
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-32

2003-05-16

Memory-Accessing Optimization Via Gestures Memory-Accessing Optimization Via Gestures

Lucas M. Fox

We identify common storage-referencing gestures in Java bytecode and machine-level code, so

that a gesture comprising a sequence of storage dereferences can be condensed into a single

instruction. Because these gestures access memory in a recognizable pattern, the pattern can

be preloaded into and executed by a “smart” memory. This approach can improve program

execution time by making memory accesses more efficient, by saving CPU cycles, bus cycles,

and power. We introduce a language of valid gesture types and conduct a series of experiments

to analyze the characteristics of gestures defined by this language within a set of benchmarks...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Fox, Lucas M., "Memory-Accessing Optimization Via Gestures" Report Number: WUCSE-2003-32 (2003).
All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1078

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1078?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1078

Memory-Accessing Optimization Via Gestures Memory-Accessing Optimization Via Gestures

Lucas M. Fox

Complete Abstract: Complete Abstract:

We identify common storage-referencing gestures in Java bytecode and machine-level code, so that a
gesture comprising a sequence of storage dereferences can be condensed into a single instruction.
Because these gestures access memory in a recognizable pattern, the pattern can be preloaded into and
executed by a “smart” memory. This approach can improve program execution time by making memory
accesses more efficient, by saving CPU cycles, bus cycles, and power. We introduce a language of valid
gesture types and conduct a series of experiments to analyze the characteristics of gestures defined by
this language within a set of benchmarks written in Java and C. We gather statistics on the frequency,
length, and number of types of gestures found within these benchmarks, using both static and dynamic
analysis methods. We propose an optimization of the number of gestures required for a program,
showing the optimization problem to be NP-Complete.

https://openscholarship.wustl.edu/cse_research/1078?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1078?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title: Memory-Accessing Gestures Fox, M.Sc. 2003

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

MEMORY-ACCESSING OPTIMIZATION VIA GESTURES

by

Lucas M. Fox

Prepared under the direction of Dr. Ron K. Cytron

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May 16, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

MEMORY-ACCESSING OPTIMIZATION VIA GESTURES

by Lucas M. Fox

ADVISOR: Dr. Ron K. Cytron

May 16, 2003

Saint Louis, Missouri

We identify common storage-referencing gestures in Java bytecode and machine-

level code, so that a gesture comprising a sequence of storage dereferences can be con-

densed into a single instruction. Because these gestures access memory in a recognizable

pattern, the pattern can be preloaded into and executed by a “smart” memory. This ap-

proach can improve program execution time by making memory accesses more efficient,

by saving CPU cycles, bus cycles, and power. We introduce a language of valid gesture

types and conduct a series of experiments to analyze the characteristics of gestures defined

by this language within a set of benchmarks written in Java and C. We gather statistics on

the frequency, length, and number of types of gestures found within these benchmarks, us-

ing both static and dynamic analysis methods. We propose an optimization of the number

of gestures required for a program, showing the optimization problem to be NP-Complete.

to my family

Contents

List of Figures ��� vi

Acknowledgments ��� viii

1 Introduction ��� 1

1.1 Processor in Memory . 1

1.2 Gestures . 1

1.3 Memory Macros . 4

1.4 Potential Benefits . 5

1.5 Goals . 6

1.6 Techniques . 6

2 Gesture Types in Java ��� 8

2.1 Getfield Gestures . 8

2.2 Getfield-Putfield Gestures . 9

2.3 Getstatic-Getfield Gestures . 10

2.4 A Language of Java Gestures . 11

2.4.1 A Gesture-Recognizing NFA . 13

3 Reducing the Number of Memory Macros ����������������������������������� 14

3.1 Simple (Non-Reordered) Macro Generation 14

3.2 Field Reordering . 16

3.3 A Greedy Reordering Heuristic . 17

4 Complexity of an Optimal Field Reordering Algorithm ��������������������� 20

4.1 Problem Generalization . 20

4.2 Problem Statements . 21

4.3 The NP-Completeness Proof Model . 22

iii

4.4 Theorem 1 Proof . 23

4.4.1 Theorem . 23

4.4.2 Verifiability . 23

4.4.3 Reduction from Subset Sum . 23

4.4.4 Forward Proof . 25

4.4.5 Reverse Proof . 26

4.4.6 Example . 27

4.5 Theorem 2 Proof . 28

4.6 Theorem 3 Proof . 28

4.7 Theorem 4 Proof . 29

4.8 Additional Conjectures . 29

5 Experiments ��� 31

5.1 Experiment Aims . 31

5.2 Static Analysis Methods . 32

5.2.1 Benefits and Limitations of Static Analysis 32

5.2.2 Static Gesture Candidate Selection 32

5.2.3 Benchmarks . 33

5.3 Static Analysis With Javap . 34

5.3.1 Implementation of Javap . 34

5.4 Static Analysis with Scavenge . 35

5.4.1 Implementation of Scavenge . 35

5.5 Dynamic Analysis . 36

5.5.1 Dynamic Benefits and Limitations 36

5.6 The Dynamic Gesture Searcher . 37

5.6.1 Dynamic Gesture Candidate Selection with DYGS 37

5.6.2 Finding Non-Sequential Gestures 37

5.6.3 Dynamic Analysis of Getfield-Putfield Gestures 39

5.6.4 Additional Features of DYGS . 40

5.7 Dynamic Analysis of C programs with SimpleScalar 41

5.7.1 Benchmarks in C . 42

5.7.2 Dynamic Gesture Candidate Selection DYGS-SS 43

5.7.3 Additional Features of DYGS-SS 44

5.8 Memory Macro Simulation . 45

5.8.1 Simulator . 46

iv

5.8.2 Statistical Analyzer . 47

5.8.3 GLF Program Generator . 47

5.8.4 Visualizer . 48

5.8.5 Use of MacroSimulator . 48

5.9 Experimental Results . 48

5.9.1 Javap . 48

5.9.2 Scavenge . 49

5.9.3 DYGS . 50

5.9.4 DYGS-SS . 53

5.9.5 MacroSimulator . 55

5.10 Conclusions . 59

5.10.1 Javap . 59

5.10.2 Scavenge . 60

5.10.3 DYGS . 60

5.10.4 DYGS-SS . 61

6 Future Work ��� 62

6.1 Dynamic Macro Generation . 62

6.2 New Gesture Types . 62

6.3 Cache Integration . 63

6.4 Implementation . 63

References ��� 64

Vita ��� 66

v

List of Figures

1.1 Interaction between CPU and Memory during a Gesture 4

1.2 Interaction between CPU and Memory during a Gesture, with Mem-

ory Macros . 5

2.1 Getfield Gesture Stack Operations . 9

2.2 Putfield Gesture Stack Operations . 10

2.3 Getstatic Gesture Stack Operations . 11

2.4 A Gesture-Recognizing NFA . 12

3.1 Example Field Alignment . 15

3.2 Example Gesture Reference Frequency Table 17

3.3 Counterexample Field Alignment . 19

3.4 Counterexample Gesture Reference Frequency Table 19

4.1 Pictorial Example of NP Reduction . 28

5.1 A Valid Non-Sequential Getfield Gesture 38

5.2 An Invalid Non-Sequential Getfield Gesture 39

5.3 Example of a Shadow Register Manipulation 44

5.4 Interaction between MacroSimulator Components 46

5.5 Length-2 Gestures Found by Javap . 49

5.6 Length-2 Gestures Found by Scavenge 50

5.7 Gestures Found by Javap vs. Gestures Found by Scavenge 51

5.8 Number of Macros Needed before and after Field Reordering 51

5.9 Macro Reduction through Field Reordering with Scavenge 52

5.10 Getfield Gestures Found by DYGS in SPECjvm98 Benchmarks . . . 53

5.11 Putfield Gestures Found by DYGS in SPECjvm98 Benchmarks 54

5.12 Total Gestures Found by DYGS in SPECjvm98 Benchmarks 55

vi

5.13 Number of Gestures Found in Size-10 SPECjvm98 Benchmarks with

DYGS, by Length . 56

5.14 Number of getfields vs. Number of putfields in Length-Two

Gestures, for Size 10 Benchmarks . 57

5.15 Gestures Found by DYGS-SS in CommBench Benchmarks 57

5.16 Number of Gestures Found in CommBench Benchmarks with DYGS-

SS, by Length . 58

5.17 Gesture Distribution by Length in Zip Decoder Benchmark 59

5.18 Simulated Execution Times of SPECjvm98 Benchmarks with and

without Memory Macros . 60

vii

Acknowledgments

I would like to thank my professor, advisor, and friend, Dr. Ron K. Cytron, for his intro-
duction of the idea behind this thesis, in addition to his continuing feedback and encourage-
ment as my work has progressed over the past three years; along with the National Science
Foundation, which provided the funding for this research, and the other members of my
committee, Dr. Mark Franklin and Dr. Jason Fritts.

