The algorithm developed here is a new method that 

improves the alignment quality by integrating the quality values of EST sequences 

with EST-to-genome alignments. Eventually, it will improve the result of gene 

prediction as well as other computational biology applications. 
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High quality EST to genome alignment is critical for many computational biology 

applications. The new method present here can combine the sequencing quality values 

into spliced alignment to improve the alignment quality 
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Chapter 2  

Models and Algorithms 

Chapter 2 introduces the models and algorithms used frequently in this dissertation. 

The chapter starts with a brief introduction of Markov model, Weighted Matrix Model 

(WMM) and Weighted Array Model (WAM). Then Hidden Markov Models (HMMs), 

the probability models of gene structure, and algorithms for them are reviewed in 

Section 2.2. Section 2.3 covers generalized Hidden Markov Models, and their 

differences with standard HMMs. Section 2.4 and 2.5 introduce two de novo 

comparative-genomics-based gene prediction systems TWINSCAN and N-SCAN 

respectively. A simple pair HMM model for cDNA-genomic sequence alignment will 

be introduced in section 2.6.  Section 2.7 reviews Graphical Model briefly. For readers 

familiar with models and algorithms in gene prediction, this chapter can be skipped. 

Otherwise, this can be a tutorial chapter or reference for models and algorithms 

frequently used in gene prediction.  

2.1 Markov Model, WMM and WAM 

In computational biology, Markov Model, WMM and WAM have been widely used to 

modeling genomics sequences and sequence signals, such as the splice donor sites and 

splice acceptor sites.   

2.1.1 Markov Model 

Consider a system with N distinct states, {1, 2, …, N}, and it can be described at any 

time by being in one of the states. At evenly spaced, discrete times, the system 
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changes from state to state with a certain probability associated with the states. If we 

denote the state at time t as , a full probabilistic description of this system would be 

 , which means the probability of the system staying in the 

current state depends on all the predecessor states. Such a system can be simplified if 

the probability of the system being in the current states only depends on a limited 

number of predecessor states. If the probability of being in the current state only 

depends on a limited number (k) of previous states, the system is called a Markov 

Chain, and it can be represented by a Markov Model  

tq

),...,,|Pr( 121 qqqq ttt −−

),...,|Pr(),...,,|Pr( 1121 ktttttt qqqqqqq −−−− =           (2.1). 

The number k is called the order of the Markov Model.  For example, in a first-order 

Markov Model, )|Pr(),...,,|Pr( 1121 −−− = ttttt qqqqqq , the probability of being in the 

current state only depends on its previous state. If this property is independent of time 

t, i.e.  

ijtt aiqjq === − )|Pr( 1                                         (2.2), 

where  is a constant for all t with fixed i and j, then this system can be called a 

homogenous Markov Chain. It can be fully described by state transition probabilities 

 and initial probabilities

ija

Njiaij ≤≤ ,1, Niiqei ≤≤== 1,)Pr( 0 .  The state 

transition probabilities Njiaij ≤≤ ,1, have the properties Njiaij ≤≤∀≥ ,1,0   

and   . Similarly, the initiation probabilities also have the 

property  and . In a Markov Chain, if the value of 

equation (2.1) depends on the position or time t, this system may be represented by an 

inhomogeneous Markov Model.  
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Weighted Matrix Model (WMM) was introduced by Staden (Staden 1984) to represent 

sequence signals. It is also called position specific score matrix (PSSM), which was 

introduced by Stormo (Stormo, Schneider et al. 1982). As its name indicates, under a 

PSSM (or a WMM), a state is assigned for each position and it can emit symbols 

according to a state specific probability distribution. When a PSSM or WMM is 

applied to a sequence of length l , a nucleotide in the sequence can be generated 

according to the probability defined by the state for each position, and nucleotides in 

different positions are generated independently. The probability of generating a 

sequence  under a WMM model lxxx ,...,1= λ with length l  is , 

where is the probability of generating nucleotide  at position i. Generally 

 can be estimated from , the frequency of base  at position i, by 
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 where A is the alphabet set containing possible nucleotides of a genomic sequence.    

Weighted Array Model (WAM) is a natural generalization of WMM. The difference 

between WMM and WAM is that in WAM, the probability of generating a nucleotide 

in position i depends on nucleotide(s) in position(s) adjacent to it, while in a WMM, 

nucleotides in different positions are generated independently. A WMM can be 

considered as a zero order inhomogeneous Markov Model while WAM is a non-zero 

order inhomogeneous Markov Model. For example, if λ is a 1st-order WAM , the 

probability that a sequence is generated under this model will be  

, where  is the probability of 

generating nucleotide at position i given at position 

)|(Pr)(Pr)|Pr( 1),1(21)1( −−=
= iiii

l

i
xxxx πλ )|(Pr ),1( jkii xx−

kx jx 1−i . In general, it can be 

estimated by )(/),()|(Pr ),1(),1( kikjiijkii xfxxfxx −− = , where stands the ),(),1( kjii xxf −
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frequency of  on position (kj xx 1−i , i) and  is the frequency of at position i. 

at the first position is generated as in WMM.  

)( ki xf kx

)(Pr 1)1( x

WMM and WAM have been used to represent sequence signals, such as donor and 

acceptor splice site. In practice, they are used frequently in the form of a ratio of two 

probabilities from two models. For example, when a WAM is used for an acceptor 

splice site, one model is derived from true signals  and another model 

is derived from those “pseudo-signals”, which are not acceptor spice sites 

but with similar patterns. The ratio of probabilities of two models can be used to 

discriminate the preference of a sequence staying in a real site or a pseudo-site. 

)(Pr xWAM
+

)(Pr xWAM
−

In Chapter 3 of this dissertation, Markov Models are used to represent EST alignment 

patterns for UTRs, coding regions, intron regions and intergenic regions. WMMs and 

WAMs are used to represent EST alignment patterns of splicing donor site and 

acceptor site respectively.   

2.2 Hidden Markov Models (HMMs) 

The theory of Hidden Markov Models was introduced and studied in the late 1960s 

and early 1970s. It was implemented for speech processing applications in the 1970s. 

One of the best tutorial papers about HMM is by (Rabiner 1989). HMMs were 

introduced to biological applications in the later 1980s (Churchill 1989) for DNA 

sequence composition analysis and in the early 1990s for many biology applications, 

such as gene prediction (Krogh, Brown et al. 1994; Krogh, Mian et al. 1994) and 

protein modeling (Krogh, Brown et al. 1994). A standard Hidden Markov Model 

(HMM) includes an alphabet set, a set of states, a transition probability matrix 

describing how to move among the states, state specific probabilities with which a 

symbol is generated by a state at each time, and a set of initial probabilities for the 

states. Let λ stand for this HMM, and A be the alphabet set, x be the observation 
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sequence, and π  be a sequence of states, which can also be called a path. Let iπ  be 

the ith state in the path π and )|( 1 klPa iikl === −ππ  the transition probability 

moving from state k to state l at position i-1 to i. State k emits a symbol b from set A 

with a probability )|()( kbxPbe iik === π . Therefore, the joint probability of an 

observed sequence x and a state sequence π becomes 

, where L is the length of the observation sequence x, 

and  is the initial probability of the state at position 1. Given an observation x and a 

HMM 
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λ , the most likely path can be derived by maximizing the probability 

)|,( λπxP  using Viterbi algorithm (Viterbi 1967),    ).|,(maxarg λππ
π

xP=∗

2.2.1 Viterbi Algorithm  

Viterbi Algorithm is a variation of dynamic programming. Let N be the number of 

states of an HMM λ , be the probability of the most probable path ending at state 

k with observation  at position i. Suppose   is known for all the states 

, then . By saving the pointers pointing 

backwards, the real state sequences can be found by backtracking from the last 

position L. Here is the Viterbi algorithm,  

)(ivk

ix )(ivk

Nk ≤≤1 )*)((max)()1( 1 kjkkijj aivxeiv +=+

Initialization (i=0):       kk ev =)0(  for all k, where  is the initial   probability of state 

k, and . 

ke

1=∑
k

ke

Recursion (i=1,…,L):   )*)1((max)()( kjkkijj aivxeiv −= ; 

      )*)1((maxarg)( kjk
k

j aiviptr −= . 
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Termination:                   ))((max)|,( LvxP kk

=λπ ; 

                  . ))((maxarg Lvk
k

L =∗π

Trace back(i=L,…,1):     .  ))(1
∗∗

− = iii ptr ππ

Viterbi algorithm should always be done in a log space in order to avoid underflow 

problem when calculating . The multiply operations above become additions in a 

log space.  

)(iv j

2.2.2 Forward Algorithm, Backward Algorithm and Posterior Decoding 

 In HMM, the forward algorithm and backward algorithm are used to find the total 

probability of all the possible paths ∑=
π

λπλ )|,()|( xPxP , and the posterior 

probability 
)|(

)|,(
),|(

λ
λπ

λπ
xP

xkP
xkP i

i
=

==  at each position of an observed 

sequence. Decoding using posterior probabilities has some advantages such as that all 

the paths are considered. This is important especially when multiple sub-optimal paths 

have very similar probabilities with the optimal path. 

Let be the probability of observing  to  with state j at position i, i.e., )(if j 1x ix

)|,,...,Pr()( 1 λπ jxxif iij == , then  
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algorithm to compute )|( λxP  is  

Initialization (i=0):            kk ef =)0(  for all k, where  is the initial probability of 

state k, and . 
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Recursion (i=1,…,L):   ∑ −=
k

kjkijj aifxeif )*)1(()()( . 

Termination:                   ∑=
k

k LfxP ))(()|( λ . 

Backward algorithm is analogous to the forward algorithm, but starting from the end 

of the sequence. Let be the probability of observing  to  with state j at 

position i, i.e., 

)(ib j 1+ix Lx

)|,,...,Pr()( 1 λπ jxxib iiLj == + . The backward algorithm )|( λxP  is  

Initialization (i=L):            0)( kk aLb =  for all k, where  is probability of state k 

going to the end state. 

0ka

Recursion (i=L-1, …, 1):   ∑ += +
k

jkkikj aibxeib )*)1()(()( 1 . 

Termination:                      ∑=
k

kkk bxeaxP ))1()(()|( 10λ . 

Forward and backward algorithms also need to be done in log space in order to avoid 

underflow errors. The method for summation of probabilities under log space will be 

described in section 2.2.3. 

All the three algorithms have the same complexity , where N is the number of 

states in the HMM, and L is the length of the observation.  

)( 2 LNO

The posterior probability ),|( λπ xkP i =  is the probability of state k at position i 

given the observation sequence x and model λ . Based on results of the forward and 

backward algorithms,  ),|( λπ xkP i =  can be calculated from and  with k 

from 1 to N.  

)(if k )(ibk
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HMMs are widely used in bioinformatics since they are analogy to many biology 

problems intuitively. For example, x can be a genomic sequence and the π  can be a 

gene structure, is the probability of a transition between two states, which stand for 

two different regions in a gene structure; and   is the probability that a state k 

generates a symbol b, which can be “A”, “C”, “G” or “T” for a genomic sequence. 

State k can be a UTR, exon or intron. The gene structure with optimal probability then 

can be obtained by optimizing 

ija

)(bek

)|,( λπxP  with the Viterbi algorithm. 

Posterior probability decoding can be extended further by dividing states into different 

categories. For instance, in gene prediction, states can be divided into two categories: 

coding exon or not.  Let function g(k) = 1 if k is the coding exon state, and 0 

otherwise. Then ∑ ==
k

i xkPkgxiG ),|()(),|( λπλ  is the probability of coding exon 

state at position i given the sequence x and model λ . Similar idea can be applied to 

EST-to-genomic alignment to evaluate the quality of alignments discussed in Chapter 

5.   

Forward algorithm can be modified to compute only the total probability of a certain 

type of paths. In Chapter 4 of this dissertation, the forward algorithm is modified to 

include only paths that are consistent with an EST-genome alignment. Those paths are 

 



 

20
further divided into two types, and probabilities are then calculated for these two types 

of paths respectively.  

2.2.3 Probability Addition in Log Probability Space 

As in Viterbi algorithm, both forward and backward algorithm should always be done 

in a log space to avoid underflow problem when calculating  and  for any 

and

)(if j )(ib j

Li ≤≤1 Nj ≤≤1 . However, the difference is that it is impossible to calculate a 

logarithm of summation of probabilities from the log value of the probabilities without 

using the exponentiation and log function. Although both exponentiation and log 

function are expensive in computation, these can be avoided in practice. Let 

and be two probabilities and1p 2p 21 ppr += . We want to compute r~ from 1
~p and 2

~p  

where rr 2log~ = , 121 log~ pp =  and 222 log~ pp = . We have 

)22(log)(loglog~ 21
~~

22122
pppprr +=+== = )21(log~ )~~(

21
12 ppp −++ . So, r~  can be 

calculated by adding 1
~p and together, which can be pre-computed and 

stored in a lookup table with

)21(log2
d+

12
~~ ppd −= . With a certain level of accuracy, the log 

value of summation of probabilities from the log values for the probabilities can be 

finished by a comparison, a subtraction, a table lookup and an addition.   

2.3 Generalized Hidden Markov Models (GHMMs) 

 Unlike a standard HMM, in which each state can emit one symbol each time, each 

state in a generalized Hidden Markov Model (GHMM) (Rabiner 1989; Stormo and 

Haussler 1994; Kulp, Haussler et al. 1996; Burge and Karlin 1997) generates multiple 

symbols according to its state-specific sequence model and its state-specific length 

distribution model. The first GHMM for gene prediction was introduced in mid-1990s 

(Stormo and Haussler 1994) and the term Generalized Hidden Markov Model was first 

used by (Kulp, Haussler et al. 1996). The state specific sequence model is analogy to 

the emission probability in a standard HMM. A length distribution model replaces the 
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self-loop transition probability of each state in a standard HMM. It controls how long 

a sequence will stay in this state. The sequence model and length distribution can be 

very flexible, which makes GHMM much more powerful to model complex systems. 

If all the state-specific length distribution models are geometric, then the Viterbi 

algorithm can decode the GHMM very efficiency (linear time in worst case). 

GENSCAN (Burge and Karlin 1997) is a GHMM-based gene prediction program. 

However, the exon states in GENSCAN use explicit duration length, which causes the 

computing time to be proportional to be the cube of the input sequence length 

theoretically. In practice, the number of exon only grows linearly after the initial 

several kilo bases because constrains like splicing site signals, translation 

initiation(ATG), translation termination and in frame stop codons reduce the number 

of potential exons. With the maxim length limit for the exon states, the running time 

for GENSCAN becomes , where N is the number of states, D is the limit of 

exon length and L is length of the input sequence.  

)( 22 LDNO

2.4 TWINSCAN 

TWINSCAN (Korf, Flicek et al. 2001) is a GHMM-based gene prediction program 

Figure 2-1. It uses the similarity information between two genomes as well as the 

intrinsic information of the sequence for gene prediction. Instead of aligning genomic 

sequence to known transcription sequences (cDNAs, mRNAs, proteins or ESTs), 

genomic sequences are compared to genomic sequence from a different organism. It is 

a de novo method since it uses only genomic sequences. The sequence models of 

TWINSCAN were based on GENSCAN models. Conservation sequences are derived 

from two genome comparison to present the conservation patterns between these two 

genomes. For a given genomic sequence, TWINSCAN needs a database of sequences 

from another genome, which is called the informant database, to generate its 

conservation sequence first. Under the TWINSCAN model, for a given parse, the 

probability of the genomic sequence and the probability of the conservation sequence 

generated by a separate conservation model are treated as independent to each other 
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and are combined by multiplying them together. The optimal joint probability is 

computed by the Viterbi algorithm.   

 
 

Figure 2-1. TWINSCAN model diagram for the forward strand.  

Arrows stand for non-zero probability transitions between states. Exon 0, Exon 1 and Exon 2 

stand for internal exons with different reading frame; I0, I1 and I2 represents intron regions with 

different frame; 5’ is for 5’ UTR and 3’ is for 3’ UTR; Prom represents the promoter region; 

PolyA represents the polyadenylation signal and N represent the intergenic region. The states 

show here are only for the forward strand, and an analogous model is used fore the backward 

strand. This figure is from Korf, Flicek et al. 2001.  
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For the conservation sequences in a TWINSCAN model, separate homogenous 5th-

order Markov chains are used for coding regions, UTR, and intron regions.  Models of 

conservation sequence at splice donor sites and acceptor sites are based on two 

separate 2nd-order Weight Array Matrix models respectively. TWINSCAN’s 

performance improvement is mostly attributed to the homology information from 

genome comparison. It is one of the most successful gene prediction methods using 

information derived from genome comparisons (Korf, Flicek et al. 2001; Waterston, 

Lindblad-Toh et al. 2002; Flicek, Keibler et al. 2003; Guigo, Dermitzakis et al. 2003; 

Stein, Bao et al. 2003; Wu, Shteynberg et al. 2004; Wei, Lamesch et al. 2005). The 

original TWINSCAN does not take any transcript similarity evidence. The ideal of 

combining EST alignments with TWINSCAN is to take advantage from both 

comparative genomics and EST similarity information. 

2.5 N-SCAN 

N-SCAN (Gross and Brent 2005) is a newer version of TWINSCAN with a 

phylogenetic conservation model that models the conservation patterns among 

multiple genomes, which includes the dependencies between the aligned sequences, 

context-dependent substitution rates and insertions and deletions in the sequences. The 

concept of “alignment sequence” was introduced for N-SCAN similar to the 

“conservation sequence” for TWINSCAN. One alignment sequence is constructed 

from alignments to each informant genome. N-SCAN allows introns in 5’ UTRs. 

Conserved non-coding regions are added inside the original intergenic region. Several 

whole-genome-scale gene prediction results showed that N-SCAN could predict gene 

structure more accurately than any existing ab initio methods, which only use genomic 

sequences as input. For human genome, the gene sensitivity is about 35% at gene 

level, compared to 10% and 25% for GENSCAN, TWINSCAN respectively. Again, as 

for TWINSCAN, there is no transcript similarity information exploited for N-SCAN.  
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2.6 Pair Hidden Markov Model 

The major difference between a standard HMM and a pair-HMM is that each state in a 

pair HMM generates a pair of symbols instead of a single symbol in the standard 

HMM. A pair HMM can be used for sequence alignment. Figure 2-2 presents a pair 

HMM for global pair-wise sequence alignment. Each state (big circles) will emit a pair 

of symbols. For example, M stands for match or mismatch, and ( ) will be 

emitted from M state every time. X state stands for an insertion in x sequence, so ( ,-

) will be emitted from state X.  Y state is for an insertion in y sequence, and (-, ) 

will be emitted from a Y state. “-“ stands for a blank symbol. The best alignment of 

the sequence x and y can be calculated by Viterbi algorithm.  

ji yx ,

ix

jy

 

Figure 2-2. Pair HMM for sequence alignment.  

