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Abstract

Steganography, or information hiding, is to
conceal the existence of messages so as to
protect their confidentiality. We consider de-
ciphering a stegoscript, a text with secret
messages embedded within a covertext, and
identifying the vocabularies used in the mes-
sages, with no knowledge of the vocabularies
and grammar in which the script was writ-
ten. Our research was motivated by the prob-
lem of identifying conserved non-coding func-
tional elements (motifs) in regulatory regions
of genome sequences, which we view as stego-
scripts constructed by nature with a statis-
tical model consisting of a dictionary and a
grammar. We develop an iterative learning
algorithm, WordSpy, to learn such a model
from a stegoscript. The model then can be
applied to identify the embedded secret mes-
sages, i.e., the functional motifs. Our algo-
rithm can successfully recover the most pos-
sible text of the first ten chapters of a novel
embedded in a stegoscript and identify the
transcription factor binding motifs in the up-
stream regions of ∼ 800 yeast genes.

1. Introduction

Unlike cryptography, which is about concealing the
content of messages, steganography is about conceal-
ing the existence of messages (Wayner, 2002). Many
legends told ancient stories of how steganography was

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

used in historic events; the oldest of this sort is per-
haps the one about how the Greeks received warn-
ing of Xerxes’ intentions from a message underneath
the wax of a writing tablet, describing a trick of dot-
ting successive letters in a covertext with secret ink.
Steganography also exists in today’s reality. USA TO-
DAY reported that Bin Laden and his associates have
been “hiding maps and photographs of terrorist tar-
gets and posting instructions for terrorist activities
on sports chat rooms, bulletin boards and other Web
sites” (USA TODAY, 2001).

We are interested in discovering secret messages hid-
den in stegoscripts. For example, we are interested
in recovering a news article embedded in a covertext
with no knowledge of the language that the article was
written in, i.e., no dictionary nor grammar.

Despite a large body of research on steganography
on images (Wayner, 2002), steganography on text is
rather thin. One related work considered decipher-
ing a sound-to-character association for a given script
and using rough knowledge of the language the script
was written (Knight & Yamada, 1999). Note also that
there is no covertext to be winnowed out in this prob-
lem. The chaffing-and-winnowing communication pro-
tocol (Rivest, 1998) is also loosely related. In this pro-
tocol, genuine packages were sent interspersed among
spurious ones to hide the true messages, making the
overall transmission a stego sequence of packages while
individual genuine packages are intact.

This research is motivated by the problem of identify-
ing functional motifs in a genome (Durbin et al., 1998).
Much work has been done on finding non-coding func-
tional elements, mainly transcriptional factor bind-
ing motifs (TFBMs). Most motif-finding approaches,
including Gibbs Sampler (Lawrence et al., 1993),



MEME (Bailey & Elkan, 1995), Consensus (Hertz &
Stormo, 1999) and AlignACE (Hughes et al., 2000),
apply local search strategies to find local multiple
alignments to fit some statistical models which char-
acterize (unknown) motifs. Despite their success, the
statistical models used in these methods are for single
motif or a fixed number of motifs. Moreover, the algo-
rithms may get easily trapped into local minima, and
are in general too slow to handle large sequences.

Another approach is word-counting based (van Helden
et al., 1998; Sinha & Tompa, 2000), in which statis-
tically over-represented words are identified through
enumeration. These methods are typically fast and
able to handle large sequences, and can identify a large
number of putative motifs. However, they usually lack
of accurate statistical models and suffer from the prob-
lems of producing too many spurious motifs.

A dictionary based approach, recently pioneered by
Bussemaker et al. (Bussemaker et al., 2002), intro-
duced the concepts of dictionary and word usage
frequencies for constructing sequences. The over-
representation of a long word is computed as the
weighted average of the short words in the current dic-
tionary which can form partitions of the long word. Al-
though this method is in essence word-counting based,
it can filter out many spurious motifs which are over-
represented only due to overlapping with some real
motifs, resulting in a higher accuracy. However, test-
ing the over-representation of longer words by concate-
nating the shorter words is problematic, and may miss
substantial over-represented motifs.

We approach the problem from a perspective of
steganography. We view regulatory genome sequences
as a stegoscript in which functional TFBMs are secret
messages embedded in and protected by a covertext of
background sequences. In other words, we hypothesize
that nature has a dictionary of sequence motifs and a
complex grammar for constructing a genome. This
hypothesis is partially supported by the current un-
derstanding that most genomes carry a large amount
of “garbage” sequences with no known function. It is
very possible that nature uses simple steganography
by adding random and redundant sequences as a de-
fence mechanism against possible invasion of foreign
viral agents.