I would also like to thank the various members of the Washington University DOC
Group and general CS community who have contributed in one way or another to the en-
vironment I’ve been fortunate enough to work in, especially Ben Brodie, James Brodman,
Dante Cannarozzi, Sharath Cholleti, Delvin Defoe, Steve Donahue, Scott Friedman, Matt
Hampton, Mike Henrichs, Victor Lai, Nick Leidenfrost, Martin Linenweber, Stephen Torri,
and the entire Monday Morning Basketball Squad; as well as Binny Mathews for his help
with CommBench. I would especially like to thank Chris Hill, who has been through many
of the trials and tribulations associated with this material himself, and has always been a
valuable colleague in discussing anything from double indirections to double reverses.

Finally, I would like to thank Lisa, without whom I doubt any of this could have
been possible.

Lucas M. Fox

Washington University in Saint Louis
May 16 2003

viii

1

Chapter 1

Introduction

1.1 Processor in Memory

Gates and transistors have been rapidly decreasing in size for decades, freeing space on

memory chips to be used for other tasks. One proposed method of utilizing this extra space

is with a Processor in Memory (PIM), also known as Intelligent RAM (IRAM) [7, 10].

The Processor in Memory would be able to perform simple intelligent tasks independently

and in parallel with the CPU. For example, a memory module would introspectively recog-

nize its utilization and free portions of memory that were no longer needed by a program

[2, 1]. The memory module could also perform simple processing tasks to decrease the

load on the CPU. We propose using PIMs to execute series of related, memory-accessing

instructions from a program within main memory1. Each intermediate instruction’s result

would not be returned to the CPU, only the final result of the series of instructions. Obvi-

ously, only certain instruction chains would be suitable for this task, so first we examine

more closely what requirements are placed on this type of chain, which we will call a

gesture.

1.2 Gestures

A gesture, also known as a superoperator [11], can be defined as a series of related ma-

chine instructions. This group of instructions is “related” in that only the end result of the

series of the instructions is needed for further execution of the program; all the intermediate

1From this point on, the generic term “memory” will refer specifically to main memory. Please see
�
6.3

for information regarding the impact of cache.

2

instructions are simply steps that need to be taken towards the final result. In this sense,

a gesture can be considered a single atomic step in the program execution. This type of

chain may occur frequently within object-oriented programs, where programs often need

to navigate through several layers of classes or structures in order to find a certain data item

(e.g. myname = ClassData.student.lastName), or through a tree/list structure

(e.g. item = root.child.child).

We are interested in series of instructions that read from and write to memory in

some sort of recognizable pattern, in hopes that this pattern can be condensed into a sin-

gle macro-instruction, which would be executed by the PIM. Specifically, the memory-

accessing pattern of concern is one that dereferences2 and “indirects” through memory

addresses several times before returning a final result. For example, if we have container

structures defined as

structure a {

...

offset 4: x (pointer to a structure of type b)

...

}

structure b {

...

offset 8: y (pointer to some other structure)

...

}

and our program accesses a.x.y, we would need to indirect through the memory

address of a to find x, and likewise, through the memory address of x to find y.

That is, in each step of a chain of instructions, we can take the result of a the pre-

vious step’s base-offset dereference and use it as the base address for a new base-offset

dereference, where only the final dereference in the chain is needed for further execution.

The entire gesture can be represented with three items, which are:

� The location of the memory address used as the base for the first dereference, which

we term the first source of the gesture.

2The term “dereference” refers to the process of retrieving some value from memory using an indirect
addressing scheme.

3
� The location to which the final dereference’s result should be returned, which we

term the final destination of the gesture.

� The series of offsets used in each dereferencing step, which we term the indirection

chain.

For each step of a gesture, the result of the previous dereference is typically stored

in a register or on a runtime stack. Because our goal is to consider an entire gesture as

an atomic instruction, the intermediate steps of the gesture must be transparent to the rest

of the program. Therefore, stored intermediate values must never be directly accessed by

instructions that are not part of the gesture, and intermediate instructions must never change

any program state that is not directly associated with the gesture.

Returning to our example of the gesture a.x.y, note that the pattern of deref-

erencing required to find the location of y is (*(*(a+4)+8)), where *x denotes the

dereferencing of x. This is analogous to a series of low-level register-based memory fetch-

ing instructions shown below3, of the form GET(dest, source), where source is

the address of the memory to be fetched, dest is where the result of the fetch should be

written, and RX refers to the contents of a general purpose register numbered X:

--unrelated instructions--

GET(R2, R3+4)

GET(R4, R2+8)

--unrelated instructions--

Note that only the result in R4 is important to the execution of the program, and that

it only depends on the value that was in R3, along with the successive indirection offsets 4

and 8. Thus, we can think of the first two lines of the above example as a single gesture,

which takes the value in R3, indirects from memory twice with the offsets 4 and 8, and

returns the final result to R4. A diagram of the interaction between the CPU and memory

that occurs during execution of this gesture is shown in Figure 1.1.

3From this point on we will represent the series of instructions that constitute a gesture as a vector ��������	��

���	�	���������������	��

���	�	���������������
in order to save space. For example, the gesture shown here would be

represented as <GET(R2, R3+4), GET(R4, R2+8)>.

4

Figure 1.1: Interaction between CPU and Memory during a Gesture

1.3 Memory Macros

If we can determine what memory-accessing gestures will be used in the course of a pro-

gram’s execution, we can encompass the execution of these gestures within a memory

macro, which will store the relative offsets of each memory accessing instruction in the

gesture. These macros can then be interpreted and executed within the PIM in lieu of ex-

ecuting the entire chain of instructions on the CPU. Specifically, we can assign a unique

macro number to each unique indirection chain that is found in the program, and then en-

compass that number within a new instruction type that is recognized by intelligent mem-

ory. The mapping of each chain to its corresponding macro number will be loaded into

memory before the program executes and stored in a macro table that the PIM can access.

Note that we only preload the indirection chain for a gesture on the PIM, so that the same

macro can be used for different first source / final destination pairs that share the same

series of offsets.4

During execution, when the CPU encounters a gesture, instead of sending a series

of standard memory-accessing messages, it will make one macro call to the PIM, contain-

ing the first source, final destination, and indirection chain (macro) number. For example,

instead of sending the series of fetch instructions described at the end of � 1.2, we would

simply send the macro instruction GET MACRO 4(R4,R3), where GET MACRO 4 had

4Due to the one-to-one relationship between an indirection chain and a macro, we will use indirection
chains, in the format of the tuple (first indirection offset, second indirection offset, ...), to identify particular
macros in the following sections.

5

Figure 1.2: Interaction between CPU and Memory during a Gesture, with Memory
Macros

previously been defined to the PIM as a double indirection macro with offsets of 4 and 8

for the first and second indirections, respectively. Upon receiving one of these instructions,

the memory can then find the macro corresponding to the macro number defined in the in-

struction, and then use that macro to execute all the steps of the indirection chain within the

memory, returning only the final result to the CPU. Figure 1.2 demonstrates the interaction

between the CPU and memory that occurs during the execution of a gesture with a memory

macro.