M state is for match and mismatch, X state is for the gap in sequence y, and Y state is for the gap 

in sequence x.  

 

2.7 Graphical Model 

A Graphical Model is a combination of graph theory and probability theory.  It 

provides a natural tool to deal with uncertainty and complexity. Its graph parts provide 

intuitive representation of modularity of a system, in which a complex system is 

composed of some smaller and simpler systems; and its probability parts provide ways 
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to combine its parts. It has been applied broadly in fields like statistics, system 

engineering, information theory, pattern recognition and machine learning due to its 

intuitive interface and ability to represent complex systems.  

A graph is a pair G= (V, E), where V stands for a set of vertices , and E 

stands for the set of edges, which is a subset of 

}{ nvv ,...,1

VV × . Let v and w be two vertices in 

V connected by an edge.  If both (v, w) and (w, v) are in E, then the edge is undirected 

and it can be represented by a line. If (v, w) is in E while (w, v) is not in E, then the 

edge is directed and it can be represented by an arrow pointed from v to w. A directed 

graph contains only directed edges. A directed edge from node v to w indicates v 

“causes” w, and a conditional probability of w given v can be assigned to this edge. 

The overall joint probability of a directed graph can be computed as a product of a 

series of conditional probabilities. Direct graphical model is also called Bayesian 

Network in many literatures. An undirected graph contains undirected edges only. An 

undirected edge stands for association of two nodes. A graph containing both direct 

and undirected edges is called a chain graph if all nodes in this graph can be divided 

into numbered clusters such that all edges inside the same cluster are undirected and 

all edges between the clusters are directed, pointing from the set with lower number to 

the one with higher number. An undirected graph is a special case of a chain graph and 

so is a directed acyclic graph. By Graphical Chain Model theory (Lauritzen 1996), the 

overall joint probability of a chain graph can be computed as a production of a series 

of conditional probabilities of node clusters. 

Figure 2-3 shows a simple example of a graphical chain model representing the error 

sources in EST sequencing.  There are 4 nodes in Figure 2-3, “RG”, “EG”, “EC” and 

“qual”. “RG” stands for the reference genome, from which a genomic sequence is 

derived and “EG” the EST genome, from which an EST sequence is derived. “EC” is 

for EST base calls, which are the observed EST bases, and “qual” is for the quality 

values of the base calls. When both "RG" and "EG" are from the same organism, they 

are not independent to each other. In other words, they can decide each other. 
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Therefore, their relationship is represented by a line instead of an arrow. The source 

EST genome can decide the EST base calls if there is no sequencing error. As a result, 

the relation between “EG” and “EC” is causal, which is represented by an arrow from 

“EG” to “EC”.  The overall joint probability of this chain graph can be expressed as  

RG 

EG 

qualEC 

 

Figure 2-3. A Graphical Model example.  

“RG” stands for the reference genome, “EG” for the EST genome, “EC” for EST base calls, and 

“qual” for quality values of the base calls. When both "RG" and "EG" are from the same 

organism, they are not independent to each other. 

 

)Pr(),Pr(),|Pr(
)Pr()|,Pr(),,|Pr(),,,Pr(

qEGRGqEGEC
qqEGRGqEGRGECqEGRGEC

=

=
  

An important probability is the probability of observing RG and EC given quality 

value q. It can be calculated as  

∑∑ ==
EGEG

EGRGqEGECqRGEGECqRGEC )),Pr(),|(Pr()|,,Pr()|,Pr( . 

This graphical model is used to investigate the theoretical behavior of the spliced 

sequence alignment algorithm developed in Chapter 5. 
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Chapter 3  

Using EST Alignments to Improve  

Gene Prediction  
 

This Chapter describes a new approach to integrate EST alignment information with 

GHMM-based, de novo gene predictors. When used with comparative genomics based 

gene-prediction programs, such as TWINSCAN and N-SCAN, it can be automatically 

retrained to work well on both C. elegans and human. Furthermore, the accuracy of 

TWINSCAN and N-SCAN on genes without EST evidence is not compromised. On 

the contrary, genes without ESTs are predicted more accurately as a result of the 

constraints imposed by ESTs aligned to neighboring genes. The concept of ESTseq, 

which represents the patterns of EST sequence alignment, is introduced in Section 3.1. 

Construction of an ESTseq from a set of EST alignments is also described in the same 

section. Section 3.2 covers the models used for ESTseqs and how they are 

incorporated into TWINSCAN and N-SCAN. Section 3.3 contains parameter 

estimation for ESTseq models. Section 3.4 reviews measures of the gene-structure-

prediction accuracy. Section 3.5 shows the accuracy improvement achieved by 

combining EST alignments with GHMM-based de novo gene-prediction programs, 

such as TWINSCAN and N-SCAN. The experimental validation of N-SCAN_EST’s 

novel predictions on the human genome (build NCBI35) is discussed in Section 3.6. 

Sections from 3.7 to 3.11 investigate the behaviors of the above-mentioned gene-

prediction programs using EST alignments. Section 3.7 covers the effect of EST 

coverage on TWINSCAN_EST prediction accuracy using C. elegans as an example. 

Section 3.8 addresses the trainability of TWINSCAN_EST by comparing its 
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performance when EST alignment parameters are trained from different organism. 

Section 3.9 covers gene prediction using cross-species EST alignments.  Section 3.10 

discusses the effect of different alignment programs on the prediction accuracy. 

Section 3.11 covers the improvement for 5’UTR prediction of N-SCAN_EST by using 

the EST alignments. This Chapter is ended with a discussion about the importance of 

the new programs in a more general gene annotation pipeline. The major content of 

this Chapter has been covered in (Wei and Brent Submitted). 

3.1 ESTseq Construction 

In order to integrate EST-alignment information into a GHMM-based gene-prediction 

system, a concept of ESTseq was invented by the author. ESTseq is a sequence with 

one letter for each base of the input genome which represents much of the useful 

information in the EST alignments. The method introduced here for exploiting EST 

alignment is very similar to the “conservation sequence” approach TWINSCAN uses 

to exploit genomic alignments (Korf, Flicek et al. 2001; Flicek, Keibler et al. 2003). In 

particular, all available EST sequences are aligned to the genome and alignments that 

fail to meet certain criteria are filtered out. Each nucleotide of the genome sequence is 

then assigned one of the three symbols (Figure 3-1): I if it is in an intron of all 

overlapping EST alignments, E if it is in the exon (aligned region) of all overlapping 

EST alignments, and N if there is a disagreement among overlapping EST alignments 

or there is no EST alignment. This representation of EST alignments is called ESTseq 

by analogy to the conservation sequence or conseq that TWINSCAN uses for genomic 

alignments. Different strategies have been tried by the author to generate EST-

alignment sequences, such as number of symbols used to represent the alignment 

patterns. For example, an additional symbol U, standing for “unknown”, can be used 

to separate the conflict regions and unaligned regions (N). More symbols can be 

introduced further to discriminate regions on different strands. The results showed that 

the simple 3-symbol EST-alignment sequence model described above performs quite 

well. 
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EST Alignments 

ESTseq 
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Figure 3-1. Construction of ESTseq from EST alignments.  

Each row of top three bars represents the aligned blocks of one EST, while the thin lines 

connecting the bars represent implied introns. The ESTseq representation contains an “E” for 

each base that is indicated as exonic (red), an “I” for each base that is indicated as intronic 

(yellow), and an “N” for each base that lies outside of all the alignments (gray). Regions that are 

indicated as intronic by some alignments and exonic by others are also labeled “N”. 

  

3.2 ESTseq models, TWINSCAN_EST and N-SCAN_EST 

The EST sequence can be exploited by any HMM-based gene predictor. Each state of 

the HMM is required to emit both the ESTseq and the target genome sequence from 

each state. When TWINSCAN uses ESTseq it emits ESTseq symbols, target genome 

bases, and conservation sequence symbols. Similarly, N-SCAN (Brown, Gross et al. 

2005; Gross and Brent 2005) emits ESTseq symbols together with columns of multi-

genome alignments. All states must have probability models for the emission of 

ESTseq symbols, so that these symbols can influence the likelihoods of functional 

annotations such as splice donor and acceptor, exon, intron, translation initiation and 

termination site, and so on. For example, the likelihood of emitting the I symbol from 

intron states should be greater than the likelihood of emitting I from exon states. 

Parameters for these models are estimated from examples of known gene structures 

together with their ESTseqs. Homogeneous Markov chains are used for ESTseqs in 
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UTR, intron region, intergenic region, and coding regions, and WAM (also called 

PSSM) in donor and acceptor sites. For TWINSCAN_EST on C. elegans, 1st-order 

Markov chains were used for coding, UTR, intron states, and the translation initiation 

and termination signals. A 43-base long 2nd-order WAM was used for acceptor splice 

site signals and 9-base long 2nd-order WAM was used for donor splice site signals. 

Regions between 1000 bases and 150 bases upstream of the start of translation and 

downstream of the stop of translation were used as intergenic region. Intergenic 

regions’ ESTseqs were used as the null model for each state. For TWINSCAN_EST 

on human, 5th-order Markov chains were used for ESTseq in UTR, intron region, 

intergenic region and coding region. 

For N-SCAN_EST on human, the single 5’ UTR state is replaced by a 3’ UTR state 

and four states associated with 5’ UTRs. The four 5’ UTR states model those a) 

unspliced UTRs from transcription start site (TSS) to the translation start site; b) initial 

noncoding exons (from the TSS to the splice donor site); c) internal noncoding exons 

(from acceptor site to donor site) and d) the noncoding segment of the exon containing 

the start codon (see Brown, Gross et al. 2005 for details). Each state will emit the 

genomic sequence, alignment sequences and ESTseq at each time. 5th-order Markov 

models were used for all ESTseq models except for the acceptor and donor splice site 

models, which were as for worm.  

For the worm genome, when 5th-order Markov chains are used instead of 1st-order, 

the difference in accuracy statistics is not more than a fraction of one percent. 

3.3 ESTseq Model Parameter Estimation 

Given ESTseqs and their gene structure annotations, distinct sets of parameters for the 

models described in the previous section are estimated. For training and evaluation 

purpose, human RefSeq mRNAs excluding the predicted XM_ accessions, (Maglott, 

Katz et al. 2000; Pruitt, Katz et al. 2000; Pruitt and Maglott 2001) aligned to human 

genome (build NCBI35) were downloaded from the UCSC genome browser 
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(http://genome.ucsc.edu). The RefSeq annotation was then cleaned up by removing 

genes with in-frame stop codons. There were 17,798 transcripts remaining, 17,120 of 

which contain UTR annotations.  In order to estimate the ESTseq parameters, single-

gene ESTseqs were cut out from the whole chromosome ESTseq with an additional 

1000 bases on each end as the intergenic regions. The intergenic region model was 

used as the null-model. Parameters were estimated from these single-gene ESTseqs 

and their annotations.  

3.4 Measuring Prediction Accuracy 

Measuring prediction accuracy requires measures indicating the accuracy and a test 

data set with its genes annotated. For a fair comparison, the same accuracy measures 

and the same test dataset with a particular annotation set should be applied to all the 

methods to be compared. It is impossible to compare the accuracy of two prediction 

methods without a common test sequence dataset and a particular annotation set on the 

same set. Both the accuracy measurements and test data sets have evolved 

significantly in the past decade.  

The most popular gene prediction accuracy measurement now is the three-level 

prediction accuracy measurement introduced by (Burset and Guigo 1996). The three 

levels are nucleotide level, exon level and protein product level. For each level, 

sensitivity (Sn) and specificity (Sp) are calculated to represent the accuracy. The 

meaning of sensitivity and specificity might vary from literature to literature. Here, the 

sensitivity is defined as the percentage of total annotations that are predicted correctly. 

The specificity is the percentage of overall predictions that are correct. For example, in 

nucleotide level, sensitivity and specificity can be defined as  

basescodingannotattedtotal
basescodingpredictedcorrectlySn =

   

and  
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basescodingpredictedtotal
basescodingpredictedcorrectlySp = . 

On the exon level, sensitivity and specificity are defined similarly to those for 

nucleotide level except that a correctly predicted exon means every base of the exon is 

predicted exactly including the exon boundaries. Exon level sensitivity and specificity 

also show the accuracy of predictions on important signals, such as splice sites.  

The protein product level can be further divided into transcript level and gene level 

because of alternative splicing. On transcript level, a transcript is predicted correctly if 

and only if all the coding region exons it contains are predicted exactly. On the gene 

level, a prediction is correct if at least one transcript from the same gene locus is 

predicted exactly. The protein product level measures not only how well the 

boundaries of coding regions and splice sites are predicted, but also how well the 

predicted exons can be assembled into final protein products, which include the start 

and stop of translation and exon frames.  

For the first generations of gene prediction systems, it was very hard to generate a test 

data set with reliable annotations. A lot of effort was devoted to developing test data 

sets and their annotations. Many different test sets were constructed to evaluate the 

accuracy of gene prediction programs. The most widely used one among them might 

be the “Burset-Guigo” set (Burset and Guigo 1996), which contained 570 vertebrate 

genome sequences with one single gene in each sequence. The total size of the data set 

was less than 3 Mb and about 15% of the total bases therein were coding bases. It was 

far away from the reality. In a real human genome, there are only about 1% of the total 

bases used for coding, according to current estimation. More realistic test data sets 

were created in order to evaluate the gene prediction programs more accurately, like 

the “68-set” by Korf et al (Korf, Flicek et al.). It contained 68 contiguous mouse 

genome sequences with an average length of 112 Kb.  With the progress of annotation 

projects like RefSeq and the finishing of human genome sequence, the gene prediction 
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accuracy was finally evaluated on the entire human genome. Unfortunately, the more 

realistic the test set becomes, the lower accuracy gene predictors get. On the whole 

human genome, GENSCAN, the most accurate gene finder for human genome before 

the appearance of comparative-genomics-based methods, could predict only about 

10% on gene level sensitivity (Flicek, Keibler et al. 2003), while TWINSCAN was 

reported in the same paper with gene level sensitivity 15%.    

3.5 Accuracy of TWINSCAN_EST and N-SCAN_EST 

The approach of using EST alignments for de novo gene prediction program described 

in the previous sections has been tested on TWINSCAN and N-SCAN. The new 

programs are called TWINSCAN_EST and N-SCAN_EST. Before using ESTs for 

gene predictions, with another worm genome (C. briggsae) available, the author had 

made TWINSCAN the best de novo gene predictor for worm genomes (Stein, Bao et 

al. 2003; Wei, Lamesch et al. 2005). With EST alignments, the accuracy of 

TWINSCAN_EST has been tested on two worm data sets (see section 3.5.1). N-

SCAN had become the best de novo gene predictor for the human genome by using 

mouse, rat and chicken genomes as the informant without using any EST-alignment 

information (Brown, Gross et al. 2005). N-SCAN_EST has been evaluated on the 

whole human genome. Its novel predictions on human genome (build NCBI35) have 

been validated experimentally.  

3.5.1 Data Sets 

TWINSCAN_EST has been tested on two worm data sets. The first is the whole C. 

elegans genome (version WS130). C. briggsae version cb25.agp8 is used as the 

informant database. The C. elegans genome sequence version WS130 was 

downloaded from the WormBase website (Stein, Sternberg et al. 2001; Harris, Lee et 

al. 2003; Harris, Chen et al. 2004). The C. briggsae genome sequence version 

cb25.agp8 was downloaded from the Sanger Institute 

(ftp://ftp.sanger.ac.uk/pub/wormbase/cbriggsae/cb25.agp8). In total 302,075 C. 
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elegans ESTs were downloaded from dbEST (Boguski, Lowe et al. 1993) 

(http://www.ncbi.nlm.nih.gov/dbEST/) (1/20/2005 version). 

The second set is the GAZE data set, 2 Mb created by concatenating the sequences of 

325 genes flanked by half the intergenic region to the closest known gene on each side 

(Howe, Chothia et al. 2002). The genome sequence for the GAZE data set was 

downloaded from http://www.sanger.ac.uk/Software/analysis/GAZE. The informant 

database (C. briggsae) was as above.   

Human ESTs were downloaded from dbEST on January 20th 2005. The informant 

database for TWINSCAN is mouse genome (Waterston, Lindblad-Toh et al. 2002) 

Build 33 (mm5 on the UCSC browser).  Other informant datasets for N-SCAN include 

mouse, rat (Gibbs, Weinstock et al. 2004) (UCSC rn3) and chicken (Hillier, Miller et 

al. 2004) (UCSC Galgal2) genomes (Brown, Gross et al. 2005; Gross and Brent 2005).  

3.5.2 Genome Alignments 

For worm data sets, conservation sequences were generated from WU-BLAST 

(http://blast.wustl.edu) alignments of the whole C. elegans genome against C. 

briggsae genome. First, C. briggsae sequences longer than 150kb were cut into 150kb 

sequences with 20kb overlap, and then the Blast database was generated from all 

sequences after they had been masked by NSEG with default parameters. BLASTN 

parameters were: M=1 N=-1 Q=5 R=1 B=10000 V=100 lcfilter filter=seg filter=dust 

topcomboN=1.  

For the human data set, an informant database from mouse genome was constructed 

for TWINSCAN in a similar way as the informant database from C. briggsae for 

C.elegans.  The human chromosomes were split into 1Mb fragments first, and then 

conservation sequences for TWINSCAN were constructed for each fragment. The 

alignment sequences for N-SCAN were constructed for each fragment by using the 
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BLASTZ alignments of human, mouse, rat and chicken genomes (Gross and Brent 

2005).  

3.5.3 ESTseqs 

C. elegans ESTs were aligned to WS130 by using standalone version 25 of BLAT 

(Kent 2002). ESTseqs were generated using only those EST alignments in which the 

number of matches was at least 95% of the length of the entire EST, including 

unaligned portions. These alignments were projected onto a genomic sequence to 

generate its ESTseq. Similar procedures were performed for the GAZE sequence.  

Human ESTs were aligned to the whole human genome by BLAT. Only the EST 

alignments in which the number of matches was at least 98% of the length of the 

entire EST were chosen to project to the genomic sequence to generate ESTseqs. The 

ESTseq of each chromosome was then split into 1Mb fragments corresponding to the 

1Mb fragments of genomic sequences. 

3.5.4 Accuracy Evaluation: C. elegans 

For the whole genome worm data set (WS130), TWINSCAN_EST’s performance was 

tested by 8-fold cross validation. The whole genome was split into fragments of about 

500kb. Each fragment was assigned to one of eight groups randomly. 

TWINSCAN_EST was trained on fully confirmed genes from seven of the eight 

groups, and run on the fragments from the eighth group to avoid training and testing 

on the same data set.  The results show 14% improvement in sensitivity and 13% in 

specificity in predicting exact gene structures compared to pure TWINSCAN 2.03 

(Figure 3-2). TWINSCAN 2.03 was, in turn, significantly more accurate than both 

FGENESH (v.1, with C. elegans parameters v.1) (Salamov and Solovyev 2000; 

Solovyev 2002) and GENEFINDER (release 980504, P. Green, unpublished), the two 

most widely used prediction programs for nematodes.  