In general, we consider the following problem. Given
a stego script, discover the vocabularies and grammar
with which the script was generated, and recover the
original messages in the script. We develop an inno-
vative algorithm, named as WordSpy, that iteratively
learns a statistical model with a dictionary and a gram-
mar in the form of a hidden Markov model (HMM).

The dictionary consists of conserved words and the
grammar (HMM) specifies how the words were used
and the steganoscript was created. The statistical
model can be finally used to decipher the script.

The idea of modeling DNA sequences by grammars
has been around for quite some time (Searls, 1992).
Indeed, a grammar-based approach is one of the best
for RNA secondary structure prediction (Durbin et al.,
1998), and HMMs have been extensively used in gene
finding. However, few attempt has been made to motif
finding. It is worth to mention that there have been
several proposals of using HMM to model motifs (Bai-
ley & Noble, 2003; Sinha et al., 2003; Frith et al.,
2001; Xing & Wu, 2003). However, in all of these ap-
proaches, motifs are supposed to be given so that the
models are predetermined, which in many cases are
used to detect motif modules. In our approach, we
learn an HMM to fit the script without knowing how
the model looks like beforehand, which is obviously a
much harder problem.

We apply our algorithm to recovering the first ten
chapters of novel Moby Dick which were intentionally
hidden in a long random string. The results achieved
high identification accuracy of more than 80%. We
also apply our method to finding TFBMs in the up-
stream regions of about 800 cell-cycle related genes
of S. cerevisiae (Spellman et al., 1998). Our algo-
rithm identifies all known yeast cell-cycle TFBMs with
high significance, while MobyDick missed quite many
of them.

2. Stegoscripts and Statistical Model

A stegoscript is to conceal the secret messages with
some covertext. In many cases, the script is gener-
ated without any explicit encryption keys. The only
knowledge about the script is that secret messages
and covertext should have different information con-
tents or statistics, e.g., different word distributions.
In some sense, the grammatical model used to gener-
ate the script is the key to decipher the script. When
the grammatical model is known, deciphering a stego-
script is just as easy as decoding a ciphertext with a
given key. Thus to decipher a stegoscript is equivalent
to recover the grammatical model.

Usually, the words in the secret messages are more
conserved than those in the covertext. This is espe-
cially true for genomic regulatory sequences, in which
a small number of transcription factors (TFs) medi-
ate a large number of genes (Brivanlou & Darnell,
2002; Lemon & Tjian, 2000), making TFBMs over-
represented. Most TFBMs are also conversed across
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Figure 1. A statistical model (HMM) for generating and
deciphering stegoscripts. The model contains two sub-
models, the secret message model generates motifs and
the cover text model produces covertext with background
words. States S, B and M do not emit any letter. A
dash box represents a word node, which is actually a com-
bination of several position nodes, each referring to one
position in that word. Wb, a only node with single base,
always belongs to background model.

closely related species (see, e.g., (Cliften et al., 2003)).
Despise their conservations, TFBMs are usually hard
to be identified, mainly because there are many repeats
(or fake motifs) also over-represented in the regulatory
regions. We thus propose a statistical model consisting
of a grammar and a dictionary of two sets of words.
One type of words in the dictionary are the TFBMs to
be identified, and the others are background words in
the covertext. The grammar specifies how the words
are used to form a stegoscript.

Fig. 1 illustrates our model. It can be used to gener-
ate a stegoscript and to decipher it as well. In each
step of generating a script, the grammar will choose
to produce either a motif word M with probability
PM , or a background word B with probability PB .
OnceM is chosen, a (degenerate) motifWi is randomly
drawn from the motif subdictionary, with probability
PWi

, and an exact word w is generated with prob-
ability P (w|Wi). Similar process goes for the back-
ground word B too. The generated word is appended
to the end of the script and the process repeats until
the whole script is created.