1.4 Potential Benefits

The benefits of our approach are as follows:

CPU Cycle Savings: If all the instructions in a gesture can be executed by the PIM, the

CPU does not have to execute them, and is free to do other processing while waiting

for the gesture’s final result to be returned. Thus, the load on the CPU can be reduced,

increasing throughput. This idea can be most effectively exploited when zero-latency

multithreaded processors are employed.

Bus Cycle Savings: If all the instructions in a gesture can be executed by the PIM, we do

not need to send an address to memory and send a resultant value back to the CPU

for each step of the gesture. Thus, we eliminate a certain percentage of bus cycles in

those systems where the bus is shared.

Power Savings: Each bus cycle requires power to recharge the bus. Therefore, if we re-

duce the number of bus cycles, and the subsequent reduction in power is less than

6

the extra power needed for our memory logic and macro table, we can reduce overall

power requirements.

Decreased Footprint Size: Since our system would use a single macro instruction to rep-

resent the entire chain of instructions composing a gesture, we reduce the total num-

ber of instructions in a given program.

1.5 Goals

It should be clear that all these benefits are directly related to the number of gestures that

occur within a program. Programs with a higher gesture frequency should see increased

savings in cycles, time, and power. Therefore, our primary goal in the series of experiments

presented in Chapter 5 is to determine how often gestures occur in programs, so that we can

determine the potential savings. We will also investigate the distribution of gesture lengths

within a program, as longer gestures would likely be more beneficial, as well as the number

of distinct gestures in a program, which would be related to the number of needed macros.

1.6 Techniques

We will make use of two techniques to gather our information:

Static Analysis: Examination of a program independently of its execution, which would

be necessary if we are going to send memory macros to the PIM before execution

starts.

Dynamic Analysis: Examination of a program during execution, which would provide

the most accurate picture of how often gestures occur in a program. This provides

an upper bound on the number of gestures that could potentially be found with static

analysis.

We concentrate our gesture-finding experiments primarily on programs written in

Java �
�

, for several reasons:

� The intermediate representation of a Java .class file provides an excellent way of

accessing the bytecode of a program in a static context.

� The software-based implementation of the Java Virtual Machine (JVM) provides a

good platform for instrumentation pertaining to dynamic bytecode analysis.

7

Further benefits of using Java will be discussed later. However, to provide a broader per-

spective, we also conducted a simple examination of potential gestures in C programs, by

instrumenting a system software infrastructure.

8

Chapter 2

Gesture Types in Java

Before we present the experiments conducted to find gestures in Java programs, it is use-

ful to define what type of gestures we expect to encounter. Within our experiments, we

investigate gestures that occur on three types of Java bytecode instructions: getfield,

putfield, and getstatic [8]. We describe these instructions and the gesture classes

associated with each of them individually, and then define a simple language of valid ges-

ture types using these instructions.

2.1 Getfield Gestures

The simplest gesture type is a series of consecutively-executed getfield instructions.

A getfield is used in the JVM specification to fetch a field at a specific field index of

a specific class. In this instruction type, the top of the stack, which is required to contain

an object reference, is popped, and the value of the specified field in that object is pushed

onto the stack, as shown in Figure 2.1. If we chain these instructions together, the next

getfield instruction will then take the value that has just been pushed and use it as a

new object reference, and so on. We will term this series of getfield instructions a getfield

chain.

Because all Java bytecode instructions, includinggetfield, perform a well-defined

operation with respect to the stack, we always will know the state of the stack as the next

instruction in a gesture is executed. For each getfield instruction, the stack size does

not change, and only the top item on the stack is modified. The intermediate steps of the

getfield chain do not influence the final stack state because they are successively over-

written until the final result of the gesture is put on the stack. Hence, the top of the stack

9

Figure 2.1: Getfield Gesture Stack Operations

acts as the first source and final destination for the gesture, by initially holding the source

address, and then the returned result.

Our macro for a particular gesture then consists of the indices of the fields to be

retrieved in the object references that are encountered on each step of dereferencing the

getfield chain. To “call” this macro, the program would send the original object refer-

ence from the top of the stack (which acts as the first source and final destination), along

with a macro number, as was described in � 1.3.

We can obtain the series of indirection offsets independently of the program’s exe-

cution because they are specified in the bytecode instructions, as indices into the constant

pool. The relative ease with which we can extract the first source, final destination, and

indirection chain for this type of gesture makes it an excellent candidate for incorporation

within a memory macro.

2.2 Getfield-Putfield Gestures

The second gesture type we investigated is very similar to the getfield chain mentioned

above. This gesture consists of one or more consecutive getfield instructions followed

by a single putfield instruction. We will term this type of gesture a getfield-putfield

chain. As would be expected, putfield does the complement of a getfield and sets

a specified field of an object. More precisely, the putfield interprets the top value on

the stack as the value to be stored and the second value on the stack as a reference to the

object in which the value will be stored (see Figure 2.2).

10

Figure 2.2: Putfield Gesture Stack Operations

If the putfield is proceeded by a series of getfields, then the value to be

stored (the one at the top of the stack) will be the result of that getfield chain, so the

entire gesture can be considered atomic. The key difference between this gesture and a

getfield chain is that this gesture ends with a store instruction, which means the final

result of the instruction chain never has to be returned to the CPU. Thus, this gesture has

more potential benefit than a standard getfield chain, because it frees up an additional

bus cycle and does not force the CPU to wait for a result.

A putfieldmacro would then consist of a chain of getfield offsets and a final

offset of the field within the object where the result of the gesture would be stored. Like

the getfield offsets, this field offset can also be found in the constant pool. To “call”

this macro, we again need the original object reference and the macro number, as was the

case for the getfield macro. We also must include a reference to the object where the

final value should be stored, which is no longer simply the top of the stack, but a specified

location in memory. This final object reference can be resolved as the second item from the

top of the stack.

2.3 Getstatic-Getfield Gestures

In the process of developing our more advanced gesture-finding programs, it was deter-

mined to add an additional bytecode type to our definition of what would constitute a

valid gesture. This bytecode, the getstatic instruction, can only validly occur at the

beginning of a gesture, much like the putfield instruction can only occur at the end.

11

Figure 2.3: Getstatic Gesture Stack Operations

getstatic pushes a static field from a class onto the stack, but because the field is static,

no object reference is required for this instruction (see Figure 2.3).

It would not make sense to chain getstatic instructions together since they fetch

based only on the class and field index, not the current state of the stack, so there is no inter-

relation between each getstatic instruction. However, the fetched getstatic value

could subsequently be used as an object reference for one or more getfield instructions

that follow, which do not increase or decrease the stack size. Thus, we can define two

new types of gestures by attaching a getstatic instruction to the beginning of each of

the previously defined gestures. We characterize these new gestures as getstatic-getfield

chains and getstatic-putfield chains. Macros for these types of chains are very similar to

their previously-defined equivalents, only they use a constant pool index when invoking the

macro rather than an object reference from the top of the stack.

2.4 A Language of Java Gestures

Based on the discussion above, we have four gesture types, which can be defined by

the following regular expressions over the alphabet
���������
	��
���

, where
�

represents a

getfield instruction,
	

represents a putfield instruction,
�

represents a getstatic

instruction:1

1For our formal language definitions we will use the notation described by John Martin in Introduction to
Languages and the Theory of Computation [9].