 



 

36

48
43

81

73

52
50

83

76

61
59

87

79
75

72

92
87

0

20

40

60

80

100

exact gene
sensitivity

exact gene
specificity

exact exon
sensitivity

exact exon
specificity

pe
rc

en
t  

   
 .

GENEFINDER FGENESH
TWINSCAN2.03 TWINSCAN_EST

 
Figure 3-2. Results on the whole C. elegans genome. 

C. briggsae was used as the informant database and C. elegans ESTs were from dbEST. The 

sensitivities are based on the 4,705 fully confirmed genes from WS130 and the specificities are 

based on those predictions that overlap with fully confirmed genes. 

 

The second test used the 2 Mb GAZE dataset, which was created by concatenating the 

sequences of 325 genes flanked by half the intergenic region to the closest known 

gene on each side (Howe, Chothia et al. 2002). For TWINSCAN_EST on GAZE data 

set, no cross validation was applied, parameters were estimated by author from all 

fully confirmed genes of WS130. Since the number of the fully confirmed genes of 

WS130 (about 5000 genes) is much larger than 325, the estimated parameters are 

unlikely to be biased on the 325 genes.   

In order to show that the improvement on performance was not caused by the EST-

alignment-selection procedure, the exact same EST alignments were used for both 

TWINSCAN_EST and GAZE_est on the GAZE data set. C. elegans ESTs were 

downloaded from dbEST (1/20/2005), aligned to the GAZE genomic sequence by 
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using BLAT, and filtered for alignment quality (the same as for the whole C. elegans 

genome). The remaining EST alignments were used for both TWINSCAN_EST and 

GAZE_est. The results show that TWINSCAN_EST is more accurate than GAZE_est, 

especially for exact gene structure prediction. TWINSCAN_EST has 73% gene 

sensitivity and 62% gene specificity compared to GAZE_est’s 61% and 58% (Figure 

3-3). This experiment demonstrated the efficiency of the novel approach to exploit the 

EST alignments for gene prediction.  
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Figure 3-3. Result on GAZE merged data set.   

Both TWINSCAN_EST and GAZE_EST used the same EST alignments from dbEST (1/20/2005). 

305 of the 325 gene loci have at least one EST alignment. C. briggsae was used as the informant 

genome.  

 

Although TWINSCAN_EST shows substantial improvement compared to previous 

systems based on fully confirmed worm genes, these genes are more likely to have 

aligned ESTs than a randomly selected gene. Thus, an independent test is needed in 

order to determine how TWINSCAN_EST would perform on genes with no aligned 

ESTs. Such a test was performed by running TWINSCAN_EST on the entire genome 
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with an empty EST database, so that no gene had aligned ESTs. This resulted in slight 

improvements to sensitivity and specificity in exact gene prediction compared to 

predictions by TWINSCAN 2.03, which does not consider the presence or absence of 

ESTs (Table 3-1).  These improvements may result from applying a slight score 

penalty to exons and genes without ESTs – in this case all exons and genes. Such a 

penalty would eliminate predicted exons and genes with marginal scores, in effect 

filtering out the lowest scoring predictions from TWINSCAN 2.03. Since the lowest 

scoring predictions are mostly incorrect, this would improve accuracy. On the other 

hand, the improvement in gene accuracy is small, and exon accuracy does not 

improve, so it is safe to conclude that novel genes with no ESTs are predicted with 

approximately the same accuracy by TWINSCAN_EST and TWINSCAN 2.03. 

Table 3-1. Result for deletion experiment.  

The first column is for TWINSCAN2.03 and the remaining 3 columns are for TWINSCAN_EST.  

The second column is for the TWINSCAN_EST performance with empty ESTseq, i.e. all bases in 

ESTseqs are ‘N’s. For the third and fourth column, 10% of genes in the annotation were set to 

“N”s. The third column is for TWINSCAN_EST’s performance on the 10% genes with masked 

ESTseqs and the last column is for the 90% genes with unmasked ESTseqs. Results show that 

EST alignments improve the prediction accuracy but do not compromise the capability to 

predicted novel genes where EST alignments do not exist (column 2). Specificities are based on 

predictions that overlap with annotations by at least 1bp. 

TWINSCAN_EST  TWINSCAN2.03 

Blank 
ESTseq 

10% with 
ESTseq 
masked 

90% with 
ESTseq 

unmasked 

Gene_sn 60.6 61.3 63.0 74.7 

Gene_sp 58.6 59.8 60.5 71.5 

Exon_sn 86.9 86.2 86.4 91.5 

Exon_sp 79.5 80.8 81.1 87.0 
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The previous experiment in which all ESTs were deleted from the database may yield 

an overly pessimistic assessment of TWINSCAN_EST’s accuracy on novel genes 

with no aligned ESTs. It is possible that the presence of EST alignments for some 

genes may improve the accuracy of TWINSCAN_EST on the neighboring genes even 

when those neighboring genes have no aligned ESTs. The intuition is that certain 

kinds of mistakes, such as incorrectly splitting a gene with an EST and joining part of 

it to a neighbor without an EST will become much less common. To test whether such 

indirect benefits actually exist, we did a partial EST deletion experiment. All fully 

confirmed WS130 genes were divided into 10 groups at random, each containing 10% 

of the fully confirmed genes. One group of fully confirmed genes was selected, its 

ESTseq were masked with “N”, and TWINSCAN_EST was run on the entire genome. 

These steps were repeated 10 times. Each time, the ESTseq for a different 10% of the 

confirmed genes was masked, so that the ESTseq for each confirmed genes was 

masked in exactly one repetition. We then computed the average accuracy statistics 

over the 10 runs for both the masked and unmasked genes. Results are shown in Table 

3-1. The gene sensitivity of TWINSCAN_EST on the genes with masked ESTseq was 

2.4% higher than TWINSCAN 2.03 and the specificity was 1.9% higher. In addition, 

exon and gene accuracy were higher than TWINSCAN_EST with blank EST 

sequence, indicating that the presence of ESTs for other genes did indeed improve the 

accuracy of genes with no ESTs.  

The previous experiments showed TWINSCAN_EST’s accuracy on genes with or 

without aligned ESTs. In practice, there are many genes covered partially by ESTs. To 

investigate the effect of partial EST coverage, we did the following experiment. 

ESTseqs were generated as in TWINSCAN_EST experiment for Table 3-1. For each 

fully confirmed WS130 gene, 50% of its gene region of the ESTseq was randomly 

masked as following:  Let [0, 1] stand for a gene region. A random number a in range 

[0, 1] is generated, and then all bases in region [a, a+0.5] were masked with “N” if 

a<=0.5 or bases in region [a, 1] U [0, a-0.5] were masked with “N” if a>0.5, so at 

least 50% of each gene region was not covered with any EST alignment. 
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TWINSCAN_EST was then run on the entire genome with ESTseqs generated as 

above. The predictions were evaluated on all the confirmed genes. The gene 

sensitivity is 69%, which is about halfway between the gene sensitivity of pure 

TWINSCAN 2.03 (61%) and TWINSCAN_EST without ESTseq masking (75%). The 

gene specificity is 67%, which is about two-thirds of the way between that of pure 

TWINSCAN 2.03 (59%) and TWINSCAN_EST without ESTseq masking (71%).  

3.5.5 Accuracy Evaluation: Human 

TWINSCAN_EST and N-SCAN_EST on the whole human genome 

TWINSCAN_EST and N-SCAN_EST were also tested on the whole human genome 

(build NCBI35) (Figure 3-4). TWINSCAN_EST on this data set produced about 10% 

improvement in sensitivity and 3% in specificity in predicting exact gene structures 

compared to pure TWINSCAN 2.03. N-SCAN_EST on NCBI35 produced a 6% 

improvement in sensitivity and 1% in specificity on exact gene structure level 

compared to N-SCAN. The relative less improvement from N-SCAN to N-

SCAN_EST might because that N-SCAN_EST is built upon N-SCAN, which has 

higher accuracy on human genome than TWINSCAN does. Therefore some newly 

predicted genes by TWINSCAN_EST were correctly predicted by N-SCAN already.  
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Figure 3-4. Comparison of TWINSCAN, TWINSCAN_EST, NSCAN and N-SCAN_EST results 

on human genome. 

For TWINSCAN and TWINSCAN_EST, Mouse genome is used as the informant database. For 

NSCAN and N-SCAN_EST, mouse, rat and chicken genomes are used as the informant 

databases. Human ESTs are from dbEST. For all methods, pseudo genes are masked out first 

(van Baren and Brent 2005). Specificities are lower than sensitivities because they are based on all 

predicted genes, not only those that overlap known genes. 

 

N-SCAN_EST and AUGUSTUS+ Comparison on Human Chromosome 22 

AUGUSTUS+ is a newly reported gene prediction system which also explicitly 

evaluated the effect of EST alignments on gene prediction. In order to do a fair 

comparison to AUGUSTUS+, BLAT alignments of all spliced human ESTs on human 

chromosome 22 (version hg17) were downloaded from the spliced human EST track 

in UCSC genome browser (http://www.genome.ucsc.edu) on March 12th, 2006. Both 
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AUGUSTUS+ and N-SCAN_EST started from these EST alignments. EST 

parameters for N-SCAN_EST were estimated from the cleaned RefSeq annotations on 

chromosome 1, 2, 20 and 21. Parameters for AUGUSTUS+ EST hints were estimated 

by its author from chromosome 21. Comparing the results to RefSeq genes on 

chromosome 22, N-SCAN_EST’s sensitivity and specificity on gene level were 47.1% 

and 23.6%, respectively. The comparable numbers for AUGUSTUS+ using the same 

EST alignments were 37.9% and 19.4%, respectively. N-SCAN_EST’s result is 

significantly better than AUGUSTUS’. Part of the reason is that N-SCAN_EST is 

built upon N-SCAN, which is better than most of de novo gene predictors, including 

AUGUSTUS. Unlike AUGUSTUS+, which only uses the ESTs verifying a coding 

region structures, every aligned EST bases, no matter in a coding region or in a UTR 

region, are used by N-SCAN_EST. The result above also demonstrates that this novel 

method of using EST alignments the author developed here is effective even for gene 

prediction systems like N-SCAN, which is already very accurate.  

3.6 Experimental Validation of N-SCAN_EST Novel 

Predictions on the Human Genome 

Although the ultimate goal of gene structure prediction is to build a system that is 

accurate enough so that experimental verification and manual curation is no longer 

necessary, all the gene structures predicted computationally now still need to be 

verified experimentally. The novel introns predicted by N-SCAN_EST were selected 

(see Section 3.6.1), and tested by performing RT-PCR, sequencing and aligning the 

resulting sequence back to the whole human genome.  

3.6.1 Target Selection 

Introns were defined as novel if at least one of their splice sites was not in a region 

previously known to be transcribed – that is, not in an intron or exon defined by the 

alignment of any human mRNA or the spliced alignment of any EST or RefSeqs in 
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which matching bases make up of at least 95% of the length of the expressed 

sequence. For this experiment, novel introns were picked from predicted genes of 

which another part was in a region known to be transcribed. N-SCAN_EST 

predictions (23,265 genes) were divided into three categories: fully within regions 

known to be transcribed, partially within regions known to be transcribed, and 

completely novel.  The middle category, called partially novel, was divided into those 

with at least one novel splice site and those without any novel spliced site. For those 

partial novel genes with at least one novel splice site, we filtered out predictions 

containing processed pseudogenes in their exons using the method described in (Van 

Baren and Brent 2005). The remaining predictions with at least one novel splice site 

were used for primer design.   

3.6.2 Primer Design 

Primers were designed to amplify approximately 800bp of cDNA spanning at least 

one targeted intron by using Primer3 (Rozen and Skaletsky 2000; 

http://frodo.wu.mit.edu/cgi-bin/primer3/primer3_www.cgo) with default parameters 

except for PRIMER_MIN_SIZE = 17, PRIMER_MIN_GC = 30, PRIMER_MAX_GC 

= 70, PRIMER_OPT_TM = 70, PRIMER_MIN_TM = 65, PRIMER_MAX_TM = 75, 

and PRIMER_GC_CLAMP = 2. Amplicons were designed to be as long as possible 

without exceeding 800 nt. By this, primer pairs for 748 partial novel predictions were 

generated successfully. 

3.6.3 PCR and Sequencing 

PCR amplification and sequencing were as described in (Brown, Gross et al. 2005).   
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3.6.4 Sequencing Result Analysis 

The RT-PCR and sequencing results were aligned to the whole human genome by 

using BLAT (standalone version 25). BLAT parameters were “-repeats=lower -

ooc=11.ooc -q=rna”. When an experimental sequence could be aligned to multiple 

loci, its genomic locus was determined by the BLAT alignment containing the greatest 

number of matching bases. The genomic region was cut out with an extra 1000 bases 

on both sides. EST_GENOME was then used to fine tune the alignment. Sequences 

lacking 50 consecutive matches were classified as “bad”. The remaining sequences 

were classified as “hit” if their best alignment met the following criteria: 

1) At least 95% of the entire sequence were matches;  

2) It overlapped the target gene region; 

3) It contained at least one intron; and 

4) All 10-bp sequences flanking introns contained at least 8 matches. 

The target intron was considered “verified” if the best alignment contained an intron 

that exactly matched it.  

150 gene predictions yielded an experimental sequence alignment that (1) had at least 

one intron, and (2) overlapped the targeted gene. Among these, there were 63 in which 

the targeted intron was confirmed exactly at both splice sites. The remaining 87 gene 

predictions included cases where the boundaries of the target intron could not be 

determined because the high quality portion of the sequencing read or reads did not 

extend that far. Since primer pairs were designed to amplify approximately 800bp of 

cDNA spanning the target intron, the alignments of many amplicon sequences 

determined more than one novel intron. In total, 332 novel introns were 
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experimentally determined, of which 127 matched predicted introns exactly at both 

splice sites.  

All sequences have been submitted to dbEST (http://www.ncbi.nlm.nih.gov/dbEST) 

and traces to the Trace Archive (http://www.ncbi.nlm.nih.gov/Traces/trace.cgi). 

Accession numbers are provided in appendix B. 

The experimental verification procedure has been improved since the above 

mentioned experiments. By changing the cDNA spanning length from 800 bases to 

500 bases, the specificity of verified splice sites was improved since the resulted 

sequences are less likely to be from a region amplified before. Up to date, RT-PCR 

experiments targeting predictions from N-SCAN_EST have led to verification of more 

than a thousand completely novel human introns and their surrounding exons. This is a 

significant achievement especially for a well studied genome like the human genome.  

3.6.5 An N-SCAN_EST Prediction Example 

Figure 3-5 shows an N-SCAN_EST prediction with novel introns verified by the EST 

sequence alignments. On the top of the figure are coordinates in human genome 

chromosome 3. GENSCAN predicted two separate genes in this region while N-

SCAN_EST only predicted one gene. Ensembl did not predict any gene in this region 

since there were no existing mRNAs or proteins similar to this region then. The ESTs 

available then were also not enough to generate an Ensembl prediction in this region. 

Geneid and SGP predicted different structures in the first intron N-SCAN_EST 

predicted. ESTs DT932676 and DT932675 were derived from N-SCAN_EST 

predictions followed with PCR amplification and sequencing. All introns predicted by 

N-SCAN_EST were verified by EST DT932675. Although an independent human 

mRNA DQ232881 and its consequence RefSeq gene were generated several months 
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after the ESTs from N-SCAN_EST predictions had been submitted to dbEST, the 

alignment of this human mRNA confirmed the full-length coding region predicted by 

N-SCAN_EST. 

 
 

Figure 3-5. An N-SCAN_EST partial novel prediction example.   

On the top of the figure are coordinates in human genome chromosome 3. From top to bottom, 

the first track is for N-SCAN_EST and the following two tracks are for UCSC known genes, 

RefSeq genes. The next several gene prediction tracks are for Ensembl, SGP, Geneid, GENSCAN 

and AUGUSTUS gene predictions respectively. Human mRNA and EST tracks are under the 

pseudogene track, which shows no pseudogene here. The bottom tracks are for the Human ESTs 

followed evolutionary conservation derived from Multiz alignments. The genomes and their 

assemblies used in Multiz alignments were human (hg17), chimp (panTro1), mouse (mm5), rat 

(4n3), dog (canFam1) chicken (galGal2), fugu (fr1) and zebrafish (danRer1). 
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3.7 Effect of EST Coverage 

For well-studied model organisms, such human and C. elegans, their ESTs might 

cover more than 80% of the total genes, while for newly sequenced genomes like 

chimp or dog, there are few ESTs for them. In order to investigate the trainability of 

the model and the effect of EST coverage, C. elegans genome sequence version 

WS130 was downloaded from WormBase and C. briggsae was used as the informant 

genome as in section 3.5. 10%, 20%, 50% and 100% of all C. elegans ESTs from 

dbEST (date 1/20/2005) were used to generate ESTseqs for WS130 to represent the 

different coverage.  All 500-kb fragments of WS130 sequences were divided into 2 

groups. Known genes inside one group were used as the training set, and parameters 

estimated from this training set were tested on all fragments in the other group. A 

parameter file was estimated from the training set for each EST coverage rate. Each 

parameter file was then used to test on the test sets with ESTseqs derived from all 

ESTs. These steps were repeated by reversing the training and testing groups. Then the 

prediction results with the parameter files estimated from different levels of coverage 

rates were evaluated on the overall confirmed gene set. The gene level sensitivity 

results are shown in Figure 3-6. The results indicate that the parameter file trained 

from higher EST coverage has better accuracy. The same trend holds for gene level 

specificity too. 
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Figure 3-6. Gene-level sensitivity versus EST coverage used for training. 

 Along x axis, from left to right, are four sets of ESTseqs derived from 10, 20, 50 and 100% of the 

overall C. elegans ESTs in dbEST 1/20/2005. Genomic sequences and informant database are the 

same as in other TWINSCAN_EST experiments on WS130. Parameters estimated from these 

ESTseqs using the confirmed C. elegans gene set.  From left to right, the nodes are for results 

using parameters estimated from ESTseqs with 10%, 20%, 50% and 100% of  ESTs in dbEST 

1/20/2005.  2-fold cross-validation was used for all experiments. 

 

3.8 Trainability of TWINSCAN_EST  

All experiments shown above used ESTseq parameters estimated from the alignments 

of ESTs to genomic sequences from the same organism.  For newly sequenced 

genomes, there might be not enough annotated genes and ESTs to train the parameters. 