The key to deciphering a stegoscript or a set of reg-
ulatory sequences is to learn the statistical model
with which the script was created. Assume that a

stegoscript S were generated from an unknown model
〈D∗, G∗〉 of a dictionary D∗ and a grammar G∗.
Theoretically, we can learn such a model 〈D,G〉 =
argmax〈D′,G′〉 P (〈D

′, G′〉|S), that most likely gener-
ates the script. With no prior knowledge of the true
model, the maximum likelihood estimation, 〈D,G〉 =
argmax〈D′,G′〉 P (S|〈D

′, G′〉), is a good approximation
of 〈D∗, G∗〉.

In this deciphering problem, we only want to discover
the secret messages and do not care about its mean-
ings or how the words in the messages are related.
We thus can safely assume that the words are used
independently within the grammar. Therefore, a sto-
chastic regular grammar (or HMM) will have enough
modeling power to serve the needs of discriminating
secret messages from cover text. Obviously we can
resort to a higher order grammar if a more accurate
model is needed to recover more information, but the
computational cost will increase dramatically as well.

3. The Learning Algorithm

The central problem of deciphering a stegoscript is
learning a statistical model (an HMM shown in Fig. 1)
from the given script. However, this is an extremely
difficult problem, as a large number of word nodes are
typically unknown and many unknown model parame-
ters to be estimated. It is infeasible and often prob-
lematic to directly learn such a model due to the huge
search space and abundant of local minima. Therefore,
we separate the learning process into two phases, word
sampling and model optimization, and adopt an itera-
tive learning strategy similar to EM algorithm (Demp-
ster et al., 1977) to progressively capture short to
long words and gradually build such a model. Briefly,
letting 〈Dk, Gk〉 be a statistical model that contains
words of lengths up to k (inclusive), in the M step,
〈Dk, Gk〉 is optimized to best fit the script S; in the
E step, the optimized model is used to identify over-
represented words of length k + 1, resulting in a new
model 〈Dk+1, Gk+1〉.

The overall algorithm starts with the simplest model
〈D1, G1〉 with only one word of single base in D1, at
the k-th iteration, the algorithm first identifies over-
represented words of length k. In this process, the
given script S is assumed to be generated by the
current best model 〈Dk−1, Gk−1〉. A word is over-
represented if it occurs in S more often then it could
be generated by the current model 〈Dk−1, Gk−1〉. Fur-
thermore, newly discovered words will be classified as
motif words or background words, and merged with
Dk−1 to form the next dictionary Dk. The model is
retrofited to accommodate the new words, leading to



the next grammar, Gk. The new model 〈Dk, Gk〉 is
then optimized to fix the script. The overall process
repeats until the model covers words up to a maximum
length.

The classification of motif words and background
words are important to the accuracy of the algorithm.
However, when no extra information is available, we
can only resort to the over-representation level to se-
lect putative motif words. We use Z-score to quantita-
tively measure the over-representation of a word. The
detailed definition and calculation are presented in the
following section. With assumption that the covertext
usually consists of random sequences, we typically set
3 as the minimum Z-score threshold for a word to be
a motif. A higher Z-score means a better chance for
a word to be a real motif. As more information is
available, more accurate classification can be made.

In the following sections, each phase of the algorithm
will be presented in detail.

3.1. Model Optimization

The model optimization is for computing the next
model 〈Dk, Gk〉 based on 〈Dk−1, Gk−1〉 to incorporate
a set of new over-represented words of length k. The
next dictionary Dk can be simply formed by combin-
ing Dk−1 and the new words; the main issue is then to
compute the next grammar Gk. Gk has two types of
parameters. The first are the transition probabilities,
Ψ, corresponding to the word usage frequencies, de-
termining how conserved motifs or background words
are used in the given sequences. The second parame-
ters are the emission probabilities, Θ, corresponding
to the letter (base) usage frequencies at each position
of an over-represented word. As these parameters are
unknown, we apply an EM approach to estimate them.

We can write Gk = (Ψ,Θ, I), where Ψ =
{PB , PM , PWb

, PW1
, PW2

, · · · , PWn
} is the set of tran-

sition probabilities, Θ = {Θb,Θ1,Θ2, · · · ,Θn} is a
set of emission probabilities corresponding to the mo-
tifs and words in Dk = {Wb,W1,W2, · · · ,Wn}, and
I = {IWi

|Wi ∈ Dk} is a set of indicators, where

IWi
=

{

1, if Wi is a conserved motif,
0, if Wi is a background word.