12

Figure 2.4: A Gesture-Recognizing NFA

1. � � ��� ��� (Getfield Gestures)

2. � � � � ��� (Getstatic-Getfield Gestures)

3. � � ��� 	�� (Getfield-Putfield Gestures)

4. � � ��� 	�� (Getstatic-Putfield Gestures)

or, simply �	��

� � ��� ��� ��� � � � ��� 	���� .2
If we think of the series of instructions in a Java program to be analyzed as a string�

over the alphabet ��� � �������
is a Java bytecode

�
, the problem of finding gestures in a

program is equivalent to finding the subsets of �	��

� that occur as a substring of
�
:

�	 "!$#&% � ���(' �	��

� ��)*� �,+(' �-� �
� ��+ � � �

Similarly, if we think of
�. /!$#&%

as a multiset, it would contain every occurrence

of any gesture that is found in the Java program’s series of instructions. From this set we

can obtain not only a list of which gestures have been used, but also the frequency of each

gesture.

13

2.4.1 A Gesture-Recognizing NFA

Like all regular languages, �.�

� can be recognized by a Nondeterministic Finite Au-

tomaton (NFA), as is shown in Figure 2.4. Although none of the gesture-finding programs

used in the experiments are specifically modeled after this NFA’s explicit “states”, their

basic structure often mirrors the machine’s fundamental components. In particular, we do

include concepts of a gesture-starting and gesture-ending state, and symbols that we are

allowed to include next in a gesture are based on keeping track of what we have already

seen.

2In some experiments we will attempt to find only a subset of this language (e.g the Getfield Gestures) for
simplicity’s sake.

14

Chapter 3

Reducing the Number of Memory

Macros

Now that we have defined the characteristics of a set of Java gestures, let us examine how

these gestures would then be encompassed in a memory macro.

3.1 Simple (Non-Reordered) Macro Generation

The simplest way to generate memory macros for a Java program would be to scan the

program’s .class files using a static analysis method (see � 5.2) to find all the gestures

it uses, then determine which macros will be needed to represent all the gestures we have

found. For example, if our set of classes and their corresponding fields were defined as

they are in Figure 3.1, and the program contained the following list of instructions:

a = new Foo();

b = new Bar();

c = new Baz();

...

Bar temp1 = a.x.y;

Foo temp2 = a.y.x.x;

Foo temp3 = b.x.y;

Bar temp4 = c.y.y;

then the four gestures found through our analysis program would be:

15

Class Foo Class Bar Class Baz
Field 1: Bar x Foo x Foo x
Field 2: Foo y Bar y Bar y
Field 3: Bar z

Figure 3.1: Example Field Alignment

1) <getfield (Foo.field1), getfield (Bar.field2)>

2) <getfield (Foo.field2), getfield (Foo.field1), getfield (Bar.field1)>

3) <getfield (Bar.field1), getfield (Foo.field2)>

4) <getfield (Baz.field2), getfield (Bar.field2)>

We would need three memory macros, one for each of the indirection chains (1,2),

(2,1,1), and (2,2). Each of these macros would then be assigned a number, and the map-

ping of macro numbers to indirection chains (e.g. MACRO 1 � (1,2), MACRO 2 � (2,1,1),

MACRO 3 � (2,2)) would be sent to the PIM before program execution. Then, during exe-

cution, the CPU would tell the PIM to execute one of these macros at the point when the

first getfield of the corresponding gesture would have been called.

Notice here how we do not necessarily need a separate memory macro for each

gesture we encounter, even if the gestures operate on different classes. If the series of

offsets (i.e the indirection chain) for a group of gestures is identical, we can state that they

can be covered by the same macro. Unlike structures in C or C++, all non-primitive fields

in a Java class are the same size because they are all considered references1. This means

that any field at a specific index can be accessed the same way as any other field at that

index, regardless of which object or class each field is in. Since a field lookup is based only

on the offset of the field index within a Java object, the class of the object is irrelevant from

the perspective of the getfield instruction, only the index itself is significant. Therefore,

if this type of instruction is covered by a macro, we can ignore the classes of objects in a

gesture, as long as the sequence of field indices is the same. Hence, gesture one and gesture

three in the above example are covered by a single macro, (1,2).

1From this point on we will assume that all fields are reference fields, unless otherwise noted, in order to
simplify our discussion.

16

3.2 Field Reordering

As was shown above, the number of macros needed to cover all gestures can be fewer

than the number of unique gestures encountered. Macro information must be stored in

main memory, so any reduction in this number reduces the amount of memory overhead

that a macro-processing system would require. Thus, it makes sense to attempt to reduce

the number of needed macros. Specifically, if we have a macro corresponding to some

indirection chain (x,y) it would be beneficial to put as many gesture-referenced fields as

possible in the x
���

and y
���

positions of their class files, since only the field indices on each

step of a gesture’s indirection chain determine whether or not it will be covered by a macro.

Fortunately, the inherent referential transparency of Java allows us to do just this,

by assigning any ordering we want to the fields of a class, if they are all the same size. The

order of fields that the programmer specifies is independent of the order they are presented

in the .class file, because Java fields cannot be accessed directly though offsets, as is the

case in C/C++ structures; they can only be accessed through their proper names.

Consider reduction of the number of macros needed in the above example. If we

change the order of the fields in class Baz as follows:

Class Baz {

field 2: Foo x;

field 1: Bar y;

}

then gesture number four becomes

< getfield (Baz.field1), getfield (Bar.field2) >

This gesture can then be covered by the macro (1,2), which already covers two other ges-

tures, so the total number of macros has been reduced from three to two.

However, complications arise in the process of reordering due to the fact that dif-

ferent gestures may reference different fields of a class. Because of this, rearranging (i.e.

permuting) the order of fields in a particular class so one gesture conforms to a macro may

cause other gestures referencing the class to need a different macro. Permuting one class in

an effort to decrease the macro count could potentially increase the total number of macros

needed. Thus, the problem of finding a reordering scheme that minimizes the number of

macros could be very difficult. In Chapter 4 we show that finding the minimum number of

macros needed to cover some group of a program’s gestures is NP-Hard, and would likely

take exponential time.

17

Class.Field 1st indirection 2nd indirection 3rd indirection
Foo.x 1 1 0
Foo.y 1 1 0
Foo.z 0 0 0
Bar.x 1 0 1
Bar.y 0 2 0
Baz.x 0 0 0
Baz.y 1 0 0

Figure 3.2: Example Gesture Reference Frequency Table

3.3 A Greedy Reordering Heuristic

Given the apparent difficulty of trying to minimize the number of macros, heuristics could

be used to reduce the number of macros. The greedy heuristic reordering algorithm used in

our experiments was introduced by Chris Hill[4] and makes use of a few intuitive rules for

field reordering:

� We can never make things worse by moving all fields that aren’t part of any gesture

to the end (i.e. the highest field indices) of each class. Their order is irrelevant since

we don’t need to “cover” them, and by forcing all referenced gestures into the lowest

field indices we increase the chance of one macro covering several instructions.

� We can move any primitive fields near the end of the class since they can only be ref-

erenced by the last step of a gesture. Of the fields that are referenced by gestures, we

can move those that are referenced most frequently to the lowest field indices. This

allows the greatest number of gestures to be covered by a few low-number macros

(e.g. (0,0), (0,1), (1,0), etc.), and leaves only the infrequently occurring gestures to

be covered by higher macro numbers.

To take advantage of these ideas, we can construct the following reordering algo-

rithm:

� Construct a gesture reference frequency table from the list of gestures found in a

program, which contains the number of times each field in each class is referenced

by each indirection step in any gesture. Thus, the table will have a maximum of

���������	��
���
�������������������������� ��!"
��$#��&%('�
)�����*���+�+����� �����,���-��
��/.��0�01�
�%2�3����!4.�165��

18

items.

� Move all fields that are not referenced in any chain to the highest field indices of the

class, in any order.

� Of the fields that are found in a chain, move all reference (i.e. non-primitive) fields

to lower field indices than any primitive field index.

� For each class in the table, order reference fields within their block of indices based

on the number of times they are referenced by the first indirection step of a gesture.

Those that are referenced most frequently get the lowest field indices, and vice versa.

To break ties, use the number of times the field is referenced by the second indirection

step of a gesture. Continue breaking ties using the next indirection step of the gesture

until there are no more ties or until all indirection steps have been used.