How much can we gain by using the ESTseq parameters estimated from the native 

EST-to-genome alignments, i.e., the EST and genome sequences of the alignments are 

from the same organism? In order to investigate this, ESTseq parameters were 

estimated from human dataset, which includes the human RefSeq annotations and 

alignments of human ESTs from dbEST (1/20/2005) against human genome. All 1Mb 
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fragments of human genome were divided into 2 groups randomly. RefSeq genes 

contained inside any fragments of one group were used as the annotations to train the 

ESTseq parameters. Then TWINSCAN_EST was run on fragments belonging to the 

other group. The procedure repeated twice for human-by-human experiments. One set 

of the retrained human ESTseq parameters were combined to TWINSCAN parameter 

for worm, after which TWINSCAN_EST was run for all the C. elegans fragments. 

Similar procedure was done for C. elegans dataset. Here ESTseq models for both 

human and worm are the same, which was 5th-order Markov models for coding 

regions, UTRs, introns, intergenic regions and 43-base-long 2nd -order WAM for 

splice acceptor site and 9-base 2nd order WAM for splice donor site. The results in 

Table 3-2 show that the performance of TWINSCAN_EST can be improved modestly 

but clearly by using parameters derived from the ESTs and genomic sequences from 

the same organism.   

Table 3-2. TWINSCAN_EST performance when ESTseq parameters were trained from the same 

or different organism.  

Gene and exon level sensitivity and specificity and the average of sensitivity and specificity are 

shown for each case. From the top to bottom, the first row is for TWINSCAN_EST performance 

on human genome with ESTseq parameters estimated from alignments of human ESTs to human 

genome; the second row is for human genome with ESTseq parameters estimated from 

alignments of C. elegans ESTs to C. elegans genome. For genome sequence and the parameter file 

are from the same organism, 2-fold cross validation were used.  

 G_sn 

% 

G_sp 

% 

(G_sn 
+G_sp)/2 

% 

Ex_sn 

% 

Ex_sp 

% 

(Ex_sn 
+Ex_sp)/2

% 

Human_by_human 32.6 16.6 24.6 77.9 58.5 68.2 

Human_by_worm 31.7 16.3 24 76.2 58.6 67.4 

Worm_by_worm 75.4 71.9 73.7 91.9 87.5 89.7 

Worm_by_human 74.5 70.6 72.6 91.9 86.9 89.4 
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3.9 Using ESTs from Different Organisms 

The number of ESTs from the same organism for many genomes (like the rat genome) 

is not big enough to cover most of their genes yet, but a lot of times, many more ESTs 

can be found from closely-related species. No existing gene prediction methods have 

effectively used those EST data.  

Aligning ESTs from different organisms will have alignment discrepancies due to 

sequencing error and evolutionary divergence. No existing spliced alignment program 

can deal with cross-species spliced alignment very well. The new spliced alignment 

algorithm described in Chapter 5 might be tuned for this purpose. Further discussions 

regarding to this may be found at the end of Chapter 5.   

This section shows the gene prediction on rat genome using ESTs from mouse and/or 

human genome. Both human and mouse have millions of ESTs available, while fewer 

ESTs are available for rat. The default alignment program BLAT was still used here. 

Rat genome (version rnv3) was downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human 

genome (build NCBI35) was used as the informant to generate conservation sequence 

for the rat genome. Human ESTs and mouse ESTs were from dbEST (1/20/2005).  Rat 

ESTseqs were generated in three different ways, using mouse ESTs only, human ESTs 

only, and both. For all these three cases, only those alignments of which the number of 

matches was at least 95% of the entire EST length were chosen to generate ESTseqs. 

The results are shown in Table 3-3. It indicates that the closer evolution distance is 

between two species, the higher value will the EST-to-genome alignments contribute. 

In general, however, cross-species EST alignments generated much less improvement 

compared to the improvement derived from native EST-to-genome alignment, such as 

the improvement in human gene prediction from human ESTs aligned to human 

genome. One reason why using human ESTs produces less improvement is that the 

number of ESTs actually used to generate the ESTseq is much less since we used a 

relative high alignment quality threshold (95%) for both mouse ESTs and human 

 

http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
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ESTs. If we lower the threshold for human ESTs, the evolutionary divergences 

between the two genomes will make it very difficult to align the ESTs accurately to 

the right positions. A more accurate cross species alignment program might be helpful 

here. 

Table 3-3. TWINSCAN_EST using cross-species EST-genome alignments. 

TWINSCAN_EST was run on rat genome (version Rnv3) with human genome as the informant 

for conservation sequence and ESTseqs derived from mouse and/or human ESTs. Only those 

EST-genome alignments for which the number of matches was at least 95% of the length of the 

entire EST were chosen to generate ESTseqs. From the top to the bottom, TWINSCAN result is 

shown in the first line; TWINSCAN_EST result using mouse ESTs only is in the second line; and 

the result in the third line used human ESTs only. The last line stands for TWINSCAN_EST 

using both human and mouse ESTs. ESTseq parameters were estimated from the 3,405 rat 

RefSeq genes and a 2-fold cross validation was used for each of the three experiments using 

ESTseqs. The specificity is much lower than that on human genome since the total number of 

transcripts in the rat annotation set is only about one sixth of that of the human genome. 

 

 Gene_sn 
% 

Gene_sp 
% 

Exon_sn 
% 

Exon_sp 
% 

TWINSCAN 21.9 2.7 70.3 13.6 

TS_EST 
mouse ESTs 

23.7 2.9 73.1 13.9 

TS_EST 
human ESTs 

22.2 2.7 70.8 13.7 

TS_EST 
mouse+ 

human ESTs 

23.8 2.9 73.1 13.9 

 

   

 

http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
http://hgdownload.cse.ucsc.edu/goldenPath/rnJun2003/bigZips/chromFa.zip. Human genome version NCBI35
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3.10 Effect of Different EST-to-genome Alignment Programs 

Different EST-to-genome alignment algorithms such as BLAT and EST_GENOME 

have been tested as the underlying alignment program for the gene prediction systems 

using ESTseqs. EST_GENOME uses dynamic programming to find the optimal 

spliced alignment of a cDNA and a genomic sequence. It is a slow but accurate 

program while BLAT is fast but not as accurate as EST_GENOME (Kent 2002). 

BLAT results are not highly reliable either, though in C. elegans data sets, the 

accuracy difference between the TWINSCAN_EST systems using BLAT and 

EST_GENOME is not very big.  In rice genome, we did observe that the alignment 

accuracy affected the gene prediction result greatly since the splicing site structure of 

rice genome crashed BLAT a lot of times. The effect of different alignment programs 

will be further discussed in Chapter 5.   

3.11 Using EST Alignments for 5’UTR Prediction 

Both N-SCAN and N-SCAN_EST can predict complete gene structures with 5’UTRs. 

Since ESTs include UTR regions and coding regions, better accuracy of UTR 

prediction is expected with EST alignment information. Table 3-4 shows the accuracy 

of 5’UTR predictions by N-SCAN and N-SCAN_EST on human genome NCBI35 

shown in section 3.5.5. The 5’UTRs in the RefSeq annotation set generated in section 

3.3 was used as the 5’UTR annotations which contained 21,675 5’UTRs. An initial 

exon is the first coding region exon at downstream of a 5’UTR. The total number of 

initial exons in the annotation set is 13,087. The prediction accuracy of initial exons is 

also presented in the table. With ESTseq model, the 5’UTR predictions are 3% more 

sensitive on exon level and the initial exon 5.5% more sensitive without decreasing the 

specificity.  Since more ESTs cover 3’ UTRs than 5’ UTRs, the accuracy of 3’UTR 

prediction may benefit more from EST alignment information. However, no reliable 

3’UTR annotation set has been created to verify this currently.  
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Table 3-4. EST Alignment Effect on 5'UTR and Initial Exon Prediction.  

5'UTR predictions on exon level and initial exon prediction accuracy are reported here.  

5’UTR 
Sensitivity  

% 

5’UTR 
Specificity 

% 

Initial Exon 
Sensitivity 

% 

Initial Exon 
Specificity 

% 

N-SCAN 11.24 5.88 59.44 39.89 

N-SCAN_EST 14.20 6.75 65.02 41.53 

 

 

3.12 Another Example of N-SCAN_EST Prediction on the 

Human Genome 

 N-SCAN_EST was also independently evaluated on the human ENCODE regions as 

part of the recent EGASP community evaluation (Guigo and Reese 2005). 12 groups 

took part in the competition.  

Figure 3-7 presents an example of N-SCAN_EST predictions. This example 

demonstrates the power of combining the comparative-genomics-based gene 

prediction methods and EST alignment information. There are high quality EST 

alignments in the region, such as BX116511 with a 100% identical alignment of size 

583 bases. These EST alignments make N-SCAN_EST one of the only two gene 

predictors that predict any gene in this locus. The other gene predictor is AceView, 

which is a transcript-alignment-based gene prediction method using all publicly 

available ESTs and mRNAs as well. Three of the four annotated exons were predicted 

correctly by N-SCAN_EST.  N-SCAN_EST missed an exon even though there was 

EST evidence for it. Further investigation in the region found that the conservation 

level at the region was very low and it overwhelmed the EST evidence eventually. 

This example shows that for a region with extreme low conservation level, N-
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SCAN_EST might skip this region even with the appearance of an EST evidence. 

However, with EST evidence, the bias against relatively-new genes of a species, thus 

with a low conservation level, can be reduced. The most parts of the first exon and last 

exon in this predicted gene are also in low-conservation-level regions. By combining 

the power of comparative-genomics-based gene prediction and EST alignments, N-

SCAN_EST could predict this gene while most of other gene predictors have missed it 

completely. 
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Figure 3-7. An example of N-SCAN_EST predicted genes.  

From top to bottom, the first track is for N-SCAN_EST, the second track is for Aceview and the 

third track is for Ensembl which has no prediction here. The middle tracks are for the Human 

ESTs followed by Multiz Alignments and conservation level. The track at the bottom is the 

ENCODE annotation. N-SCAN_EST predicts two out of the four exons exactly, and another exon 

partially. N-SCAN_EST missed the second exon from left even though there were ESTs for the 

region. The conservation rate for this region is low, especially on the region near the second exon 

in the ENCODE annotation.   

3.13 DISCUSSION 

The method introduced in this chapter for integrating information from EST 

alignments and a HMM-based gene predictor has five key features: 
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1) It combines the power of comparative-genomics-based gene prediction 

programs and EST alignments;  

2) It significantly improves the gene prediction accuracy for genes with EST 

alignments; 

3) The accuracy of gene prediction for genes without EST alignments is at least 

as good as that of the original gene prediction system without considering EST 

alignments;  

4) The accuracy of gene prediction is improved for genes without EST alignments 

if these genes are interspersed with genes that have EST alignments; 

5) ESTs regions aligned to UTR region can improve the UTR region prediction as 

well as the coding region prediction. Therefore, every aligned EST bases 

contribute to gene prediction.  

Therefore, the use of EST information is very effective and comes at no cost. 

TWINSCAN_EST and N-SCAN_EST have the essential benefit of a de novo gene 

finder, the ability to find completely novel genes without sequence similarity to known 

genes. And they are more accurate on genes for which ESTs are available. Compared 

to other de novo gene finders, TWINSCAN_EST is the most accurate program 

available for nematodes and N-SCAN_EST is the most accurate program available for 

mammals. Thus, it is highly recommended to use the EST versions of these programs 

on any genome for which there is EST information.  

These programs can also be valuable components of multi-stage “pipelines” for gene 

structure annotation. For example, a new gene annotation system has been built 

recently, in which the first stage is aligning full-ORF cDNA sequences to their native 

locus using a new cDNA-aligner, Pairagon (Arumugam et al., submitted, 

http://genes.cs.wustl.edu/BrentLab/MB-Lab-Software.html). Where there is no full-
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length cDNA to align, N-SCAN_EST predictions are used with ESTseq created from 

BLAT alignments of ESTs. This system was independently evaluated on the human 

ENCODE regions as part of the recent EGASP community evaluation (Guigo and 

Reese 2005). The results showed that the accuracy of this system was comparable to 

that of the ENSEMBL pipeline (slightly better by most measures), even though 

ENSEMBL makes use of non-human protein alignments in addition to human 

transcripts. Since native human cDNA and EST sequences may be considered 

preferable evidence compared to non-native alignments, Pairagon+N-SCAN_EST is 

an attractive option. It is also simple to use in that it does not need an elaborate list of 

heuristics to determine how the sequences from different sources should be aligned to 

each locus. Figure 3-8 showed exon-level performance of the gene annotation pipeline 

N-SCAN_EST + Pairagon and the pipeline using full-length cDNA Pairagon 

alignments only. It demonstrated that the fewer cDNAs there are the more N-

SCAN_EST improves the performance. Since there are many genomes for which 

significant numbers of ESTs are produced but few if any high quality cDNA 

sequences are produced by sequencing for full-length cDNAs, the gene annotation 

accuracy can be improved significantly for those genomes.  

Finally, it has been demonstrated that N-SCAN_EST is sufficiently specific that RT-

PCR experiments designed to amplify its predictions can produce new significant 

numbers of cDNA sequences even in the extremely well-studied genome of Homo 

sapiens.  
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Figure 3-8. The exon-level performance comparison of N-SCAN_EST+Pairagon with different 

number of cDNAs available.  

On the 31 ENCODE regions, there were 445 cDNAs aligned to them. The x axis stands for 

percentage of the 445 cDNAs included in result annotation. From left to right, 5% of cDNAs were 

randomly picked and added to Pairagon program and N-SCAN_EST+Pairagon. The curves with 

square dots stand the performance of Pairagon only, and the curves with triangle dots are of N-

SCAN_EST+Pairagon. Solid lines are for sensitivity and dotted lines are for specificity. The left 

most two triangle dots with no cDNAs on the N-SCAN_EST+Pairagon curves stand for pure N-

SCAN result.  

 

 

 

 



 

59
 

Chapter 4  

Guide Biology Experiments by Summing Over 

Consistent Prediction Models 

Although the ultimate goal of gene structure prediction is to build a system that is 

accurate enough such that experimental verification and manual curation is no longer 

necessary, no existing gene prediction system is close to that yet, especially for 

vertebrate genomes (Brent and Guigo 2004; Brent 2005). All the gene structures 

predicted computationally need to be verified experimentally. MGC (Mammalian 

Gene Collection) is such a project trying to identify and accurately sequence at least 

one full ORF-containing-cDNA clone for each human, mouse, rat and cow gene 

(Strausberg, Feingold et al. 2002). In order to reduce the time and cost for identifying 

full ORF-containing cDNAs clones, ESTs are sequenced from both ends of cDNAs. 

Because of the poly-A tail in the 3’end, the reverse transcription from RNA to cDNA 

may not extend to the 5’ end. So if a cDNA contains the start of translation, it often 

implies that this cDNA contains a full-length open reading frame (ORF). Gene 

prediction method can be used to assign a score to each 5’ EST aligned to a genomic 

sequence. This score can then be used as an index of the probability that a cDNA 

contains a full-length ORF. CDNAs with higher probability containing a full-length 

ORF will be sequenced with higher priority. Section 4.1 describes the problem of 

finding a full-length cDNA with EST alignment in a more abstract way.  The 

summation of consistent paths method is then introduced in section 4.2.  Section 4.3 

covers the simulation results of the Summation of Consistent Paths Method. Section 

4.4 discussed the effect of the method on a real data set.  
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4.1 The Problem 

Some biology experiments are expensive and time-consuming, such as finding full-

length cDNA clones (Strausberg, Feingold et al. 2002). 5’ ESTs are generated from 

cDNA clones to evaluate the probabilities that these cDNA clones contain complete 

ORFs. By analyzing these ESTs, the corresponding clones with high potential to 

contain complete ORFs are selected. Only these selected clones are sequenced to high 

accuracy. Gene prediction method can be used in the selection of full-ORF cDNAs. A 

more general and abstract form of this problem may be described as following.  

Input:    A sequence S, a gene structure model M for gene prediction and a set of 

regions R on S. 

Output:  The probability that R contains a feature A under the probability model M 

In full-length cDNA clone selection case, sequence S is a genomic sequence, model M 

can be the probabilistic gene structure model TWINSCAN, R region are the EST 

aligned regions, and feature A is the start of translation.  

Determining if an EST aligned region ( in R) contains the start of translation (A) or 

not can be done by running gene prediction on this sequence S, and comparing the 

prediction results and region in R, to see if this region contains the feature A. But if we 

already know that regions in R can only be feature A, or B in a model M, then regions 

in R themselves contain very important information for gene prediction. The method 

only comparing the gene prediction and regions in R is called a simple method. We 

can do better if we use the information that R can only be feature A or B from the 

beginning of the gene prediction. The success of integrating EST alignments with 

TWINSCAN shows that gene prediction can be improved if EST alignments are 

already known. 
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4.2 The Summation of Consistent Paths Method 

The algorithm developed here uses the EST alignment and the gene structure model to 

rank the potential of EST aligned regions containing start of translation. The method is 

called summation of consistent paths method. A trellis data structure is used for gene 

prediction. A path in this trellis corresponds to a gene structure prediction (Figure 

4-1). In TWINSCAN, only the maximum likelihood path is selected in the prediction. 

However, alternative splicing is very common in mammalian genomes, about 30% to 

60 % of human genes are estimated to have distinct alternative splicing (Modrek, 

Resch et al. 2001; Modrek and Lee 2002; Lee, Atanelov et al. 2003; Modrek and Lee 

2003). In this algorithm, all the consistent paths will be considered. The paths 

consistent with EST alignments will be classified into two categories: one is for the 

paths containing the start of translation; the other is for the paths not containing the 

start of translation. This summation method will compute the summation of 

probabilities of all the consistent paths containing the start of translation, which is 

called Yes_probability, and the summation of probabilities of all the consistent paths 

not containing the start of translation, which is called No_probability. The ratio of 

these two probabilities summation is used to represent the probability of the EST 

alignment region containing the start of translation. In practice, all the probabilities are 

represented by their log values, also called scores. The score for Yes_probability is 

called Yes_score, and the score for No_probability is called No_score. The ratio of 

Yes_probability and No_probability becomes the difference of the Yes_score and 

No_score. The advantage of this summation method is that all the suboptimal paths 

will be well represented in the final score if these suboptimal paths have very close 

scores to the optimal one. This is very important when an EST alignment is derived 

from an alternative splicing which is not predicted in the optimal path. Forward 

algorithm was used to compute the score summations.  
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Figure 4-1. An example of consistent path with EST alignment region containing the start of 

translation.  

The upper line stands for an EST (the black box) aligned to a genomics sequence. Only UTR, 

intron and intergenic states are shown in the trellis. Exon states are represented by arrowed lines 

from introns to 5’ UTRs, introns to introns or 3’UTRs to introns. Each path in the trellis 

corresponds to a gene structure prediction. If a path predicts the entire EST aligned region either 

as UTR region or coding region, then this path is a consistent path. The score summations of the 

two classes of consistent paths are calculated for each trellis cell (big black dot in the figure) by 

forward algorithm for HMM. We can get the overall summation score for two classes of paths by 

adding the two scores in the last column of the trellis. 