IWb
is always set to 0; the other values of I are de-

termined in the word sampling phase (Section 3.2).
That is, I does not change during model optimization.
Without loss of generality, we view a set of sequences
as a long sequence S = s1s2 · · · sq. Let Ψ

(t) and Θ(t) be
Gk’s parameters in the t-th iteration of the EM algo-
rithm. The process of model optimization iteratively
updates Ψ(t) and Θ(t) until convergence.

To update Ψ(t) and Θ(t), we first consider different
parses of S. The probability of a parse of S, denoted
by φ, given Ψ(t) and Θ(t), can be computed by

P (φ|S,Ψ(t),Θ(t)) =
∏

Wi∈D

(

P
(t)
Wi

)N
φ

Wi

N
φ

Wi
∏

j=1

P
(

χjWi
|Θ
(t)
i

)

where Nφ
Wi
is the count (i.e., number of occurrences) of

motifWi in the parse φ, and χ
j
Wi
is the j-th occurrence

(or site) of the Wi in S under φ. Then the average
number of occurrence of Wi, denoted as NWi

, can be
calculated as

NWi
=
∑

φ∈Φ

P
(

φ|S,Ψ(t),Θ(t)
)

Nφ
Wi

(1)

where Φ is the set of all possible parses. The average
count of a letter ς at j-th position of Wi, denoted by
CWi

(ς, j), can be calculated by

CWi
(ς, j) =

∑

φ∈Φ

P
(

φ|S,Ψ(t),Θ(t)
)

Cφ
Wi
(ς, j) (2)

where Cφ
Wi
(ς, j) is the count of letter ς at j-th position

of Wi in the parse φ. Based on maximum likelihood
principle, we update the parameters as follows.











































P
(t+1)
B =

∑

W∈Dk
NW ·(1−IW )

∑

W∈Dk
NW

,

P
(t+1)
M =

∑

W∈Dk
NW ·IW

∑

W∈Dk
NW

,

P
(t+1)
Wi

=
NWi

∑

W∈Dk
NW ·δ(IWi

,IW )
,

Θ
(t+1)
i (ς, j) =

CWi
(ς,j)

∑

ς′∈Σ
CWi

(ς′,j)
,

(3)

where Σ is the alphabet, ς ∈ Σ, j = 1, · · · , l(W ), l(W )
is the length of W , and δ(x, y) equals 1 if x = y, or 0
otherwise.

The calculation of (1) and (2) could be costly if we enu-
merate all possible parses. We adopted the dynamic
programming forward-backward algorithm (Durbin
et al., 1998) to compute the most probable state when
observing sl ∈ S. More precisely, let πl be the state of
sl, the probability of sl being at the j-th position of a
motif W under the current grammar can be computed
as

P (πl =W [j]|S, Gk) =
f(µ) · ρW · %W (µ+ 1, ν) · b(ν + 1)

P (S|Gk)
,

where W is a degenerate word in Dk, W [j] is the j-
th position of W , f(µ) is the probability of observing
S up to sµ (inclusive) given Gk, µ = l − k, ρW =
PW (IWPM + (1 − IW )PB), %W (i, j) = P (S[i,j]|W ),



b(ν + 1) is the probability of observing S from sν+1
(inclusive) down to the end of S, and ν = l−k+ l(W ).
Function f(i) can be recursively computed as

f(i) =
∑

W∈D

ρW · %W (i− l(W ) + 1, i) · f(i− l(W )).

Similarly b(i) can be computed as

b(i) =
∑

W∈D

ρW · %W (i, i+ l(W )− 1) · b(i+ l(W )).

Evidently, P (S|Gk) = f(q) = b(1).

Suppose P (πl = Wi[j]|S,Ψ
(t),Θ(t)) is the probability

of observing sl at the j-th position of a motif Wi given
Ψ(t) and Θ(t), equations (1) and (2) can be simply
computed as
{

NWi
=
∑q

l=1 P
(

πl =Wi[1]|S,Ψ
(t),Θ(t)

)

,
CWi

(ς, j) =
∑q

l=1 P
(

πl =Wi[j], sl = ς|S,Ψ(t),Θ(t)
)

,

where q is the length of S.

The model optimization is done iteratively using equa-
tions in (3) until convergence. This procedure is the
most time consuming part of the WordSpy algorithm.
Nonetheless, the hash scheme of indexing a word w
directly to the degenerate words that may emit w
in the dictionary reduces the average computation of
the forward-backward algorithm from O(LN) to O(L),
with a penalty of space increment of O(N), where L is
the sequence length and N the size of the dictionary.
The overall space complexity is O(L+N).