� Order primitive fields within their block of indices in each class in this same manner,

once all reference fields have been ordered.

In our example above, the gesture reference frequency table would be constructed

as is shown in Figure 3.2. Then, following our algorithm, the only fields that are not

referenced by any gesture at any indirection step are field z in foo and field x in Baz.

These would be moved to the highest field index of each class; Foo.z remains at field

index 3, while Baz.x moves to field index 2, forcing Baz.y to move to field index 1.

Notice that we have already reduced the number of needed macros, by performing the

same permutation that was described in � 3.2. Once this permutation has been carried out,

all the fields in all the classes have been ordered successfully according to the algorithm

and we are done. Notice that Bar.y, even though it has a greater count than Bar.x for

the second indirection step and the same total indirection count, is not switched because

we always begin by examining the first indirection step, where Bar.x does have a higher

count than Bar.y.

Use of the heuristic described above is able to reduce the number of needed macros

in many cases, but does not guarantee an optimal ordering to fields.2 The following coun-

terexample describes a situation in which the heuristic does not give an optimal solution.

Suppose we are given a group of classes with the field alignment specified as in

Figure 3.3. Then, if our program contains the following set of instructions:

2Additional testing performed by Chris Hill [4] has shown that our heuristic does in fact generate the
minimum number of macros needed, in many cases.

19

Class Foo Class Baz Class Top Class Bot Class Bar
Field 1: Top a Bot d int f int k Bot m
Field 2: Top c Bot e int g int l

Figure 3.3: Counterexample Field Alignment

Class.Field 1st indirection 2nd indirection
Foo.a 2 0
Foo.c 1 0
Baz.d 2 0
Baz.e 1 0
Top.f 0 2
Top.g 0 1
Bot.k 0 2
Bot.l 0 1
Bar.m 1 0

Figure 3.4: Counterexample Gesture Reference Frequency Table

int temp1 = Foo.a.f

int temp2 = Foo.a.g

int temp3 = Foo.c.f

int temp4 = Baz.d.f

int temp5 = Baz.d.k

int temp6 = Baz.e.l

int temp7 = Bar.m.k

the set of macros needed to cover all these instructions given the current field order-

ing would be
� ��� � � � � ��� ��� �
� � � � � � � � � ��� � � . Applying our heuristic, we would next construct

the gesture reference frequency table shown in Figure 3.4. Based on this table, no field

reordering is done, so we remain with four macros after using our heuristic.

However, if we permute fields of class Bot such that k is now the second field and

l is now the first, our set of needed macros would become
� ��� � � � � ��� ��� � � � � � � � � . Thus, the

number of needed macros after application of our heuristic is not optimal, because we were

able to find a better solution through inspection.

20

Chapter 4

Complexity of an Optimal Field

Reordering Algorithm

As has been stated in � 3.2, achieving a reordering of fields that will result in a minimum

number of memory macros appears to be a very hard problem. In this chapter we will

attempt to more precisely describe the difficulty of this problem, by showing it belongs to

a class of problems that are NP-Hard. Specifically, we will show that finding the minimum

number of macros needed to cover some group of a program’s gestures is NP-Hard. First,

however, let us formally define the problem of field reordering in mathematical notation,

which will be more conducive to our proof.

4.1 Problem Generalization

Given:

� A positive integer � that is the exact length of all gestures.

� A program � � � � � � � ���*� where

� is a set of types referenced by the program.
� � is a mapping

� ����� ��� #&� � �
For a given type � ' � ,

� � �	� ��
-� is the type of the

 th field of � according to

the layout of type � .

21��� � �	� ��� � � � ' � ��� ' #�� �
is the multiset of the program’s instructions. Here, �

is the type of an instruction’s first reference. The vector
�

provides successive

offsets used for dereferencing (i.e.
�

is analogous to the indirection chain as

we have defined it in � 1.2).

� We define a vector of types � ((t,m)) for each instruction
�(' �

as follows:

��� � �
�
	 � � � ����	
��� ��� 	 � � ��� � � �

Thus, ��� is type of the � th indirection for instruction
�
.

� A permutation � permutes the fields of a type as follows:

� ��� ��� # � � #

��� � �	� ��� � � � � represents the effect of a permutation � on instruction � � ��� � as follows

� � �	� ��� � � � � � � � ����� �

where
� �	 � �����
	 � � � ��� � � ��� � � � � . The extension of � to a set of instructions is

straightforward.

��� � #��
is a set of macros available to the program.

� A positive integer � that bounds the size of � .

� For a subset of instructions
 ���
and a set of macros � , let �
 � � �

be the set of

instructions in S covered by macro set M:

 �
 � � � � � �	'
 �) �)!� �	� ��� � � � �"� ' � �

� A positive integer # that bounds the size of the above set.

4.2 Problem Statements

We next seek to determine the complexity of finding a permutation that results in the fewest

number of macros to cover an instruction multiset. Our approach is to consider a sequence

of simpler decision problems as follows.

22%
��� � � # � �)
 � �*� �) � � � (� � �
 � � � � � ����� # � � � ���

�
% � � � � # � � � �)
 � �*� �) � � � � � �
 � � �
� � ��� � # � � � � � �
%�� � � � # � � � �)
 � �*� �) � � � � � �
 � � �
� � ��� � # � � � � � �

Problem
%�� � � � � � determines whether � macros suffice to cover # instructions in

program � . The optimization form of this problem is to find

 	 � � � � # � �������
�
	��

%�� � � � # �
-�

4.3 The NP-Completeness Proof Model

We will use an NP-Completeness reduction to show that our problem is NP-Hard. Before

presenting proof itself, we will first explain how the NP-Completeness proof model works.

There are a number of complexity classes that problems can be categorized in. P is

used to represent the class of problems that can be solved in polynomial time, whereas NP

is used to represent the set of problems that can be solved on a nondeterministic machine

in polynomial time.

To prove that a problem is NP-Complete, that is, that there does not exist an al-

gorithm that solves the problem in polynomial time unless P = NP, we must perform the

following two steps:

� Show that if we are given a solution and told that it is correct, we can verify both

validity and correctness in polynomial time, that is, that the problem is in NP.

� Prove that every other NP-Complete problem can be reduced to our problem in poly-

nomial time and space, in other words, that the problem is NP-Hard.

Typically, the second part is accomplished by reducing a known NP-Complete prob-

lem to the new problem in polynomial time and space, since one property of the set of

NP-Complete problems is that they all reduce to each other in polynomial time and space.

A reduction is shown by constructing a specific instance of our problem out of an

arbitrary instance of a known NP-Complete problem and showing that a solution to the

NP-Complete problem must also be a solution to our problem as well as that a solution to

our problem must also be a solution to the NP-Complete problem [5].

23

4.4 Theorem 1 Proof

4.4.1 Theorem
%

��� � � # � : �)
 � ��� �) � �	� � � �
 � � �
� � ����� # ��� � ���
� is NP-Complete when the

number of fields per type is greater than one for any type in T.1

4.4.2 Verifiability

We can reorder the instruction set
�

with a given � in polynomial time because for each

instruction we can use � along with the instruction’s � and
�

to find � � � ��� � as described

above in linear time (�"� � �-��� � �). We can then count the number of instructions covered

by each macro in M in linear time (� � � �-��� � �) and sum up the total number of instructions

covered in linear time (�"� � � � �). Thus, the total verification time is � � � �-��� � � � �-��� � � � �-� � �
�"� � � ��� � � � � � �

� �
, which is polynomial.

4.4.3 Reduction from Subset Sum

To prove that the problem is NP-Complete, we will show that the Subset Sum problem

reduces to it.

Subset Sum asks whether a finite set of sized elements � contains any subset of

elements � � whose sizes sum up to a positive integer � . It was shown to be NP-Complete

with a transformation from Partition by Karp [6].