 

The complexity of algorithm to compute the summation scores is the same as 

TWINSCAN, which in practice, grows about linearly with the input sequence length. 

The additional time for EST alignments depends on the program used to do spliced 

alignment.     
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4.3 Simulation Result 

The efficiency of this algorithm was tested in a simulation data set in which 364 single 

gene sequences were from GENSCAN training data sets. Two artificial ESTs for each 

gene were generated: One is “good”, which is from 100bps upstream of the start of 

translation and with size 500 bps; the other is “bad”, which is from 100 bps 

downstream of the start of translation and also with size 500 bps. Thus, the “good” 

EST contained the translation start, and the “bad” EST did not contain the start of 

translation. The algorithm assigned a score to each EST, and then a threshold could be 

picked to separate good ESTs (predicted) from bad ESTs (predicted). The efficiency 

of this algorithm could be tested by the ratio of good ESTs being predicted as good 

ESTs (true positive) and the ratio of bad ESTs being predicted as good ESTs (false 

positive).  

If value 1.2 is chosen as the threshold for Yes_score – No_score, all the ESTs with 

Yes_score-No_score larger or equal to 1.2 are predicted as good EST  or otherwise as 

bad EST. 182 (50%) of the good ESTs are predicted as good ESTs, while 92(25%) of 

the bad ESTs are predicted as good ESTs. If we have 100 good ESTs and 100 bad 

EST before the procedure, we need 200 experiments to get 100 full ORF-containing 

cDNAs. The success rate is about 50%. After the procedure, the number of clones will 

be sequenced is 50+25 = 75, and 50 will get full ORF-containing cDNA. So the 

success rate goes up to 67%. If we have 100 good ESTs and 900 bad EST before the 

procedure, we need 1000 experiments to get 100 full ORF-containing cDNA. The 

success rate is about 10%. After the procedure, the number of clones will be 

sequenced is 50+225 = 275, and 50 will get full ORF-containing cDNA. So the 

success rate goes up to 18%, almost doubled.  

4.4 Experiment Result 

A real data set was constructed to test the efficiency of the algorithm. 26,991 ESTs 

whose cDNA clones had been picked to sequence to high accuracy in MGC were 
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downloaded from ftp://ftp1.nci.nih.gov/pub/MGC/ on 10/29/2002, and 13,526 RefSeq 

genes were downloaded from 

http://genome.ucsc.edu/goldenPath/28jun2002/database/refGene.txt.gz. 3611 ESTs 

had matched region larger than 95% when 26,991 ESTs were aligned to RefSeq 

cDNAs using BLASTN. These 3611 ESTs were divided into good and bad groups by 

aligning them using BLAT to the genomic locus of the RefSeq with an additional 

1000 bases at each end. There were 2558 good ESTs and 1053 bad ESTs, and each 

EST had its RefSeq DNA sequence.  The summation algorithm has been tested on this 

real data set.  The results are shown in (Table 4-1). 52% of the Good ESTs were 

predicted as Good ESTs while only 29% of the bad ESTs were predicted as Good 

ESTs. The results are consistent with our simulation results.  

Table 4-1. Efficiency of summation method.   

3611 RefSeq genes, 2558 good ESTs and 1053 bad ESTs. 

 Good EST Bad EST 

Predicted as Good EST 51.96% 28.84% 

Predicted as Bad EST 48.04% 71.16% 

 

The effect of simple method on this data set was examined by running TWINSCAN 

on these genomic sequences aligned by the RefSeq sequences with 1000 additional 

bases on both ends and comparing the prediction results and the EST alignments.  The 

result was compared to algorithms used in MGC project. Results are shown in Table 

4-2. Since the total probability is the probability of all the gene models that are 

consistent with the EST alignment, the longer an EST is the higher will be the total 

score. There is no normalization procedure involved here. It might help if scores is 

normalized by the length of genomic sequences and ESTs. Different strategy of 

normalization might also improve the method’s accuracy. The gene structure modeling 
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for gene prediction has been improved in many aspects, such as explicit intron length 

distribution model and non-canonical splicing site models. Eventually, these 

improvements in gene structure modeling can impact the accuracy of the full ORF-

containing cDNA clone selection too.  

Table 4-2. Efficiency of simple method.  

3611 RefSeq genes, 2558 good ESTs and 1053 bad ESTs were used for the TWINSCAN simple 

method. * For algorithms used in MGC clone selection algorithms,  the dataset contained 3255 

RefSeq genes, and each RefSeq gene has one good EST and one bad EST(Strausberg, Feingold et 

al. 2002).  

 Good ESTs 
predicted as Good ESTs

Bad ESTs 
predicted as Good ESTs 

*Protein homology 

*GenomeScan 
*HKScan 

25% 

35% 
50% 

5% 

6% 
23% 

TWINSCAN 45% 4% 
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Chapter 5  

EST-to-Genome Alignment with 

 Sequencing Quality Values 
 

Accurate alignment of ESTs, cDNAs, mRNAs or protein sequences to genomic 

sequence is critical to many bioinformatics applications such as gene prediction, single 

nucleotide polymorphism (SNP) detection and alternative splicing finding. It is also 

called spliced alignment because when a transcript product is aligned to a genomic 

sequence, the introns appear as gaps in the alignment. This Chapter starts with a brief 

review of spliced alignment algorithms. Then sequencing quality value is introduced 

in Section 5.2. Single nucleotide polymorphism is described briefly in Section 5.3. 

Section 5.4 describes a graphical model to represent the error patterns in a correct 

alignment arising from sequencing error and polymorphism (or evolution divergence 

if aligned cDNA and genomic sequence are from different organisms). A pair Hidden 

Markov Model (pair HMM) for spliced alignment is covered in Section 5.5. A 

bootstrap parameter estimation procedure is introduced for QPAIRAGON in Section 

5.6. Section 5.7 covers the stepping stone algorithm and intron cutout algorithm to 

improve the speed and reduce the memory requirement of the pair HMM. The 

experiment data set for the program is presented in Section 5.8. Section 5.9 introduces 

a novel accuracy measurement for spliced alignment algorithms based on known 

single nucleotide polymorphisms. Section 5.10 compares the results of different 

alignment algorithms on the data set described in Section 5.9. Section 5.11 discusses 

the effect of alignment programs on gene prediction by replacing the default alignment 

program BLAT with the new alignment program QPAIRAGON. Section 5.12 
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compared the effects of different spliced alignment programs on crossing-species 

alignment. Some QPAIRAGON alignment examples are shown in Section 5.13. The 

behavior of QPAIRAGON is discussed with these examples. Section 5.14 introduces 

posterior probability to measure the reliability of alignments.  The last section contains 

conclusions and discussions.   

5.1 Spliced Alignment 

Aligning a transcript product, such as an EST, cDNA and mRNA to a genomic 

sequence is different from aligning a genomic sequence to another genomic sequence.  

When a transcript, an EST for example, is aligned to a genomic sequence, segments of 

it will be spliced at the splice sites and aligned to different regions of the genomic 

sequence.  If an EST sequence is perfect and there is no SNP difference between the 

EST and the genome sequence, then its alignment to a genomic sequence will provide 

unquestionably exact exon-intron structure of the gene regions it covers, including 

both the coding regions and UTRs. However, EST-to-genome alignment is a difficult 

problem because of the low sequence quality, SNPs and other issues such as strand 

uncertainty (Kan, Rouchka et al. 2001) and all kinds of contaminating sequences, such 

as those cloning vectors, intron sequences, chimeric sequences, unspliced pre-

messenger RNAs and genomic DNAs (Wolfsberg and Landsman 1997).   

A number of algorithms have been developed for EST-to-genomic alignment (Huang, 

Adams et al. 1997; Mott 1997; Florea, Hartzell et al. 1998; Usuka, Zhu et al. 2000; 

Wheelan, Church et al. 2001; Kent 2002; Brendel, Xing et al. 2004; Zhang and Gish 

2006). In general, these existing spliced sequence alignment methods can be classified 

into two categories. One uses heuristic strategy like BLAST (Altschul, Gish et al. 

1990; Altschul, Madden et al. 1997) and the other uses dynamic programming to find 

an optimal solution. Sim4(Florea, Hartzell et al. 1998), Spidey (Wheelan, Church et al. 

2001) and BLAT (Kent 2002) belong to the first category.  Sim4 finds identical seed 

words of length 12, and then extends on both directions with a greedy algorithm. 

Shorter seeds are used to fill unaligned regions. BLAT, which is short for “BLAST-
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like alignment tool”, was designed to align millions ESTs against the whole human 

genome. It speeded up the alignment by indexing and storing the whole human 

genome in memory. EST_GENOME (Mott 1997), dds/gap2 (Huang, Adams et al. 

1997), GeneSeqer (Usuka, Zhu et al. 2000) and EXALIN (Zhang and Gish 2006) 

belong to the second category. EST_GENOME uses dynamic programming to find the 

optimal spliced alignment for each given score scheme. It also incorporates splice site 

signals by preferring GT at donor and AG at acceptor site. All other methods in the 

second category use a 2-stage strategy to speed up the alignment, though dynamic 

programming is used in the second stages to improve the alignment quality. EXALIN 

incorporates PSSM splice site models into the dynamic programming it employ for 

spliced sequence alignment. GeneSeqer uses a Hidden Markov Model on the second 

stage of fine tuning. The heuristic methods are generally much faster than the full 

dynamic programming methods, though their alignment accuracy is lower. The 

alignment accuracy can be improved by integrating splicing site models (Usuka, Zhu 

et al. 2000; Zhang and Gish 2006).  

High quality EST-to-genome alignment is critical for many computational biology 

applications. Any increase in the alignment accuracy will improve our understanding 

of genomic biology procedures such as splicing and consequent wet lab experiment 

results as well. However, a correct alignment of an EST base to a genome can be a 

non-match. The two major reasons are the sequencing errors and SNPs (see Section 

5.3). The sequencing quality values introduced in the next section can be an extra 

resource to improve the alignment quality. 

5.2 Sequencing Quality Values 

Sequencing quality values are computed by base-calling programs such as  PHRED 

(Ewing and Green 1998; Ewing, Hillier et al. 1998). A quality value  

)(log10 10 pq ×−=                                    (5.1) 
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 is assigned to each base call, where p is the estimated error probability for the base 

call. The quality values give a measure of the reliability of the sequence and they can 

greatly improve the assemble accuracy in some sequencing projects. For EST-to-

genome alignment, if the quality value at each base is used, then the alignment will 

combine not only the alignment of the EST sequence and the genome sequence, but 

also the reliability of the EST sequence. A match in a high-quality region can have a 

higher score (probability) than a match in a low-quality region; and a mismatch, 

insertion or deletion in a high-quality region can have a higher penalty than a match in 

a low-quality region. In this way, we may expect that the effect of the sequencing error 

on the EST-to-genome alignment can be reduced. However, none of the existing 

spliced alignment algorithms has used the EST sequencing quality values. 

NCBI Trace Archive (http://www.ncbi.nlm.nih.gov/Traces) is a repository of the raw 

sequence traces. It contains both sequence and the quality value of the EST reads. Up 

to September 25, 2005, 1,953,938 human EST reads could be downloaded, of which 

492,492 reads had non-zero quality values and their quality value sequence lengths 

were consistent with length of the read sequences. Figure 5-1 shows the average 

quality value distribution counted from these reads. For each EST, only the largest 

region with less than 25 expected error bases is counted. The average quality values 

from the first 150 bases and last 400 bases of this region are displayed on left and right 

side of the figure respectively. If a region was shorter than 150 bases, then all its bases 

were counted in the first 150 base. Similarly, all the bases were counted in the last 

400-base statistics if a read is shorter than 400 bases. The figure shows the general 

quality value distribution in a read sequence.  A read sequence has lower quality 

values at both ends, and the quality values become higher as it gets away from both 

ends. 
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Figure 5-1. Sequencing quality value distribution.  

The average quality value at each position is shown in this picture. The left part (-150 to 0) 

represents quality value distribution on the first 150 bases. The right part (0 to 400) represents 

quality values distribution on the last 400 bases. The average values were counted from the 

human reads with non-zero quality values.  

5.2.1 Sequencing Error Patterns 

Different types of errors may happen during sequencing. Error types include 

substitutions, insertions, deletions and ambiguous bases. Although the error rate 

generally decreases when the sequencing quality value grows, it is instructive to 

investigate the distribution of different error types. Ewing and Green reported the 

sequencing error type distributions of automated sequencer traces using Phred on 

some mammalian clones and C. elegans clones (Ewing and Green 1998).  Based on 

the number of errors reported in the paper, the overall error distribution can be derived 

for different patterns. 71% of the errors are substitutions, 17% are deletions, 8% are 

insertions and 4% are undecided bases. These numbers of error pattern distribution 

might vary due to many elements in different sequencing projects. Since these were 

the only data reported at the time, they were used to guide parameter estimation for the 

new spliced-sequence alignment method, which is covered in Section 5.6 below.   
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5.3 Single Nucleotide Polymorphism (SNP)  

A Single Nucleotide Polymorphism, or SNP, is a small genetic change or variation 

that occurs within a person’s DNA sequence when a single nucleotide replaces one of 

the other three nucleotides. Generally, a SNP only presents in a small percentage of 

the whole population. Since the protein coding regions are only about one percent of 

the whole human genome, most of the SNPs occur in non-coding region. Many 

common human diseases are believed to be caused by some SNPs especially those in 

coding regions. Therefore, SNPs are very important for disease diagnoses and drug 

development. Millions of SNPs in the human genome have been found 

(Sachidanandam, Weissman et al. 2001). A SNP can be represented by letters 

separated by a “/”, such as “A/G” stands for an “A” being replaced by a “G” or a “G” 

by an “A”. Among all the known SNPs, the most common SNP is “C/T”. 

ESTs are deposited into database from different research groups on different projects 

all over the world, therefore they may come from a different individual than the 

genome does. When an EST is aligned to the genome, and they are from different 

individuals, a correct alignment of an EST base to a genome can be a non-match even 

if the EST itself is error free, since it may be caused by a SNP between the EST and 

the genome.  

5.4 A Graphical Model for Error Patterns in Correct 

Alignments 

In a HMM, each state can have a state-specific model for emission. A graphical model 

can be introduced for each state in the pair HMM to integrate the sequencing quality 

values into sequence alignment. Figure 5-2 shows the model and null-model to 

represent the error patterns of correct alignments. RG stands for the true sequence of 

the reference genome, from which the genomic sequence is derived, EG for the true 

sequence of the EST genome, from which the EST sequence is derived, and EC for the 

EST base call obtained by sequencing procedure. RG and EC are observable while EG 
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is a hidden variable. EC is determined by the EG and the quality value state “qual”. 

When aligning a base of an EST sequence (ECs from an EG) to a base of a genomic 

sequence (from an RG), a correct alignment can be other than a match. If the EG and 

RG are from the same species, without considering contaminations, a correct non-

match alignment may be caused by sequencing errors (from EG to EC) and/or SNPs 

(between RG and EG) or other elements such as RNA editing. But sequencing error 

and/or SNPs account for the vast majority of the differences. If the EG and RG are 

from different species, it may be caused by sequencing error from EG to EC and/or 

evolutionary divergence between the EG and RG. The undirected edge between RG 

and EG represents an association relationship between them. The graphical model 

shown on the left side of the figure represents when the reference genome and EST 

genome are not independent to each other. The null-model shown in the right side of 

the figure represents that the reference genome and EST genome are independent to 

each other, which means two random sequences are being aligned.  As in many 

HMMs, the optimal likelihood ratio of the model and null-model may be computed to 

represent the best alignment of the two sequences.   

RG  R G  

EG  

qual EC  

EG  

qualEC

M odel Null-M odel

 

Figure 5-2. A Graphical model for EST-to-genome alignment with quality value sequence.  

“RG” stands for the reference genome, “EG” for the EST genome, “EC” for EST base calls, and 

“qual” for quality values of the base calls. Left part of the figure is the model and the right part is 

the null-model. The undirected edge in model means that “RG” and “EG” are not independent of 

each other. In the null-model, the “RG” and “EG” are independent to each other. 
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Under this graphical model, the reference genome base (RG) is independent of the 

EST base call (EC) given the EST genome base (EG).  Therefore, the probability of 

observing an EC base and an RG base given a quality value q can be expressed as  

∑∑ ==
EGEG

EGRGqEGECqRGEGECqRGEC ))|Pr()|,(Pr()|,,Pr()|,(Prmod    (5.2); 

Under the null model, because the reference genome base (RG) is independent of the 

EST genome base (EG), the probability of observing an EC and RG given a quality 

value q is  

 ∑∑ ==
EGEG

null RGqEGECqRGEGECqRGEC ))Pr()|,(Pr()|,,Pr()|,(Pr mod_   (5.3). 

In practice, log-scale scores replace the probabilities. The score of the model and null-

model could be represented as 

∑
∑

=

EG

EG

RGqEGEC

EGRGqEGEC
qRGECS

))Pr()|,(Pr(

))|Pr()|,(Pr(
log)|,(           (5.4). 

When aligning human ESTs to human genomic sequences,  can be 

calculated from sequencing error pattern distribution;  can be calculated 

from human SNP data and Pr(RG) can be estimated from the whole human genome 

sequence.   

)|,Pr( qEGEC

)|Pr( EGRG

From equation (5.1), the overall probability that a nucleotide base with quality value q 

is an error is . The overall error includes 12 different types of substitutions, 

4 types of insertions and 4 types of deletions, and ambiguous EST bases. The 

following equation (5.5) describes how to compute   from the 

sequencing error pattern distribution reported in Section 5.2.1.  

10/10 qp −=

)|,Pr( qEGEC
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             (5.5). 

The parameter estimation method introduced above assumes linear gap penalty, i.e. 

there is no differentiation between gap open penalty and gap continuous penalty. The 

parameter estimated by this method can be used to parameterize a HMM which has 

equivalent linear gap penalty. Figure 5-3 shows the theoretical alignment scores 

estimated as mentioned above using the sequencing error distribution from the Phred 

paper (Ewing and Green 1998) and SNP statistics from the 4.2 million SNPs 

downloaded from ftp://ftp.ncbi.nih.gov/snp/human/rs_fasta (November 3rd, 2004). 

When the quality value is getting lower, the gain of a mach goes down and the penalty 

for a mismatch and indel also becomes smaller. For all quality values, the penalty of 

the substitution is smaller than the penalty of a deletion and the penalty of a deletion is 

smaller than that of the insertion. Therefore the substitution is more likely than 

deletion and deletion is more likely than an insertion for all the quality values. This is 

consistent with the sequencing error distribution reported in (Ewing and Green 1998).   
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Figure 5-3. Alignment scores estimated from the Graphical model.  