3.2. Word Sampling

In the word sampling phase, the algorithm identifies
over-represented words of length k based on the opti-
mal model 〈Dk−1, Gk−1〉 that contains words shorter
than k. To guarantee completeness, all possible words
of length k that appear in S are tested. The algorithm
scans S once, tabulates, using a hashing scheme, all
exact words of length k in S, and computes their over-
representation. The words that are over-represented
are further classified as motif words or background
words.

A word is considered over-represented if it occurs more
frequently in S than it can be generated by the model
〈Dk−1, Gk−1〉. We measure the over-representation by
a Z-score. Let Nw be the number of occurrences of
a word w in S and random variable N̂w the number
of occurrences of w in the sequences with the same
length as S which were supposedly generated by model
〈Dk−1, Gk−1〉. Denote E(N̂w) and σ(N̂w) as the mean
and standard deviation of N̂w. The Z-score of w is
defined as Zw = (Nw − E(N̂w))/σ(N̂w).

It is nontrivial to efficiently compute or estimate the
statistics of random variable N̂w and thus the Z-score
of word w. The Z-score of a word in a random string
generated by a Markovian process has been studied
if all the words has a fixed length (Regnier, 1998).
However, the words in our model may be of different
lengths, and thus the computation of its statistics is
more technically involved. Consider again a word w of
length k in a sequence of length L generated by model
〈Dk−1, Gk−1〉, where Gk−1 = (Ψ,Θ, I) was optimized
in the model optimization component. There are vari-
ous ways to produce w, for example, by concatenating
words of single bases, or by merging a word’s suffix
with another word’s prefix, etc. The expected number
of occurrences, N̂w, should take all possible situations
into account. In the case where w can only be exact
concatenations of the words in Dk−1, N̂w can be com-
puted as (L − k + 1)P (w|〈Dk−1, Gk−1〉). We define
Aw(i) (and respectively Bw(j)) to be the set of mo-
tifs in Dk−1 whose suffixes (and respectively prefixes)
match the first i (and respectively the last j) letters of
w, then the expectation E(N̂w) can be computed as,

E(N̂w) = (L− k + 1) · (
∑k

i=1Aw(i)·

(
∑k

j=i+1 P
(

w[i+1,j−1]|〈Dk−1, Gk−1〉
)

Bw(j))),

where






Aw(i) =
∑

Wu∈Aw(i)
PWu

P
(

w[1,i]|Θ
(suffixi)
u

)

,

Bw(j) =
∑

Wu∈Bw(j)
PWu

P
(

w[j,k]|Θ
(prefixj)
u

)

,

and PWu
is the transition probability of motif Wu in

Gk−1, Θ
(suffixi)
u and Θ

(prefixj)
u the emission probabil-

ities of the last i and last j positions of Θu, respec-
tively. The computation of σ(N̂w) is much complex
and costly. In our current implementation, we used
E(N̂w) to approximate σ(N̂w).

4. Decipher a stegoscript in English

We applied WordSpy to a stegoscript (about 268K let-
ters) that had the first ten chapters (about 112K let-
ters) of novelMoby Dick embedded within. This stego-
script was created by Bussemaker et al. (Bussemaker
et al., 2002). Fig. 2(a) shows a tiny portion of the
stegoscript, where the underlined text is the title and
first two sentences of Chapter One. We ran WordSpy
with different Z-score thresholds and to find words of
maximum length of 15. We measured performance by
the true positive rate (TPR), the percentage of true
words discovered over all the words in the original text,
and false prediction rate (FPR), the percentage of false
predictions in the deciphered text. In measuring these
rates, we considered different degrees of matches be-
tween a word in the original text and a predicted word
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(a) Moby Dick in a random covertext

chapter.............................................

.ooming.call...rishmaelsome...years.................

...neverp...mindhow........long.....precisely.......

..........................havinglittle............mo

ney.........in.......purse..........................

....and.nothing..particular...........to..........in

terest.time.......shore...ithought.................

wouldsailp.about......................little........

..............and.............................seebb

the.........awater..........part.of..the..world.to..

.......pisa...way.......have.........of...........dr

iving..........off.......imtheix..................pc

rmh........nand..........toregu.ating.ethe..circulat

i...