First we define an instance of problem 1 in terms of a subset sum problem. In subset

sum we are given a finite set � , a size
� ��� � ' #
	

for each � ' � , and a positive integer � .

Let us consider an arbitrary instance of subset sum using the notation above, where

we are given our set � and our integer � .

We can construct a specific instance of our problem using the following constraints:

� Let # � � .

� Let the variable

be
� � � .

� Let � be �
�����
 .

� Let our program � � � � � � � � ��� be defined as:

1Obviously, the problem is trivial if all types have only one field.

24

Assign some arbitrary ordering ��� � � � � � � � � � � to the elements in � .

Let � be a set of

 �
��� �
 unique types, with each type containing exactly two fields

(0 and 1). Let the set be enumerated as follows:

� � ��
	�� �

��
��� �

� �	� 	�� � �
�

Let
� � be defined as:

� 	�� � � � � � � � � � 	�� � 	 �

It follows from this construction of
� � that each unique instruction will refer-

ence a series of types � 	�� � � � 	�� � � � 	�� � � � � � ' � such that each type is referenced by

at most one unique instruction.

Define function �
	� � � � which returns the vector of binary digits that represent the

base 2 numeral for
�
:

�

� � � � � � �
�
� �

In our problem �

� � � � would represent
�

, the sequence of field numbers being

accessed in each successive indirection step of the gesture. A 0 would indicate

the instruction is referencing the first field in a type and a 1 would indicate the

instruction is referencing the second field in a type.

This will allow us to create

unique binary instructions. That is, we ensure there are

enough binary digits to create an instruction that references a series of unique

types and has a unique
�

, for each starting type (� ���).
Let

�
be the multiset2 of ordered pairs:

� � ��
	�� �

��
�������
� � �

� � � 	�� � � �

� � � � �
�

For each � ' � , we create a unique instruction (

total) and then “clone” each

one
� ��� � times.

From our definition of
� � , it follows that our type vector � for any instruction

�	� 	�� � � �
	� � � � � will be � � 	�� � � � 	�� � � � � � � � 	�� ���

� Let
� � � �

� , we want to use only one macro.

2From this point on, � will always denote a multiset union unless otherwise noted.

25

4.4.4 Forward Proof

First, we need to show that a solution to the subset sum problem implies a solution to our

problem:

A solution to the subset sum problem exists when

) � � � � where �� 	���� � � � � � �

We then need to show
)
 and

) � such that
� � � �
 � � � � � ����� # and

� � � �
� .

� Choose some subset S
�

I such that:

 � �
� 	����

��
�����
� � �
� � � � � � � �

� ��� � �
�

Note that the size of
 is � .

� In order to cover exactly # � � instructions with � we need to create a � that

permutes
�

in such a way that all the instructions in S are covered by the single

element z in � , and no other instructions in
�

are covered by � . In other words, we

need:

�) � � �	� � � ��� � '
 � � � � ��� � � � � � �	� � � �
� � � � ��� � ' ��

 � � � � ��� �
� � �
�� � � � � � �
Here we will let z be a vector of all 0’s (

� �
).

Because

�� 	 	�� � �
� � ���

(that is, the types referenced by each instruction in
�

are disjoint), we can define their

permutations independently.

We define � as:

���	� 	�� � ��� � �
����� ����
� if � � 	�� � � �

� � � � ���'
�

if � � 	�� � � �

� � � � � '
 , � � �
	� � � � �
� if � � 	�� � � �

� � � � � '
 , � �� �
	� � � � �

� � � �
 � � � � � � � � ' � � � � �
where � is the index (left to right) into vector �

� � � � .

26
� Then

� �	� ��� � '
 � � � � ��� �
� � � � �	� ��� � �

that is, every element and only those elements in � �
 � � � are of the form � � � � � ��� � �
� � '
� � . So, by our definition of C:

� (� � �
 � � �
� � ����� � � #

Thus, there exists a
 and � as defined above such that
� (� � �
 � � � � � ����� # � � � ���

� .

4.4.5 Reverse Proof

Then, going in the other direction, we need to show that a solution to our problem implies

a solution to the subset sum problem.

We want to show that whenever

)
 � � �) � � (� � �
 � � � � � ��� � # � � � ���
�

then there exists � , � � , and
� ��� � such that

� � � � � �� 	���� � ��� � � �

� Let � � � � ' # � � � 	�� � � �

� � � � � ' � � .
� Let the weight of each � ' � ,

� ��� � , be the number of times � � 	�� � � �

� � � � � appears in

multiset I.

� Let � � � � � ' # � � � 	�� � � �

� � � � � '
 � .

Note that by this construction, S can be expressed as:

�
� 	����

��
�� ��
� � �
� � � 	�� � � �

� � � � � �

The cardinality of this set is # , and we have defined that � � # in our problem

definition. Therefore, we simply need to show that the cardinality of
 is equivalent to

27
� � 	���� � � � � . We can determine the total number of elements in set
 in terms of � � and� ��� � through summation because it is a multiset union. The derivation is as follows:

� � #
� � �

� 	����
��
�����
� � �
� � � 	�� � � �

� � � � �
� �

� �� 	���� �
��
�����
� � �
� � � 	�� � � �

� � � � �
� �

� �� 	���� � ��� �

which means a solution to the subset problem exists.

Since we have now proved that a solution to the subset sum problem implies a

solution to our problem and that a solution to our problem implies a solution to the subset

sum problem, we can state that an instance of our problem is equivalent to subset sum and

therefore NP-Complete.

4.4.6 Example

Because we have a unique set of cloned instructions for each type, no two groups of cloned

instructions are covered by the same macro unless we permute the fields of their referenced

types. Because we have restricted
 to include instructions that reference all different

types, we can change � with the assurance that it will impact only one indirection in one

instruction (and its clones).

These two properties give us the ability to cover all, some, or none of the instruc-

tions with our one macro. This can be done by simply flipping or not flipping the order

of all types referenced by instructions that we want to be covered so that they conform to

our macro. For example, if the indirection chain we wanted to cover was (1,0), its corre-

sponding type vector � was � foo bar baz � , and our macro was (0,0); we would need

to flip the fields in foo but not baz or bar. However, the one restriction we have is that if

we cover one instruction we are also covering all its clones. Because the number of clones

is taken directly from the subset sum problem, we can only cover instructions in groups

equal to
� � � � for some � ' � . Therefore, by solving our problem we would also be solving

the corresponding subset sum problem. If we can cover 5 instructions keeping in mind the

group restraints, then we can also find a subset of � that sums up to 5. Likewise if we can

28

Figure 4.1: Pictorial Example of NP Reduction

find a subset of � that sums up to 5, that must mean that there are some number of groups

of instructions that consist of 5 total instructions, and because we have the freedom to cover

these groups we have solved our problem.

Another example of an NP reduction is shown in Figure 4.1.

4.5 Theorem 2 Proof

Theorem:
% � � � � # � � � �)
 � �*� �) � � � (� � �
 � � � � � ����� # � � � ��� � is NP-Complete.

This problem is simply D1 extended to multiple macros rather than restricting our-

selves to just one. The rules for construction still remain the same, though, and this problem

contains Problem 1 as a specific instance of it. By restriction, our problem above is also

NP-Complete when
� � ���

� because it is NP-Complete when
� � � �

� .

4.6 Theorem 3 Proof

Theorem:
%�� � � � # � � � �)
 � �*� �) � ��� (� � �
 � � � � � ����� # � � � � � � is NP-Complete.

29

This problem is a more general version of the question in Problem 2, which contains

this problem as a specific instance. Because it is NP-Complete to find the � where #
instructions are covered by exactly � macros, it is therefore at least as complex to find the

� where # instructions are covered by � macros or less. By restriction, this problem is also

NP-Complete.

4.7 Theorem 4 Proof

Theorem: Finding
 	 � � � � # � where

 	 � � � � # � � � � �
�
	��

%�� � � �
-� is NP-Complete.