Scores are estimated as described in section 5.5. From top to bottom, the line with diamonds is for 

the matches, squares for mismatches, triangles for cDNA insertions and * for deletions. When 

quality value is getting lower, the gain of a mach goes down and the penalty for a mismatch and 

indel also become smaller. All insertion and deletion scores shown here are for length one.  

 

The theoretical parameter estimation approach introduced in this Section does not 

depend on any existing spliced alignment programs and it has the potential to be 

extended to cross-species alignment by replacing the polymorphism part with cross-

species evolution divergence. However, the score matrix derived by this method only 

has linear penalty for gaps and the conversion from the scores derived from this 

graphical model to a pairHMM framework is not unique. The pairHMM framework 

naturally supports affine score scheme for all states, which differentiates the state 

opening and state continuation.  The parameters for QPAIRAGON can be estimated 
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by this way or, alternatively, by running other spliced alignment program, such as 

EST_GENOME, on some data set and re-estimating QPAIRAGON parameters from 

the alignments.   

5.5 Pair HMM for Sequence Alignment 

Our new EST-genome alignment algorithm uses EST sequencing quality values as 

well as the EST sequence and the genomic sequences to improve the alignment 

accuracy. In order to speed up the computing, a two-stage alignment strategy is used 

by most fast alignment algorithms (Florea, Hartzell et al. 1998; Usuka, Zhu et al. 

2000; Kent 2002). The first stage is a fast search stage to find regions of the two 

sequences that are likely to be homologous. Then, a dynamic programming stage is 

used to find more accurate and reliable alignments. The system developed here uses 

existing fast alignment program BLAST to do the first stage fast search. The focus of 

this section is on the second alignment stage. 

5.5.1 Pair HMM for Sequence Alignment  

The model used for the second alignment stage was a pair HMM (Durbin 1998). A 

standard pair HMM for genome-to-genome sequence alignment is reviewed in Section 

2.6. For EST-to-genome alignment, the standard pair HMM was modified to include 

intron states for genomic sequence only. In a pair HMM using sequencing-quality 

value, the inputs are three sequences: a genomic sequence, an EST sequence, and a 

quality value sequence for the EST sequence. The diagram of the algorithm is shown 

in Figure 5-4. “M” is for match and mismatch and “In” for intron state emitting only 

genomic sequence. “Enter” and “Exit” corresponds to the splice donor site and 

acceptor site. In practice, they contain the first two bases of 5’ end of an intron and the 

last two bases at the 3’ end of an intron. “G” and “C” states are for insertions in 

genomic sequence and EST sequence respectively. “RC” and “RG” states are for 

random cDNA and random genomic sequences. They are introduced to deal with 

genomic or cDNA overhang on one or two ends. The little “q”s in the diagram stand 
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for the emission scores of the states. In the states, is the score of emitting an  

from the genomic sequence; is the score of emitting a  from the cDNA/EST 

sequence; and is the score of emitting a  pair from both sequences 

with as the sequencing quality value at position j of the cDNA/EST sequence.   

ixq ix

jj zyq jy

jji zyxq ),( ji yx

jz
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Figure 5-4. Diagram of pair wise alignment HMM for integrating sequencing quality value to 

spliced alignment.  

The small circle states, which do not generate any symbol, are presented for convenience.  is 

the  base in the genomics sequence, and  and  are the base and the quality value for the   

base in the EST sequence.  RG1, RC1, RG2 and RC2 are random model states. The alignment 

result is a local alignment by using these four random model states. M is for match and 

mismatch; In for intron state in the genomic sequence; and G and C states for inserts in genomic 

sequence and EST sequence respectively. Note that only genomic sequence has intron state. And 

the splice site models are enforced in the transition from M state to In state. There are different 

Intron states representing different type of Intron patterns, and for different orientations. To 

make it simple, only one Intron state is shown in this figure.  

ix
thi jy jz

5.5.2 Viterbi Algorithm for Pair HMM 

Chapter 2 introduced a pair HMM for sequence alignment. Assuming there is no 

sequence quality values involved, the most probable path or the best alignment can be 
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computed by Viterbi algorithm for the model shown in Section 5.5.1. If stands 

for the probability of the most likely path that ends in state k having emitted  

of the genomic sequence and  of the EST sequence. Let n and m be the length 

of the genomic sequence and the EST sequence respectively, then Viterbi algorithm 

for the pair HMM in Section 5.5.1 can be expressed as below. 

),( jiv k

ixx ,...,1

jyy ,...,1

 

Viterbi algorithm for the pair HMM in Section 5.5.1 

Initialization: , ,  and all 

other  and  are set to 0, where 

)()0,0( MInitv M = )()0,0( 1
1 RGInitv RG = )()0,0( 1

1 CGInitvCG =

)0,(iv k ),0( jvk ni ≤≤1  and mj ≤≤1 . 

Recursion:      i=1, …, n, j=1, …, m;  
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Termination:   . ),(max mnvv l

l

end =

  

lka is the transition probability between state l  and k.  is the probability of 

state k emitting . is the probability of state k emitting  only and 

is the probability of state k emitting  only.  is for all legal transitions to 

k (from l ).   

),( jik yxe

),( ji yx )( ik xe ix

)( jk ye jy
l

max

 

The integrating of quality values into the HMM can be considered as follows. For a 

state emitting a symbol  or a pair of symbols ( , ), its emission probability will 

be changed to a quality-dependent probability, i.e.  replaces  and 

jy ix jy

)|Pr( jj zy )Pr( jy
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)|,Pr( jji zyx replaces . If a state emits an EST/cDNA base, the transition 

probability out of this state is also dependent on the neighboring quality value. Thus, 

in Viterbi Algorithm for the pairHMM, the recursion for  will be the same 

except that the state transition probability and emissions probability are changed to 

quality dependent.  

),Pr( ji yx

),( jiv k

 

The splice site models are enforced in the transition between the “M“ state and “In” 

state. Canonical intron structures like GT/AG and GC/AG can have much lower intron 

penalties than non-canonical intron structures like “AT/AG”. 

5.5.3 Algorithm Complexity 

Since a spliced alignment algorithm needs to deal with thousands or even millions of 

EST sequences, speed is an important issue. The computation complexity of a naive 

implementation is , where N is the number of states in the HMM, and G and 

E are the length of genomic sequence and EST sequence respectively. The memory 

requirement is . For large size sequences, this may be a problem. For 

example, if G=100kb, E=500b, N=15, and each cell in the trellis requires 12 bytes, 

then 9 GB memory is needed to run this alignment for a naive implementation. It is 

not rare that the value of G is in several hundred Kb. Section 5.5 presents a stepping 

stone algorithm to constrain the alignment within a bounded area so that to speed up 

the program and reduce memory requirement as well. Section 5.6 introduces a method 

to cutout long intron regions under a certain condition which may further increase the 

speed and reduce the memory requirement.  

)( 2GENO

)(NGEO

5.6 Bootstrapping Parameter Estimation for QPAIRAGON 

Since no existing EST-to-genome alignment program has used the sequencing quality 

value, there was no reliable training data for QPAIRAGON. A bootstrapping 
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parameter estimation is introduced in this section. EST_GENOME alignments on the 

Set B described in Section 5.9 were used to re-estimate parameters for QPAIRAGON. 

 A simple Gaussian smoothing was applied to smooth the counts with different quality 

values. For each state in the pairHMM, a Gaussian window of size 9 with standard 

deviation 2 was slid through counts for all the quality values.  In other words, assume 

 is the original number of matches with quality value q and qm 4*2

2

exp1)(
i

A
ig

−
= , 

where ∑
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−
=

4

4
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A  and 44 ≤≤− i . The count for quality value q after smoothing 

becomes . We assume m(q)=m(0) for  , and 
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Figure 5-5 shows the re-estimated alignment scores from EST_GENOME alignments 

on three-fourths of Set B. The scores shown in the figure are for match, mismatch, 

insertion open, deletion open, insertion continuation and deletion continuation. When 

the quality value decreases, the match score decreases and mismatch penalty 

decreases. It also shows that short indels are preferred when quality values decrease 

since the indel continuation penalties increase. Compared to the theoretical scores 

shown in Figure 5-3, the re-estimated penalties for mismatches and indel opens are 

bigger than their theoretical values especially on low sequencing quality region. This 

may be caused by not including many low quality value regions in the 

EST_GENOME alignment results. The lines for indel open and indel continue show 

that when the quality value decrease, the probability of short indel increase since the 

indel continue penalty grows while the indel open penalty decreases.  
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Figure 5-5. Re-estimated alignment scores from EST_GENOME alignments. The training set was 

three fourth of the EST_GENOME alignments on data set B.   

 

5.7 Stepping Stone Algorithm and Cutout Intron Algorithm  

A naive implementation of a pairHMM requires  and O(NGE) for time and 

space complexity. The stepping stone algorithm and cutout-intron algorithm are the 

algorithms introduced to reduce both the computing time and memory requirements.  

)( 2GENO

5.7.1 Stepping Stone Algorithm 

The stepping stone algorithm was a heuristic algorithm introduced for a DNA-to-DNA 

sequence alignment pair HMM (Meyer and Durbin 2002). Both its speed and memory 

will be scaled linearly with the sequence length for a DNA-to-DNA sequence 

alignment if the two DNA sequences are homologous. The stepping stone algorithm 
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was modified for EST-to-genome alignment with quality values. The main idea of a 

stepping stone is that strong similarity between subsequences of a cDNA and a 

genomic sequence can be used as guidelines to restrict the space of Viterbi algorithm. 

A simple example of a stepping stone run with two subsequences of strong similarity 

is shown in Figure 5-6. Highest scoring pairs (HSPs) are local alignments with score 

higher than a certain threshold. They are diagonal lines in the (X, Y) plane. In the 

stepping stone algorithm, the pins (the black dots in figure) need to be generated first. 

A pin is a point in a HSP with at least a certain length, for example 20 bases, of high 

quality alignments on both directions. Pins can be determined by a fast sequence 

alignment program first. They stand for regions with highly reliable alignments. In our 

implementation, HSPs were generated first by running BLASTN for the cDNA and 

genomic sequences. The subsequence with the strongest similarity (the HSP with 

highest score from BLASTN) was picked first, and then the best HSP consistent with 

the picked HSPs was picked from the remaining HSPs. Here, “consistent” means that 

the two HSPs do not overlap with each other more than a certain number of length, for 

example 10 bases, in either genomic or cDNA sequence coordinates. Each HSP is 

checked to see if there is a high quality alignment region (with at most two non-

matches in a continuous 40-base region) starting from each end of the HSP. If a high 

quality alignment region is found, the middle point of a high quality alignment region 

is called a pin. Rectangles were then created based on the pins, with additional 20 

bases on each side of a pin. The additional 20 bases are added so that the ends of 

exons can move freely across the rectangle to the adjacent exon. Viterbi algorithm ran 

inside those small rectangles. When computing the optimal path in the next small 

rectangle, the values computed in the small overlapped square between the two 

rectangles will be used to initialize the scores for the next rectangle. This procedure is 

repeated until the ends of the cDNA sequence and the genomic sequence are both 

reached. The optimal path is then retrieved by tracing back from the bottom-right 

corner to the top-left corner.   
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Figure 5-6. An example of Stepping Stone Algorithm with two regions of strong similarity.  

This Figure shows constraints on the 2-dimension plane spanned by a genomic sequence X and a 

cDNA sequence Y.  The third dimension is the state dimension, on which there is no restriction. 

The thick diagonal lines strand those strong similarity subsequences determined by the best HSPs 

in BLASTN. The black dots near the end of the diagonal lines are the alignment pins. The actual 

search only uses these regions inside the rectangles.   

 

The benefit of the stepping stone algorithm is that the speed will be increased and 

space requirement will be reduced significantly. More specifically, the time for an 

alignment of a cDNA and a genomic sequence depends on the number and position of 

the pins. The memory requirement is reduced by about half with one pin near the 

middle area, and about two third if two pins appear evenly along the diagonal line. The 

speed is brought up approximately two and three times respectively as well. In 

general, if there are n pins distributed roughly even in the 2-dimension plane, both the 

space and time requirement will be reduced to 1/n of the original ones. In human 

ESTs, the average number of HSPs per ESTs is about 3. Each HSP generally produces 

one to two pins, thus we expect to have 3 to 6 pins for each alignment with stepping 

stone algorithm.  Therefore, the total saving on time or space is about 3 to 6 times. 
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5.7.2 Cutout Intron Algorithm 

The speed and memory requirement can be further improved by cutting out large 

intron regions under certain circumstances. Figure 5-7 shows an example of how an 

intron region can be cut out. There are two high quality aligned regions (HSPs A and 

B in the figure) with overlapped ends in cDNA coordinates. If in both A and B, the 

regions near the overlapped ends are all matches, which means both of them are high 

quality alignments between the genomic sequence and the cDNA sequence, then a 

potential exon in the region between the two HSPs can only be generated by moving 

matches from one or two of the neighboring HSPs. The penalty in overall score by 

introducing an extra intron is MInInM TTP ,, += , where  is the transition score 

from a match state to an intron state and  for a transition from an intron state to a 

match state.  The gain in overall score by introducing an extra intron is the summation 

of compensation for the intron donor and acceptor splice sites which are noted as D 

and A.  In the model shown in Section 5.5, the intron and match length distributions 

are all geometric. The values of D and A for a canonical intron are about 40 

maximally, while the penalty P is about 200 if the average intron length and exon 

length are 5400 and 230 respectively. Overall gain in score by introducing an extra 

intron is about -120. Since the final alignment is the optimal path within the 

constrained area, extra intron is not preferred for this region. Therefore, the region 

between these two high quality HSPs can only contain an intron instead of two or 

more. We may cut out this region safely if the genomic coordinates of HSPs A and B 

are sufficiently different from each other. The program has an option to activate this 

operation. If this option is activated, all input HSPs are checked for their quality and 

relative positions to each other. If two input HSPs with high alignment quality are 

overlapping to each other in cDNA coordinates while the difference between their 

genomic coordinates is larger than 40 bases, the region except extra 20 bases on both 

ends can be cutout. The score of cutout intron region is compensated in the intron state 

of the first position flanking the cutout region. The cutout intron regions will be 

recovered before the final alignment result is reported.  

InMT ,

MInT ,
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Figure 5-7. Intron Cutout Algorithm.  

 

5.7.3 The Improvement from Stepping Stone Algorithm 

A program called QPAIRAGON has been developed based on the algorithms 

described as above. It may be run with or without the option for stepping stone 

algorithm. The computing time was collected for QPAIRAGON on Set B with or 

without the stepping stone algorithm option. The average time for an EST-to-genome 

alignment in Set B is 256 second without stepping stone algorithm and 37 seconds 

with the stepping stone algorithm. With 2GB memory limit, 3152 of the total 3214 

ESTs are aligned with stepping stone algorithm while only 1334 can be aligned 

without using stepping stone algorithm. 

5.8 Experiment Data Sets  

The 492,492 human EST reads with non-zero quality values were aligned to human 

genome sequences by BLAT.  The alignments were then clustered based on their 
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genomic coordinates. An EST alignment was added to a cluster if its genomic 

coordinates overlapped with at least one base. Then the start and end positions of the 

cluster were determined by the smallest and largest coordinates of all the ESTs 

included in the cluster. At the end, there were 4202, 2302, 1032, 553 and 868 clusters 

in human genome chromosome 1, 5, 20, 21 and 22 respectively. No cluster overlaps 

any other cluster. Two datasets were created from these EST clusters. Set A contained 

all the ESTs and their aligned genomic sequences which included 10,000 bases on 

both ends in addition to the aligned regions. For Set B, the best EST alignments with 

largest match size inside each cluster was picked first, then the next best one that did 

not overlap with the picked ones was selected. This procedure was repeated until all 

the EST reads in the cluster were checked once. Set B contained selected ESTs only 

and their genomic sequences. The characters of each data set are shown in Table 5-1, 

Table 5-2 respectively. The genomic sequence parts of these two sets were the same. 

QPAIRAGON parameters were estimated from Set B and tested on Set B in a 4-fold 

cross validation. Set A was used to test the effect of different splice alignment 

programs on gene prediction.   

Table 5-1. Characters of ESTs in Set A.  

This data set contains all ESTs aligned to chromosome 20, 21 and 22. An EST is called aligned if 

the number of matches is at least 50% of the length of this EST.  

 EST 
Clusters 

EST 
Number 

Total EST 
Bases 

Average 
EST 

Length 

Total 
Genomic 
Bases 

Average 
Genomic 
Length 

Chr20 1,032 10,350 9,617,593 929 38,595,912 37,399 

Chr21 553 4,188 3,852,454 919 18,806,503 34,008 

Chr22 868 9,215 8,470,883 919 29,946,297 34,500 

Total 2,453 23,753 21,940,930 924 87,348,712 35,609 
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Table 5-2. Characters of ESTs in Set B.  

This data set contains the best non-overlapping ESTs. The genomic sequences are the same as 

those in Set A.  ESTs and their genomic sequences on chromosome 1 and 5 are added in a similar 

way. 

 EST 
Clusters 

EST 
Number 

Total EST 
Bases 

Average 
EST 

Length 

Total 
Genomic 
Bases 

Average 
Genomic 
length 

Chr20 1,032 1,291 1,222,541 946 38,595,912 37,399 

Chr21 553 646 597,563 925 18,806,503 34,008 

Chr22 868 1,116 1,063,444 944 29,946,297 34,500 

Chr1 4,202 5,124 4,860,839 948 138,740,552 33,017 

Chr5 2,302 2,762 2,609,351 944 83,450,782 36,251 

Total 8,957 10,939 10,353,738 947 309,540,046 34,558 

 

 

5.9 Measuring Spliced Alignment Algorithm Accuracy  

Many accuracy measurements have been introduced to evaluate spliced alignment 

algorithms. The most popular one is aligning artificially mutated cDNA sequences 

with different levels of error to genomic sequences, and counting the number of 

accurate intron-exon structures based on manually curated intron-exon structure 

annotations (Florea, Hartzell et al. 1998; Wheelan, Church et al. 2001; Schlueter, 

Dong et al. 2003).  Here, we present a new accuracy measurement, in which the 

number of matches, mismatches and mismatches explained by SNPs are counted. A 

mismatch is explained if it happens in a location of a SNP and can be confirmed by the 

SNP. The advantage of this measure is that it can explain some mismatches that 

otherwise can not be explained by other accuracy measures and it assesses the 

alignment quality directly.  
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5.9.1 The Same Alignment in Different Forms 

Some alignments are essentially the same, but different programs create them in 

different forms. Figure 5-8 shows an example that the EST gaps in an alignment can 

move around within a certain range, which can eventually affect the mismatch 

position. However, all the alignments have the same alignment score if the score 

matrix depends on the genomic sequence and the EST sequence only.  

  chr22     14418  GGGGTTGGGGGCGGGGGGGGGGGGGGGTTGGTGTTGAG    14455 
                    |||||||||||||||| ||||||||  ||||||||||| 

Ti|159693084   532  GGGGTTGGGGGCGGGGTGGGGGGGG--TTGGTGTTGAG     567 

 

  chr22     14418  GGGGTTGGGGGCGGGGGGGGGGGGGGGTTGGTGTTGAG    14455 
                    ||||||||||||  |||| ||||||||||||||||||| 

Ti|159693084   532  GGGGTTGGGGGC--GGGGTGGGGGGGGTTGGTGTTGAG     567 

 

  chr22     14418  GGGGTTGGGGGCGGGGGGGGGGGGGGGTTGGTGTTGAG    14455 
                    |||||||||||||||| ||  |||||||||||||||||| 

Ti|159693084   532  GGGGTTGGGGGCGGGGTGG--GGGGGGGTTGGTGTTGAG     567 

 
Figure 5-8. Alignment Result Normalization.  