(b) Deciphered Moby Dick from covertext

Figure 2. Deciphering novel Moby Dick from a stegoscript. (a) A small portion of the script; the underlined text is the
title and first two sentences of Chapter One. (b) Deciphered Moby Dick. The identified background words are marked
out by dots.
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Figure 3. Evaluation of WordSpy on a stegoscript of Moby Dick. (a) False prediction rates on different Z-score thresholds.
(b) The ratios of true prediction rate over false prediction rate on different Z-score thresholds. The results are listed for
different word matching ratios.

in the deciphered text. For example, we consider it as
a correct prediction if a recovered word has at least a
certain percent of letters matched to the original word,
which we call word match rate. As summarized in Ta-
ble 1, TPR decreases and FPR increases as the word
match rate increases. If we take the most stringent
criterion of 100% word match rate, WordSpy is able
to recover ∼70% exact original words with a false pre-
diction rate of ∼19% using Z-score threshold 6. As a
comparison, when the word match rate is 50%, TPR
increases to ∼82% while FPR decreases to ∼4.6%.

A close examination showed that the FPR initially
decreases and then stays relatively constant as the
Z-score threshold increases (Fig.3(a)). When the Z-
score threshold is high enough (>5.5), most falsely

predicted words will be filtered out. On the other
hand, the true positive rate (TPR) always decreases
as the Z-score threshold increases. The overall best
performance seems to be reached around the Z-score
threshold of 6 (Fig.3(b)).

To analyze the complexity of the problem, we test the
algorithm on the some stegoscripts with different size
of covertext. Using the same article Moby Dick, we
generate 6 scripts with different covertext to secret
messages ratio, from 2 to 7. We expect that as the
size of covertext becomes larger, the deciphering prob-
lem becomes harder. Fig. 4 shows the results with
Z-score threshold 3 on all 6 scripts. As expected, the
true positive rate goes lower as the covertext becomes
larger, while the false prediction rate goes higher at



Word match ratio (%): 10 20 30 40 50 60 70 80 90 100
True words discovered: 16047 16026 15899 15670 15529 15046 14584 14066 13500 13435
True positive rate (%): 84.7 84.6 83.9 82.7 82.0 79.4 77.0 74.3 71.3 70.9
False words reported: 238 259 387 617 761 1272 1787 2361 3003 3087

False prediction rate (%): 1.4 1.5 2.3 3.7 4.6 7.6 10.8 14.2 18.1 18.6

Table 1. Results on a stegoscript containing the first ten chapters of novel Moby Dick for Z-score threshold 6. Total 18930
words are in the original text. Total discovered words in the deciphered text are 16522. Word match ratio determines the
least percentage of position matches for a true word to be considered correctly predicted. True words discovered gives the
numbers of true words correctly predicted. True positive rate is the percentage of true words discovered over the total
words in the original text. False words reported is the number of words falsely predicted based on different word match
ratios. False prediction rate is the percentage of false words reported over the total words in the deciphered text.
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Figure 4. Prediction results on stegoscripts with different size of covertext. (a) True positive rate on different size of
covertext. (b) False prediction rate on different size of covertext.

the same time. However, even as the covertext is as
7 times big as the original article, WordSpy still did a
decent job. It accurately predicted 75% of the article
and only had 53% of its predictions false positive, i.e.,
one will be correct for each two predictions.

To complete our example in Fig. 2(a), we show the
recovered text in Fig. 2(b), where the identified back-
ground words are marked out with dots. This simple
example interestingly shows that the deciphered text
is pretty much readable.

5. Identify TFBMs of yeast cell-cycle

genes

WordSpy is capable of genome-wide motif finding. We
applied it to discovering TFBMs of ∼800 cell-cycle re-
lated genes of S. cerevisiae (Spellman et al., 1998).
The promoter sequences are retrieved using the RSA
tools (van Helden et al., 2000). We compared Word-
Spy with the MobyDick algorithm (Bussemaker et al.,
2002), finding motifs with lengths upto 12. We tuned
MobyDick to get its best possible parameters. The Z-
score threshold for WordSpy was set to 3. Table 2 lists
the results. As shown, WordSpy is able to identify all

known cell-cycle TFBMs with high significant levels
(Z-scores), and all of them (except one) are in the ex-
act lengths. In contrast, MobyDick failed to discover
four of them.

However, many known motifs discovered by WordSpy
are not ranked very high using Z-score in our dictio-
nary. This implies that Z-score alone is not sufficient
to discern true TFBMs from background words. To
identify truly biologically meaningful motifs, we need
additional information.