Here we are doing the same thing we are doing in problem 3 except we not only

want a � to cover � � macros, but we want that to be the absolute minimum number of

macros that could possibly cover the # instructions. This problem is NP-Hard, because we

could only solve this problem if we could solve problem 3, but it is not NP-Complete.

For a problem to be NP-Complete, as described in � 4.3, it must not only extend

from an NP-Complete problem but also be verifiable in polynomial time. If we are given a

solution to this problem, we can easily check that it is a valid solution in polynomial time,

but there is no known way to determine whether that solution is the minimum solution

without checking all other valid solutions. Therefore problem 4 is NP-Hard.

4.8 Additional Conjectures

We have shown that finding the minimum number of macros needed to cover some group

of a program’s gestures is NP-Hard. We propose the conjecture that finding the minimum

number of macros needed to cover all of a program’s gestures is NP-Hard, although it has

not been proven. Formally, we propose that
%�� � � � � � is NP-Complete, where

%�� � � � � � is

defined as follows:

%�� � � � � � �)
 � ��� �) � � � � � �
 � � �
� � ��� � � �-� � � � � � �

The optimization form of this problem is then to find:

 	 � � � � � � � �
� 	 �

%�� � � ��
��

The difficulty of trying to use our reduction from Subset Sum to prove this conjec-

ture arises from the fact that the Subset Sum problem becomes trivial when we force it to

use the entire provided set of integers. However, we believe that our problem continues to

30

be NP-Hard even if we were to include the entire set of instructions. In development of the

heuristic reordering strategy defined in � 3.3, we have operated under the assumption that

this conjecture is true and there is no polynomial optimization algorithm.

31

Chapter 5

Experiments

5.1 Experiment Aims

A series of experiments was carried out to determine how frequently memory-accessing

gestures occur in real programs, and to investigate the properties of those candidates.

Specifically, we are interested in questions about gesture properties such as:

� How often do gestures occur in the context of a .class file?

� How often do gestures occur in running programs?

� What is the distribution of gesture length in a program?

� How many different gestures are there in a program?

� How can the number of gestures used in a program be optimized?

A group of benchmark programs, written in one of two higher-level languages, Java

and C, were analyzed to answer these questions. The suitability of different candidate

gestures, and therefore the analysis technique we use in finding gestures, depends on the

type of machine on which the program code is being executed. A stack-based machine,

such as the JVM that the Java programs run on, has different requirements for defining

gestures than a register-based machine, such as the SimpleScalar Architecture that the C

programs run on, because of differences in the way each system stores program state. Three

tools were used in the analysis of Java programs and one tool was used to analyze programs

in C. In the following sections, we discuss each of these tools in detail. We also discuss the

Memory Macro Simulation package, which helps us reexamine our results from the other

32

tools in order to better understand the performance gains that could be achieved through

use of memory macros.

5.2 Static Analysis Methods

Two tools, javap and Scavenge, were used to find gestures in Java .class files using a

static approach. All static gesture-finding programs share certain characteristics, which we

now discuss before presenting the specific features of each tool.

5.2.1 Benefits and Limitations of Static Analysis

The chief advantage to static analysis tools is, quite simply, that they do not require execu-

tion of the program to gather their data. All static analysis tools present a sequential and

direct mapping of the .class file’s contents, which means that searching for gestures is

basically a linear search through these files. Therefore, static analysis times for .class

files are bounded primarily by the size of the file, not the execution time of the program that

the file is a part of. Thus, we can spend significantly less time analyzing a long-running

program under static analysis than we would under dynamic analysis. Static analysis is a

particularly useful tool for determining memory macros, where we need to know all the

gestures that will be encountered in a program before it executes, so they can be loaded

into the PIM beforehand.

However, limitations also arise from the fact that the .class files do not trace any

execution path through the program, simply presenting an in-order display of the bytecode

layout for each method described in the file. Because of this, these tools cannot find the

true frequency at which gestures occur. For example, there is no easy way of determining

whether a particular bytecode is executed once or in the context of a loop that may exe-

cute 1000 times. In addition, these static approaches are bound to individual methods and

therefore cannot recognize gestures that span across method boundaries.

5.2.2 Static Gesture Candidate Selection

Static analysis methods allow us to gather several useful types of information. First, we can

determine whether or not a given gesture exists within a class or, similarly, determine the

list of all unique gestures that occur within a class. Here, we do not care how many times

the gesture may be executed, so we can simply examine the code section of a .class

33

file without worrying about how the program actually executes. This examination can be

accomplished with a sequential scan of the class file, where we record any sequences of

instructions that match our set of valid gestures, thereby generating a list of all the gestures

a program uses. The process is basically one of regular language recognition, where our

set of valid gestures can be thought of as the set of substrings in our sequence (i.e. string)

of valid instructions that match some regular expression (see � 2.4). Therefore, our code is

quite simple, and primarily concerned with keeping track of the gesture state at each step

of processing the instruction sequence. This gesture state would tell us whether or not the

current instruction could be part of a gesture, and if so, the gesture’s type and current size.

This approach also allows us to determine the maximum-length gesture that occurs

in a given class. Like the previous procedure, this procedure also does not depend on the

number of times a gesture is executed. To determine the maximum-length gesture, we

simply keep track of our current gesture length while sequentially scanning the .class

file.

Finally, static analysis can also be used to count the number of places gestures occur

in the .class file, but this does not directly correspond to the number of places gestures

are executed. Nevertheless, in practice, these results did roughly mirror results from using

more sophisticated, dynamic techniques. Therefore, this approach could be used to at

least give a rough estimate of the number of chains executed, because it involves far less

computation than dynamic analysis.

5.2.3 Benchmarks

To test static gesture recognition ability, and to determine if gestures do in fact occur in

some industry-grade Java programs, we applied our tools to the SPECjvm98 Benchmarks

[13]. Specifically, SPECjvm98 contains eight different test applications, five of which are

either real applications or derived from real applications that are commercially available.

In these experiments, we are chiefly concerned with the .class files that are provided for

each application, which we can scan for gesture candidates. A brief description of the eight

applications follows:

200 CHECK: A simple program to test various features of the JVM to ensure that it

provides a suitable environment for Java programs.

201 COMPRESS: Implements a modified Lempel-Ziv compression method (LZW). It

basically finds common substrings and replaces them with a variable size code.

34

202 JESS: The Java Expert Shell System, which continuously applies a set of rules to a

set of data to solve a set of puzzles.

205 RAYTRACE: A raytracer that renders a scene depicting a dinosaur.

209 DB: Performs multiple database functions on a memory resident database.

213 JAVAC: The Java compiler from the Java Development Kit (JDK) 1.0.2.

222 MPEGAUDIO: An application that decompresses audio files that conform to the

ISO MPEG Layer-3 audio specification.

227 MTRT: A multi-threaded version of 205 RAYTRACE.

228 JACK: A Java parser generator.

5.3 Static Analysis With Javap

The first tool we used in our analysis, javap [15], is a simple .class file disassembler

tool. This utility, when the -c option is invoked, can be used to take a .class file as

input and display the disassembled code. In particular, it displays the Java instructions that

correspond to each bytecode for each method in the class, providing a simple approach

to answering questions one and four (and three, to a lesser extent) of � 5.1, through the

methods described above.

5.3.1 Implementation of Javap

Two wrapper scripts were used to apply the javap tool to the SPECjvm98 benchmark. First,

a C shell script was used to find all the .class files for each benchmark. Second, a Perl

script was used to take this list of .class files, run javap -c on each, and determine

the number and length of getfield chains that occur in each group of files. Because

the limited information provided by javap forces this approach to emphasize simplicity,

classes were scanned on a file-by-file, not class-by-class basis, and only .class files in

the program’s directory were scanned. For example, any classes from the Java API that

were used by a benchmark was not scanned. As an attempt to fill in some of the missing

information about the Java API, all of the classes from each of the first-level Java API

Packages were scanned independently in a manner similar to the benchmarks.