Three alignments with the same alignment score shown here have mismatches in different 

positions. In all three alignments, the first line is a genomic sequence from human genome 

chromosome 22, the third line is the EST read sequence with id 159693084, and the second line is 

the alignment sequence. In the alignment sequences, “|” stands for a match and a blank space  

stands for a mismatch or an indel. “-" in the EST sequence is for a gap. The mismatch at position 

(14434, 548) can be (14436, 550) as well if the two EST gaps at (14442, 557) and (14443, 558) were 

moved to position(s) before (14434, 548). Different programs may give different forms to the 

alignments, but there is no basis for preferring one over another using the information shown 

here.  
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Since the SNP location itself depends on alignment similar to the alignment program 

used here, in these cases, we do not know where the SNP is. Before the alignment 

results of different programs were compared, they had to be normalized first so that all 

the movable gaps were in the left most positions. Then the number of explained 

mismatches was counted for alignments by different programs.      

5.10 Alignment Result Comparisons  

Sim4, EST_GENOME, PAIRAGON and QPAIRAGON have been tested on the non-

overlap set B described in Section 5.9.  The parameters for EST_GENOME were “-

align true -match 5 -mismatch 11 -gap_panalty 11 -splice_penalty 100 -intron_penalty 

130” as suggested by (Zhang and Gish 2006).  Default parameters and “A=4” were 

used for Sim4 to output alignments. PAIRAGON and QPAIRAGON parameters were 

estimated from the EST_GENOME alignments on Set B first. In order to avoid 

training and test on the same data, a 4-fold cross-validation was performed for both 

PAIRAGON and QPAIRAGON. All EST alignment clusters in Set B were divided 

into four random groups. EST_GENOME alignments of three of the four groups were 

picked as the training set. The estimated parameters were used to run on the remaining 

group of Set B. This procedure was repeated four times so that each group was in the 

test set once.  

5.10.1 Result Comparison on Explained Mismatches 

The new accuracy measurement described in Section 5.8 was assessed for each 

program. All programs were evaluated on the alignments for human chromosome 20, 

21 and 22 of Set B. Table 5-3 shows the alignment result comparison based on the 

new accuracy measurement. The SNP database was downloaded from UCSC on July 

15, 2005. There are 38,509 SNPs in coding regions or UTRs of human chromosome 

20, 21 and 22. QPAIRAGON performs as well in both sensitivity and specificity as 

EST_GENOME. Sim4 did not fit for this data set. A lot of the times, it did not 

produce an alignment result. 
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Table 5-3. Alignment result comparison by explained number of SNPs.  

Methods Aligned Mis-
matches 

SNPs Explained 
SNPs 

Sensitivity Specificity 

EST_GENOME 37,360 38,509 1,569 0.041 0.042 

Sim4 25,828 38,509 1,109 0.029 0.043 

PAIRAGON 28,647 38,509 1,471 0.038 0.051 

QPAIRAGON 37,438 38,509 1,573 0.041 0.042 

 

 

5.10.2 Accuracy on Different Quality Values 

Similar to mismatches explained by SNPs, a mismatch may be called “explained by a 

low quality value” if the quality value of the EST base is lower than a threshold. Table 

5-4 shows the numbers of explained mismatches with quality value lower than 

threshold 5, 10, 15, and 20 for EST_GENOME, Sim4, PAIRAGON and 

QPAIRAGON on chromosome 20, 21 and 22 of Set B. Compared to other methods, 

significantly more may be caused by EST bases with low quality values. Therefore, a 

mismatch aligned by QPAIRAGON is more reliable than a mismatch by 

EST_GENOME.  
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Table 5-4. Mismatch numbers versus quality values.  

From left to right, the second column is for the absolute number of mismatches for each method. 

The third column is for mismatches that can be explained by SNPs. The rest columns are for 

mismatches that can be explained by quality values lower than 5, 10, 15 and 20. From the third 

column, there are two rows for each method. The upper row is for the absolute numbers and the 

lower row is for the portion of total mismatches.  

 Total  SNPs 5 10 15 20 

1,569 6,737 14,322 16,653 17,861 EST_GENOME 37,360 

0.042 0.180 0.383 0.446 0.478 

1,109 3,595 9,114 10,945 12,025 Sim4 25,828 

0.043 0.139 0.353 0.424 0.466 

1471 4976 10789 12683 13717 PAIRAGON 28,647 

0.051 0.161 0.377 0.443 0.479 

1,574 7,198 16,737 19,196 20,331 QPAIRAGON 37,464 

0.042 0.192 0.447 0.512 0.543 

 

 

The expected number of mismatches for each method was counted by weighting each 

mismatch with the probability associated with the sequencing quality value. Table 5-5 

shows that the expected numbers of mismatches explained by SNPs for QPAIRAGON 

and EST_GENOME are similar, but QPAIRAGON has lower expected number of 

mismatches than EST_GENOME. PAIRAGON has much lower expected number of 

mismatches than QPAIRAGON and EST_GENOME, but its number of explained 

mismatches is lower too.  
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Table 5-5. Expected number of mismatches.  

From left to right, the first column is for the total number of aligned mismatches; the second 

column is for the expected total number of aligned mismatches; the third column is for the 

expected number of mismatches explained by SNPs. The expected sensitivity was computed by 

comparing the expected number of explained mismatches to the total number of SNPs, which is 

38,509.  The expected specificity was computed by comparing the expected number of explained 

mismatches to the expected number of mismatches in the first column.  

Methods Aligned Mis-
matches 

Expected 
Aligned 
Mismatches 

Expected 
Explained 
SNPs 

Expected 
Sensitivity 

Expected 
Specificity 

EST_GENOME 37,360 29,665 1,511 0.0392 0.0509 

Sim4 25,828 21,445 1,067 0.0277 0.0498 

PAIRAGON 28,647 23,077 1,421 0.0369 0.0616 

QPAIRAGON 37,438 29,030 1,513 0.0393 0.0521 

 

 

5.10.3 Result Comparison on Exon-intron Level 

By using the human RefSeq annotations as the standard, accuracy of finding the exact 

exon-intron boundaries was compared for EST_GENOME, PAIRAGON and 

QPAIRAGON. The results are shown in Table 5-6. RefSeq annotation on human 

chromosome 20, 21 and 22 were used as the annotation. All the aligned regions of 

EST alignments were treated as coding regions. Since one EST only covers part of a 

gene and many EST reads aligned to UTRs, this may explains the low sensitivity and 

specificity compared to those alignment results on high quality cDNA to genome 

alignments. Many EST contain polyA regions at their ends though they may from the 

universal 3’ primers for reverse-transcription. These polyA regions can be aligned to 

many positions with multiple continuous “A”s in a genome sequences and produce 
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extra false introns. For all three methods, an exon was excluded if it is either the first 

or the last exon and at least 60% of bases were all “A”s or all “T” alone.  

Table 5-6. Exon-Intron boundary finding accuracy comparison.  

The sensitivity and specificity are based on RefSeq coding region annotation on chromosome 20 

21 and 22. The real accuracy may be higher if UTR exons and introns are considered. 

 Exon_Sn Exon_Sp Intron_Sn Intron_Sp 

EST_GENOME 21.3 27.8 31.3 68.6 

PAIRGON 20.7 27.0 30.8 66.9 

QPAIRAGON 21.6 27.9 31.9 68.2 

 

 

5.11 Gene Prediction Pipeline with the New Alignment 

Program 

One of the important goals of developing a new spliced alignment program in this 

thesis is to improve gene prediction accuracy. BLAT has been the default EST-to-

genome alignment program in the gene prediction pipeline we developed to use ESTs. 

Different EST-to-genome alignment programs, such as EST_GENOME and 

QPAIRAGON, were plugged into TWINSCAN_EST prediction pipeline. All ESTs 

from Set A were used to create ESTseqs for human genome chromosome 20, 21 and 

22. Default parameters were used to create the BLAT alignment and parameters for 

EST_GENOME were the same as in the previous section. In order to avoid training 

and testing on the same data set, a 4-fold cross-validation was used to create 

QPAIRAGON alignments. The parameters estimated from three groups were tested on 

the remaining one group, except the test group contained all the ESTs instead of just 

the non-overlapping ESTs as in the previous section. After the EST-to-genome 
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alignments were created by each spliced-alignment program, ESTseqs for human 

chromosome 20, 21 and 22 (version NCBI35) were created. For each alignment 

method, an 8-fold cross validation procedure was performed for TWINSCAN_EST. 

With RefSeq annotation on chromosome 20, 21 and 22 as standard, the ESTseq 

parameters of TWINSCAN_EST were estimated from seven groups and tested on the 

remaining group. In this way, the training and testing on the same data problem was 

avoided for all alignment programs. Finally, the overall gene prediction results were 

evaluated on all 8 folds together. The results shown in Table 5-7 demonstrate that 

QPAIRAGON is the most effective one to use the EST information. It performs better 

throughout all measurements, especially in gene level.  It obtained 1% more accurate 

in gene sensitivity than EST_GENOME and about 2% more accurate in both gene 

sensitivity and specificity than BLAT did. These improvements indicate that 

alignment quality of QPAIRAGON is higher than EST_GENOME and BLAT.  

Table 5-7. Effect of Underlying Alignment Programs on TWINSCAN_EST Gene Prediction.  

ESTseqs were generated by using BLAT, EST_GENOME and QPAIRAGON as the underlying 

alignment program in TWINSCAN_EST system. Then TWINSCAN_EST was run on human 

chromosome 20, 21 and 22 with ESTseqs generated by these alignment programs. The sensitivity 

and specificity is based on the 897 RefSeq genes in chromosome 20, 21 and 22. 

 Gene_Sn Gene_Sp Exon_Sn Exon_Sp 

BLAT 33.6 19.4 75.0 62.5 

EST_GENOME 34.9 20.5 76.5 62.5 

QPAIRAGON 35.8 21.1 76.6 62.8 
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5.12 QPAIRAGON on Cross-Species Alignment 

Experiments similar to those discussed in Section 5.11 were conducted for cross-

species alignment. BLAT, EST_GENOME and QPAIRAGON were used to align 

mouse genome (version mm6) with all the human EST reads described in Section 5.9. 

By using BLAT as the alignment tool, there are 273, 262, 158, 125 and 134 human 

EST clusters aligned to mouse chromosome 1, 5, 17, 18 and 19 respectively. The total 

numbers of aligned ESTs with at least 95% matches on an aligned region are 679, 648, 

626, 323 and 316 for mouse chromosome 1, 5, 17 18 and 19 respectively.  These 

numbers are smaller than those generated from native EST-to-genome alignments. 

TWINSCAN_EST was run on these five mouse chromosomes using BLAT, 

EST_GENOME and QPAIRAGON as the underlying spliced alignment program to 

create ESTseqs. Human genome NCBI35 was the informant database. Default 

parameters were used for EST_GENOME alignments. The QPAIRAGON parameters 

were estimated from EST_GENOME alignments of ESTs to five human 

chromosomes. For each alignment method, only those alignments with matches for at 

least 95% of an aligned region were kept for ESTseq generating. Result in Table 5-8 

show that the three spliced alignment programs have very similar performance though 

QPAIRAGON performs slightly better throughout all evaluation categories. 
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Table 5-8. The effect of spliced alignment programs on gene prediction with ESTseqs created by 

cross-species EST to genome alignment.  

BLAT, EST_GENOME and QPAIRAGON were used to generate ESTseqs for 5 mouse 

chromosomes (mm6). TWINSCAN_EST was run with human genome NCBI35 as informant 

database. Accuracy evaluation is based on 2577 genes and 25177 exons annotated for 5 mouse 

chromosomes.  

 Gene_Sn Gene_Sp Exon_Sn Exon_Sp 

BLAT 22.8 10.3 66.0 45.2 

EST_GENOME 22.9 10.3 65.9 45.2 

QPAIRAGON 23.0 10.4 66.0 45.3 

 

 

5.13 A QPAIRAGON Alignment Example 

Figure 5-9 shows a QPAIRAGON alignment example. An EST with id 154078196 

was aligned to human chromosome 21. The sequencing quality values of the EST 

were shown along the optimal alignment. EST_GENOME alignment of this EST 

missed the whole intron and the right region flanking this intron since GC/AG intron 

is not preferred by EST_GENOME. Interestingly, PAIRAGON also predicted an 

intron but it was a GT/AG intron (See Figure 5-10).  Since all bases around EST 

position 527 are in high quality, insertion or deletion has much higher penalty than 

substitutions for QPAIRAGON. Although the GC/AG intron is much less likely, it is 

preferred in this case. One question is which alignment should be trusted?  In order to 

answer this question precisely, Section 5.14 will introduce the posterior probability for 

all QPAIRAGON alignment. 
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    chr21       10494 GTATGAAAGATCTAATTTCTCTACGGCctcac......actgcACTCTAG 18940 

                      |||||||||||||||||||||||| ||<<<<< 8413 <<<<<|||| || 

 Ti|154078196     501 GTATGAAAGATCTAATTTCTCTACTGC................ACTCCAG   534 

                      333343432222333444422243334                4455544 

                      655503873333259562299923570                8266622 

 

    chr21       18941 CCTGGGTGACAGAGTGAGACTC--TCAAAAAAAACAAAAACAAAAAAACA 18988 

                      ||| ||  |||||| |||||||  || ||||||   |||| ||||||| | 

 Ti|154078196     535 CCTAGGCAACAGAGCGAGACTCCGTCGAAAAAAGGGAAAA-AAAAAAA-A   582 

                      4445433333444443323333444433342222122444 4444455 5 

                      7726077775227224487044000077685995905088 8888866 6 

 

 
Figure 5-9. A QPAIRAGON alignment example.   

An EST with id 154078196 was aligned to human chromosome 21. The chromosome coordinates 

are relative coordinates on a 20,432 base region [13,351,011, 13,371,528] of chromosome 21. The 

sequencing quality values of the EST were shown along the optimal alignment. The alignment is 

divided into 50 base width fragments. Within each fragment, the first line is a genomic sequence 

from human genome chromosome 21; the third line is the EST sequence and the second line is the 

alignment sequence between the genomic sequence and EST sequence. The next two lines are for 

the sequencing quality values. For example, the first numbers   from the fourth and fifth line of 

the first fragment means that the quality value at position 451 is 37.   

    chr21    10494 GTATGAAAGATCTAATTTCTCTACGGCctcac......gccacTGCACTC  18937 

                   ||||||||||||||||||||||||   <<<<< 8410 <<<<<||||||| 

ti|154078196   501 GTATGAAAGATCTAATTTCTCTAC---................TGCACTC    531 

 

    chr21    18938 TAGCCTGGGTGACAGAGTGAGACTC--TCAAAAAAA---ACAAAAACAAA  18982 

                    ||||| ||  |||||| |||||||  || ||||||   | ||||| ||| 

ti|154078196   532 CAGCCTAGGCAACAGAGCGAGACTCCGTCGAAAAAAGGGAAAAAAAAAAA    581 
 

Figure 5-10. A PAIRAGON alignment example. Both genomic sequence and EST sequence are 

the same as in the QPAIRAGON example.   
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5.14 Alignment Quality of QPAIRAGON 

A question naturally arises when an alignment is created. The question is: How 

reliable is the alignment? Are there any similar alignments other than this one? 

Posterior probability may be used to quantify the degree of uncertainty on each 

aligned base pair upon all alignment paths. QPAIRAGON can be instructed to 

generate posterior probability in two different ways:  

1) Posterior probability of a state, “Match/Mismatch” for example, can be 

calculated for each alignment pair , where  is a base from the 

genomic sequence and  is a base from the EST sequence.  

),( ji yx ix

jy

2) The posterior probability of a state, “Match/Mismatch” for example, can be 

output along the optimal alignment.  

The output of the first method may be very large, so it can be used for each individual 

alignment. The second method can give you the reliability of the optimal alignment on 

each EST base. When posterior probabilities of the “Match/Mismatch” state are output 

along the optimal path, each aligned base pair in an exon part of the optimal alignment 

can be evaluated by the posterior probability of that base pair as a match or mismatch. 

Figure 5-11 shows an example of using posterior probability of the “Match/Mismatch” 

state as the measurement of uncertainty. Both genomic sequence and the EST 

sequence are the same as those used in the example shown in the previous section. The 

“GC” at genomic position [18333, 18332] is clearly not in a match state according to 

the posterior probability, while  the “AG” at genomic position [10520, 10519] may be 

only an alternative acceptor site because there are more “AG”s  at position [10515, 

10514] and [10513, 10512].  Based on the posterior probability, we can say 

QPAIRAGON alignment is more reliable than PAIRAGON alignment in this case.  
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The posterior probability in genomic position 10514 is lower than its neighbors’. This 

may be caused by the two-base-long states next to the intron state to model the splice 

donor and acceptor sites in the genomic sequence. Because the scores are only stored 

in the one base of the two bases. This can be fixed by splitting the two-base-long states 

into two one-base states or switching the HMM to a GHMM though posterior 

probability in positions other than potential splice sites is not likely to be affected by 

this. 

                    99999999999999999999891100000000......000009999999 

                    99999999999999999999271011000000......000009999999 

   chr21      10494 GTATGAAAGATCTAATTTCTCTACGGCctcac......actgcACTCTAG 18940 

                    |||||||||||||||||||||||| ||<<<<< 8413 <<<<<|||| || 

ti|154078196    501 GTATGAAAGATCTAATTTCTCTACTGC................ACTCCAG   534 

                    333343432222333444422243334                4455544 

                    655503873333259562299923570                8266622 

 

                    99999999999999999999996099988877775333331111111110 

                    99995766999999999999995099621185317811115989999919 

   chr21      18941 CCTGGGTGACAGAGTGAGACTC--TCAAAAAAAACAAAAACAAAAAAACA 18988 

                    ||| ||  |||||| |||||||  || ||||||   |||| ||||||| | 

ti|154078196    535 CCTAGGCAACAGAGCGAGACTCCGTCGAAAAAAGGGAAAA-AAAAAAA-A   582 

                    4445433333444443323333444433342222122444 4444455 5 

                    7726077775227224487044000077685995905088 8888866 6 
 

Figure 5-11. A QPAIRAGON alignment example with posterior probability of match/mismatch 

displayed along the optimal path.  