Co-regulated genes very often tend to have similar ex-
pression profiles over different conditions. We can thus
evaluate the likelihood of a motif being biologically
meaningful by the coherence of the expression profiles
of all the genes whose promoters contain the motif. We
use the average coherence of pairwise gene expression
profiles to measure the coherence of a set of expres-
sion profiles, and call this measure G-score, where G

stands for genes. Therefore, a higher G-score indicates
a more biologically meaningful motif.

We applied this G-score to order the motifs discovered
by WordSpy for the yeast cell-cycle genes. We used the
yeast gene expression data from (Stuart et al., 2003).



Known motifs Known TFs WordSpy G-score rank Z-score Z-score rank MobyDick

TGCTGG(CCAGCA) Ace2,Swi5 TGCTGG 22 5.5 106/147 TGCTGCTGGA
RRCCAGCR(YGCTGGYY) Ace2,Swi5 GCTGG 10 5.3 17/30 TGCTGCTGGA
ACGCGT(ACGCGT) Swi6, Mbp1 ACGCGT 1 17.4 19/147 AACGCGT
CACGAAA(TTTCGTG) Swi4, Swi6 CACGAAA 47 5.4 246/ 419 GTCACGAAA
CGCGAAA(TTTCGCG) Swi4, Swi6 CGCGAAA 8 16.1 24/419 CGCGAAA
ATAAACAA(TTGTTTAT) Fkh1,Fkh2 ATAAACAA 44 8.8 193/1015 TTGTTTAT
GTAAACAA(TTGTTTAC) Fkh1,Fkh2 GTAAACAA 21 8.5 202/1015 n/a
GTAAACA(TGTTTAC) Fkh1,Fkh2,Ndd1 GTAAACA 21 7.6 128/419 GTAAACA
TTTCCTAA(TTAGGAAA) MCM1 TTTCCTAA 28 6.4 359/1015 n/a
TCACGTG(CACGTGA) Met4,Met28,Cbf1 TCACGTG 93 5.0 288/419 n/a
TGAAACA(TGTTTCA) Ste12 TGAAACAA 55 5.5 489/1015 n/a

Table 2. Discovered known motifs in the ∼800 promoters of yeast cell-cycle genes. The first two columns list the known
motifs (and their reverse complimentary) and their potential TFs. The next four columns report the results fromWordSpy,
followed by the last column for MobyDick. The Z-score rank is based on motif Z-score, where the first number is the
ranking and the second is the total number of discovered motifs of the same length. The G-score rank is the ranking
among the motifs of the same length.

Interestingly, most known motifs are now ranked high
in our dictionary (G-score rank in Table 2). Using
the G-score, background words can be more accurately
identified, and consequently a more accurate statisti-
cal grammar can be constructed to model the promoter
sequences. This encouraging result suggests that the
motifs in our dictionary which have high G-score rank-
ings have good chances to be real motifs.

6. Conclusions and Discussion

In this research, we viewed a genome as a stego script
with conserved functional sequence units as secret mes-
sages embedded in a covertext of “garbage” sequences.
We also hypothesized that such a stego genomic script
was constructed based on a dictionary and a grammar.
We then proposed and developed an approach to dis-
cover the words in the dictionary and learn the gram-
mar. Specifically, we used stochastic dictionary, which
allows degenerate words or motifs, and stochastic reg-
ular grammar. We also considered how to recover the
original messages in this paper.

We applied our algorithm, called WordSpy, to two sets
of large real text data. We used WordSpy to recover
the first ten chapters of novelMoby Dick, which was in-
tentionally embedded into a random text. WordSpy is
able to recover the original text with accuracy more
than 80% which is very surprising considering that
some words in the original text, such as the words with
single copy, are stochastically unidentifiable. We also
applied WordSpy to identify the transcription factor
binding motifs (TFBMs) in the upstream regulatory
regions of cell-cycle related genes in budding yeast S.

cerevisiae. WordSpy significantly outperforms existing
algorithm MobyDick. WordSpy found all cell-cycle re-
lated TFBMs with high significance, while the existing
algorithm missed many of them.

Our approach and algorithm can be applied to many

problems in many different ways. For our motivating
application, our method can be used to finding TFBMs
in non-coding regions of a genome. We are also inter-
ested in applying our method to decipher unknown
and unfamiliar scripts in natural language domain.
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