 

The number of match/mismatches with a certain posterior probability was counted for 

each level of posterior probability on alignment results of Set B on human 

chromosome 20, 21 and 22. The posterior probability here is the posterior probability 

with constraints used by stepping stone algorithm. Figure 5-12 shows that the optimal 

path can be either a dominating path with posterior probability larger than 0.95 or one 
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of many possible paths with posterior probabilities close to zero. For QPAIRAGON, 

the posterior probability depends more on the sequences than the sequencing quality 

values. A low posterior probability on match state often implies another possible 

splicing site nearby.  
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Figure 5-12. Posterior probability distribution for Match/Mismatch state.   

The x-axis is for posterior probability and y-axis is for the number of base pairs in 

Match/Mismatch state for each level of posterior probability.  

 

5.15 Conclusions and Discussions  

This Chapter introduced QPAIRAGON, a new EST-to-genome sequence alignment 

system. By using the EST sequencing quality values, it can align EST to genome more 

accurately. Compared to EST_GENOME, the existing most accurate spliced 

alignment system in most situations, QPAIRAGON can align intron-exon boundaries 

more accurately and more mismatches can be expected to be explained by known 
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SNPs. The accuracy of gene prediction on human genome can be improved about one 

to two percents when it is used for comparative-genomics-based novel gene prediction 

systems, such as TWINSCAN_EST.  

The gene prediction accuracy improvement by using ESTs from different organism is 

marginal for all the spliced alignment programs tested. One of the reasons is that the 

high identity percentage level in pre-processing procedure filtered out many ESTs 

when they are aligned to a different genome. However, the gene prediction accuracy 

with QPAIRAGON as the underlying alignment program is at least as good as other 

alignment programs, such as BLAT and EST_GENOME.  Therefore, it’s safe to say 

that QPAIRAGON is as effective as other spliced alignment systems when aligning 

ESTs to a genome of different organism.  

QPAIRAGON requires EST sequencing quality values in addition to the EST and 

genomic sequences. Sometimes, the quality values were not submitted to databases, 

especially for those ESTs generated a certain years before. Another disadvantage of 

the system is that the accuracy improvement comes with a trade off in speed. 

However, with the two-stage strategy, we demonstrated that it can be used to deal with 

thousands of ESTs in a reasonable time. It can be useful for applications that require 

high accuracy alignments, such as manual curation of gene structure and SNP finding.  
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Chapter 6  

Conclusions 

The previous Chapters showed the probability models of using ESTs to improve de 

novo gene predictions, using sequencing quality value to improve the EST-to-genome 

alignment, and using consistent gene models of an EST alignment to guide full ORF-

containing-cDNA finding.  

One of the most important progresses in gene prediction in the past years is the 

success of comparative-genomics-based gene prediction systems. The main 

accomplishment of this study was the development of new gene prediction programs 

that can integrate information from EST alignments with comparative-genomics-based 

gene predictors. The new gene prediction systems are able to improve the accuracy 

(both sensitivity and specificity) of gene prediction on genes that have aligned ESTs. 

Their accuracy in predicting complete gene structures is as good as that of the original, 

non-EST-aware programs, even when no ESTs aligned to the target genome. When 

genes with no aligned ESTs are interspersed with genes that have aligned ESTs, the 

accuracy on the genes without ESTs is higher than that of the original programs. 

Another notable feature of this approach to use EST alignments is that every aligned 

EST bases contribute to gene prediction as long as the overall EST alignment meets a 

certain quality criterion. ESTs regions aligned to UTR region can improve the UTR 

region prediction as well as the coding region prediction.  

Therefore, the use of EST information is very effective and comes at no cost. 

TWINSCAN_EST and N-SCAN_EST have the essential benefit of a de novo gene 

finder, the ability to find completely novel genes without sequence similarity to known 
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genes. And they are more accurate on genes for which ESTs are available. In 

particular, TWINSCAN_EST can predict the 75% of genes exactly for C. elegans 

genome and 72% of the predicted genes are exactly right. N-SCAN_EST can predict 

44% of genes exactly and 88% of exons in human genome. Compared to other de 

novo gene finders, TWINSCAN_EST is the most accurate program available for 

nematodes and N-SCAN_EST is the most accurate program available for mammals. 

This method to use ESTs can be applied to gene prediction for any organism. It is 

especially useful for newly sequenced genomes for which some ESTs are available but 

few full-length cDNAs have been generated. The extension of this method to a new 

genome is pretty straightforward and re-training the parameters from native EST 

alignments can improve the accuracy slightly further. Since the use of EST 

information comes at no cost, it is recommended to use the EST versions of these 

programs on any genomes, with or without ESTs.   

Another advantage of the novel gene prediction programs using EST information is 

their ability to predict UTR regions more precisely since an EST contains coding 

regions or UTR regions or both of them. The improvement in predicting transcription 

boundary might be helpful to predict signals near them, such as transcription 

promoters.  

How far can this method of using EST alignments for gene prediction go? In other 

words, what is the best performance can this method produce? For example, what will 

happen if the error prone ESTs are replaced with high quality full-length cDNAs? 

Experiments show that the performance of gene prediction systems with EST 

alignments could not predict the genes as accurately as those methods purely based on 

alignments. Therefore, it is better to use alignment-based method for those high 

quality transcript product resources like proteins or full-length cDNAs and use this 

approach to deal with ESTs.  
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CDNA genomic sequence alignment is critical to many computational biology 

applications. A new cDNA-to-genome alignment program QPAIRAGON is 

introduced to use sequencing quality values to improve the alignment accuracy. A 

graphical model is also created to represent the error patterns arising from sequencing 

error and polymorphism (or evolutionary divergence if the ESTs and genomic 

sequences are from different organisms). By using an alignment scoring system that 

takes quality values into account, the new alignment program can produce more 

accurate EST-to-genome alignments than the best existing cDNA-to-genome 

alignment programs. It makes the EST resources more valuable for computational 

biology applications like single nucleotide polymorphisms (SNPs) and alternative 

splicing detection, the success of which is heavily depended on the alignment quality. 

The posterior probability function of the QPAIRAGON can be very useful to 

determine some ambiguous alignments. It can be helpful to resolve some difficult 

cases when ESTs are used in manual gene structure annotation.   

The graphical model created in Chapter 5 built up a framework to include the 

sequencing error and polymorphism as well as evolutionary divergence if the ESTs 

and genomic sequences are from different organism. Though the accuracy of cross-

species spliced alignment by QPAIRAGON is not significantly better than 

EST_GENOME, this remains a promising direction for future work.  

Due to the speed trade off, we are not recommending QPAIRAGON to replace those 

fast heuristic based spliced alignment programs now. QPAIRAGON can be speed up 

by applying more stringent boundary constraints the stepping stone algorithm 

currently used.  
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Appendix A    

Biology Background 

Appendix A provides the necessary biology background to understand the motivation 

and methods of this research.  

Genome and gene  

All the genetic information is encoded in deoxyribonucleic acid (DNA). A genome is 

all DNAs of an organism while a gene is a relatively short piece of DNA that 

represents a fundamental physical and functional unit of heredity. A DNA sequence is 

consisted of four bases: the purines adenine (A) and guanosine (G) and the 

pyrimidines cytosine (C) and thymine (T). The A pairs to T and C pairs to G. The size 

of a genome can be represented by the number of base pairs it contains. For example, 

the human genome has about 3 billion base pairs (bps), and about 25,000 protein 

coding genes. In this dissertation, since we are only interested in protein coding genes, 

a “gene” means a protein coding gene.  

Figure 1 shows a diagram of the structure of a gene. The three important features in a 

gene structure are untranslated regions (UTRs), coding regions (exons) and introns 

(regions between two adjacent coding regions). The usage of the term “Exon” varies 

in different literatures. In this dissertation it stands for the coding region exon. It can 

also be used to include UTRs. When it is used for UTRs, it is called “UTR exons” in 

this dissertation. The first two bases (5’ end) of an intron can be used to represent the 

pattern of the splice donor site, which is the region around the 5’ end of the intron. 

Similarly, the last two bases (3’ end) of an intron can be used to represent the pattern 

of the splice acceptor site, which is the region around the 3’end of an intron. Most of 

the times, a splice donor site pattern is GT and a splice acceptor site pattern is AG. An 

 



 

107
intron is called a canonical intron if its 5’ end is GT or GC and its 3’ end is AG. A real 

gene structure can be much more complicated than the one shown in this figure. Based 

on N-SCAN_EST’s prediction on the human genome, the average length of a human 

gene is about 46,000 bases, and there are about 8 exons per gene on average.  The 

human gene intron lengths (4,500 bases on average) are much longer than exon 

lengths (145 bases on average for internal exons) and the average total length of 

coding region for a human gene is about 1,300 bases. Therefore the total protein 

coding region is only a tiny part of the 3 billion bases in the whole human genome 

(about 1%).  These numbers are different for different organisms. For example, intron 

length of the C. elegans (a worm) gene is much shorter, about 280 bases on average, 

while the average coding region length is about 1,160 bases, which is relatively close 

to human coding region length.    

 

Internal
Exon

 
Figure 1. A simple diagram of a protein coding gene structure.  

The left side purple box is 5’ UTR, green boxes are coding regions (exons), the right side red box 

is 3’UTR and a region between two adjacent green boxes is an intron region. The number of 

introns in a gene can be zero, which means there is only one exon, called a single exon and the 

gene is called a single-exon gene. The first codon (3 nucleotides) of an initial exon (or a single 

exon), where the translation starts, is ATG; and the last codon of a terminal exon (or a single 

exon), where the translation stops, is one of the three codons TAA, TAG and TGA. At each end of 

an intron region is a splice site: 5’ end is a splice donor site and 3’ end is a splice acceptor site. 
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DNA, mRNA, Transcription, Translation and Alternative Splicing 

The central dogma of molecular biology describes the flow of the information in 

biology from DNA to mRNA and finally to protein. Information stored in DNAs is 

transferred to mRNAs by using DNAs as the templates for mRNA polymer synthesis. 

Proteins are made by using mRNAs as the templates. In the procedure from a DNA to 

an mRNA, the DNA sequence is transcribed into a pre-mature mRNA, and at the same 

time a procedure called splicing removes the introns and concatenates the remaining 

contiguous regions together as an mRNA. Therefore, an mRNA contains no intron 

regions, which means only UTRs and coding regions of a gene are included in an 

mRNA polymer. During the splicing procedure, multiple alternative splice donor sites 

can be joined to a common splice acceptor site and multiple splice acceptor sites can 

be joined to a common splice donor site. In this way, different splice donor and/or 

acceptor sites can be used to produce multiple mRNAs with partially overlapping 

genetic information. This is called alternative splicing. Each of these mRNAs is called 

a transcript of the gene and each transcript mat be translated into a distinct protein. 

Alternative splicing is very common in mammalian genomes, and about 30% to 60 % 

of human genes are estimated to have distinct alternative splicing (Modrek, Resch et 

al. 2001; Modrek and Lee 2002; Lee, Atanelov et al. 2003; Modrek and Lee 2003). 

Exon, Frame and Translation 

The usage of the term “Exon” varies in different literatures. In this dissertation it 

stands for the coding region. It can also be used to include UTRs. When it is used for 

UTRs, it is called “UTR exons” in this dissertation. The nucleotide sequence of an 

mRNA is translated to a sequence of amino acids. Each amino acid is determined by 

three continuous nucleotides called a codon. Thus the coding region length of a gene is 

always a multiple of 3. In animals, translation always starts from a codon “ATG”, 

which is called the start codon. The boundary of an internal coding exon can start in 

the middle of a codon. In another words, starting from the first exon, if an exon has a 

length other than a multiple of 3, then the following exon will start in a different 
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position of a codon. The codon position in which an exon starts with is called the 

frame or phase of the exon. The codon usage of exons with different frames has been 

used to improve gene structure prediction.  

CDNA, cDNA Clone, and cDNA library 

A complementary DNA (cDNA) is a form of DNA prepared in a laboratory with an 

mRNA as the template by a procedure called reverse transcription (from an mRNA to 

a DNA).  Therefore, as an mRNA, a cDNA contains only UTRs and/or coding regions 

of its gene. An Open Reading Frame (ORF) is a portion of a gene’s sequence that is 

uninterrupted by a stop codon so that it encode a peptide or protein. A full-ORF is an 

ORF containing all coding region of a gene. A full-ORF cDNA is a cDNA that 

contains all the coding region of a gene, from the start of translation to the end of 

translation. A full-length cDNA is a cDNA that goes from the end of transcription to 

the start of transcription.  Full-length cDNAs are extremely useful for determining the 

gene structures of a genome. The most direct experimental evidence of a gene 

structure is from sequencing a full-length cDNA and aligning its sequence back to the 

genomic sequence.  

A clone is collection of genetically identical cells which are generated from the same 

cell. A cloning vector is a bacterial virus or plasmid which can contain one or more 

segments of foreign DNAs and without loss of the capability of self-replication in a 

host bacterium. Many genetically identical cloning vectors can be generated for each 

cloning vectors in its host bacterium, which become a clone. Full-ORF cDNA clones 

are clones containing full-ORF cDNA segments. They are very important resources 

for functional genomics researches since they contain the whole gene structures and 

can be stored and used very conveniently.  

A cDNA library is a set of all or nearly all the mRNAs contained within a cell or 

organism. Since mRNA is not stable, cDNAs of the mRNAs were produced by reverse 
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transcription. The set of cDNAs, thus the mRNAs, is collectively called a cDNA 

library.  

Random-cDNA-Clone Selection 

In biology experiments, many clones are grown in each plate. It is not known which 

clone contains a full-length cDNA. Different strategies have been developed for full 

ORF-containing-cDNA-clone selection. One of them is randomly pick a clone and 

sequence the cDNA sequence to high quality, which is an expensive and time 

consuming procedure. Improvement of this random selection includes the use of ESTs, 

which are from either or both end of cDNAs.  A decision is made based on the result 

of ESTs. If the ESTs indicate that this cDNA is highly possible to contain a full-ORF, 

the cDNA is sequenced deeply to get high quality cDNA sequences with a high 

priority.   

EST  

Expressed Sequence Tags (ESTs)  are generated by single sequencing reads from 

either one or both ends of cDNA clones (Adams, Kelley et al. 1991; Boguski, Lowe et 

al. 1993; Schultz, Doerks et al. 2000). A 5’ EST is sequenced from 5’ end of a cDNA 

clone, and a 3’ EST is sequenced from 3’ end of a cDNA clone. Since they are single 

reads, they are short, usually with a length of 200 to 500 reliable bases, which means a 

single EST can only cover a small portion (coding regions or/and UTRs) of a gene; 

and their sequencing error rates are very high, about 3% compared to the error rate of 

0.01% for genomic sequences produced by most large scale genome sequencing 

projects. Nevertheless,  the advantage of ESTs is that they can be generated fast and 

inexpensively (Adams, Kelley et al. 1991; Boguski, Lowe et al. 1993; Schultz, Doerks 

et al. 2000; Kan, Rouchka et al. 2001). dbEST (Boguski, Lowe et al. 1993; Boguski 

1995) is the EST division of GenBank.  As of January 20, 2006, dbEST had about 33 

million ESTs for 1021 organisms, of which about 7.6 million are human ESTs and 
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about 4.7 million are mouse ESTs (http://www.ncbi.nlm.nih.gov/dbEST). They 

provide tremendous resources for genomic sequence analysis. 
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Appendix B     

dbEST Accession Numbers for  

Experiment Sequences 
 

The Trace Archive and dbEST Accession numbers for experiment sequences to 

validate N-SCAN_EST partial novel predictions. An experiment sequence is included 

here if its best alignment met the following criteria:  

1. It contained at least 50 consecutive matches, 

2. At least 95% of the entire sequence were matches,  

3. It contained at least one intron. 

 

DR731296 DR731297 DR731298 DR731300 DR731302 

DR731303 DR731306 DR731307 DR731309 DR731311 

DR731313 DR731316 DR731317 DR731318 DR731321 

DR731322 DR731323 DR731324 DR731325 DR731326 

DR731327 DR731328 DR731333 DR731334 DR731335 

DR731336 DR731337 DR731338 DR731339 DR731340 

DR731341 DR731342 DR731343 DR731344 DR731345 

DR731346 DR731347 DR731348 DR731351 DR731352 

DR731353 DR731354 DR731355 DR731356 DR731361 

DR731362 DR731367 DR731368 DR731375 DR731376 

DR731380 DR731383 DR731384 DR731387 DR731388 

DR731391 DR731392 DR731393 DR731394 DR731395 

DR731396 DR731397 DR731398 DR731399 DR731400 

DR731403 DR731404 DR731405 DR731406 DT932517 
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DT932519 DT932520 DT932523 DT932525 DT932526 

DT932527 DT932528 DT932529 DT932530 DT932531 

DT932532 DT932533 DT932534 DT932535 DT932536 

DT932537 DT932539 DT932540 DT932541 DT932542 

DT932543 DT932550 DT932551 DT932552 DT932553 

DT932555 DT932559 DT932560 DT932566 DT932567 

DT932568 DT932571 DT932572 DT932573 DT932574 

DT932577 DT932578 DT932587 DT932588 DT932589 

DT932590 DT932591 DT932592 DT932593 DT932594 

DT932603 DT932604 DT932607 DT932608 DT932609 

DT932610 DT932613 DT932614 DT932615 DT932616 

DT932617 DT932618 DT932619 DT932620 DT932623 

DT932624 DT932625 DT932626 DT932629 DT932630 

DT932631 DT932632 DT932633 DT932634 DT932635 

DT932636 DT932639 DT932640 DT932641 DT932642 

DT932643 DT932644 DT932645 DT932646 DT932649 

DT932650 DT932653 DT932654 DT932659 DT932660 

DT932661 DT932662 DT932663 DT932664 DT932665 

DT932666 DT932667 DT932668 DT932669 DT932670 

DT932673 DT932674 DT932675 DT932676 DT932677 

DT932678 DT932683 DT932684 DT932693 DT932694 

DT932695 DT932696 DT932701 DT932702 DT932709 

DT932710 DT932715 DT932716 DT932719 DT932720 

DT932721 DT932722 DT932723 DT932724 DT932725 

DT932726 DT932727 DT932728 DT932731 DT932732 

DT932735 DT932736 DT932739 DT932740 DT932743 

DT932744 DT932745 DT932746 DT932749 DT932750 

DT932751 DT932752 DT932753 DT932754 DT932761 

DT932762 
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