35

5.4 Static Analysis with Scavenge

Scavenge was developed as a static analysis tool to address some of the limitations that

were encountered in � 5.3, and to specifically investigate the number of macros that would

need to be loaded onto a PIM for a given program.

The chief advantage that Scavenge has over the javap approach in gesture-finding

capability is that it can scan all the .class files used by the program, including those from

the Java API, by recursively examining the current classpath and the classes referenced

within each .class file. However, because Scavenge is still limited to static analysis, it is

prone to the same failings as were described in � 5.2.1. In addition, Scavenge processes at

a slower rate than javap, since it is a true Java application rather than a simple script which

scans an output file.

Like javap, Scavenge allows us to find information relating to questions one, three,

and four of � 5.1, by providing information about the gesture length and the frequency

at which different-length gestures occur in each .class file. However, unlike javap,

Scavenge also provides a way to answer question five, because it implements a gesture-

reordering algorithm (see � 3.2). Therefore, we can use also use Scavenge to make a more

sophisticated estimate of the number of types of gestures that will be executed (corre-

sponding to the number of macros that will be needed) for a given program, beyond simply

counting the number of unique gestures.

5.4.1 Implementation of Scavenge

The set of benchmarks described in section � 5.2.3 were again used for this set of experi-

ments. However, because Scavenge has the capability to find and scan all classes used by

a program, including those in the Java API, we can conduct a more thorough analysis and

obtain more accurate results than were found in � 5.9.1.

Scavenge is written in Java and utilizes the Jclasslib [3] library, which provides an

interface with the underlying components of a .class file, allowing developers to read,

write, or modify it. Here, this library is used to gain access to the disassembled code portion

of each .class file that is used by the program for gesture-counting purposes, in a manner

similar to javap. We can also use Jclasslib as a means to determine which .class files are

associated with a given program, because the library contains functions which can tell us

the type of each object that is created in the program’s code. With this information, if we

find a new object of a type that we have not previously encountered, we know to recursively

scan the .class file associated with that object for any additional gestures.

36

In its simplest form, Scavenge iteratively scans each .class file for consecutive

getfields in a manner similar to that described in � 5.2.2 to determine statistics such

as the maximum gesture length and number of unique gestures. Based on the indirection

chain of each recognized gesture, Scavenge also determines how many and what type of

memory macros would need to be loaded into the memory unit (see � 1.3).

Because Jclasslib allows us to draw an accurate picture of which gestures occur in

a program, we were able to add the additional functionality of a field reordering algorithm

to Scavenge. Scavenge has the option to change the field layout of any .class file it

encounters in an effort to reduce the number of unique gestures and thus the number of

macros needed for a program, as was described in � 3.2. We know that the problem of

reordering fields in such a way that would result in a minimal number of macros is NP-

Complete (see Chapter 4), so we use the reordering heuristic that is described in � 3.3.

After reordering the fields of all classes used by the program according to this heuristic,

Scavenge outputs the number of unique memory macros that would need to be loaded onto

the PIM with and without this reordering.

5.5 Dynamic Analysis

As was demonstrated in � 5.3 and � 5.4, static analysis of gestures has its limitations. Most

importantly, it is very difficult to determine how many times a gesture occurs in the course

of a program’s execution. Essentially, we have not yet addressed how we would go about

accurately answering questions two and three of � 5.1. The natural solution to this problem

is to examine bytecodes as they are executed in the context of a running program, with

dynamic analysis methods.

5.5.1 Dynamic Benefits and Limitations

Although we can do a good job of statically determining how many unique gestures there

are in a program, a dynamic approach is needed to determine each of these gestures’ relative

importance, by finding the distribution of their lengths and the frequency at which they oc-

cur. In addition, with dynamic analysis we can find gestures that span method boundaries,

eliminating another problem of static approaches.

One may wonder why dynamic analysis should be used if the memory macros corre-

sponding to recognized gestures would need to be loaded into memory before the program

is executed. The primary goal of this dynamic approach is to determine an upper bound

37

on the number of gestures that could be executed by a program, to determine whether or

not these gestures occur frequently enough to merit further investigation, and to determine

what type of gestures occur most frequently. The dynamic approach described here is

not intended to be integrated into whatever final software package processes the memory

macros that are needed for a program; it is specifically designed to gather information.

Therefore, this approach emphasizes a thorough analysis of the program at the expense of

increased computational time and complexity.

5.6 The Dynamic Gesture Searcher

In order to accomplish the task of dynamically analyzing Java programs, we have instru-

mented the JDK 1.1.8 [14] to form an analysis tool called DYnamic Gesture Searcher (DYGS).

Specifically, DYGS is an instrumentation of the core of the Java interpreter included in the

JDK, which examines each bytecode to be interpreted before it is executed, as well as other

indicators of the current state of the program, especially the execution stack.

5.6.1 Dynamic Gesture Candidate Selection with DYGS

The most basic approach that DYGS uses to finding gestures is similar to the approach used

in � 5.2.2, namely, by keeping track current gesture state. The chief difference between this

analysis and static analysis is that the string of instructions we are searching through is now

the sequence of instructions that are being executed, rather than the sequence of instruc-

tions obtained from the .class file layout. Therefore, the gesture state is updated as we

examine each executed instruction. Using gesture state, DYGS maintains a distribution of

the lengths of all gestures that have been encountered so far. Whenever it is determined

that a gesture cannot continue beyond a certain point in the execution (we have reached a

gesture-terminating state), the gesture is “rolled back” to the last significant instruction that

was executed (i.e. a getfield or putfield), then added to the distribution according

to its current length.

5.6.2 Finding Non-Sequential Gestures

Determining which instructions can and cannot continue a gesture is a somewhat complex

process. If we simply look for sequentially executed instructions, as we did in � 5.3, we can

be sure that we will only find valid gestures, for reasons already explained, but we cannot

guarantee that we will find all valid gestures, or even a boundable percentage of them. This

38

Figure 5.1: A Valid Non-Sequential Getfield Gesture

is because some potential gestures could be interleaved with other instructions that do not

change the program’s state from the gesture’s perspective, as is shown in Figure 5.1.

Since a getfield chain only influences and is influenced by the item on top of

the stack when each getfield is executed, it is conceivable that items could be added

and removed from the stack between getfield instructions while the stack slot used by

the getfield chain remains unchanged and valid. If this stack slot remains unchanged

and valid, we can then preload the final result of the gesture in this slot with our memory

macro where the first getfieldwould have been executed, with the assurance that it will

still be on the stack where the last getfield would have been executed.

Therefore, any time the top of the stack contains the result of a previous getfield

when a new getfield is executed, these two instructions could potentially be part of

the same gesture. However, there is one important additional criterion that these non-

consecutive gestures must also meet. The top of the stack that contains a getfield result

also must not be examined or used by any other instructions before it is examined by the

next getfield, to ensure atomicity of the getfield chain. If this was not the case,

preloading the result of the entire chain would not be possible because another instruction

would need access to the result of one of the intermediate steps (see Figure 5.2).

To account for these non-sequential gestures in the regular expressions we defined

in � 2.4, we can now define the four gesture types as:

1. � � � � �
�� � ��� (Non-Sequential Getfield-Getfield Gestures)

2. � � � � �
�� � ��� (Non-Sequential Getstatic-Getfield Gestures)

3. � � � � �
�� � 	�� (Non-Sequential Getfield-Putfield Gestures)

4. � � � � �
�� �
	�� (Non-Sequential Getstatic-Putfield Gestures)

39

Figure 5.2: An Invalid Non-Sequential Getfield Gesture

or, simply ��� � � ��� � � �
-� � � � � 	 � � , where

represents any instruction that does not modify

or access the stack in such a way that would render the gesture invalid.

To find non-sequential getfield chains, DYGS stores the address of the top of

the stack and the item stored at that address (an object reference) after each getfield is

executed. When a new getfield is encountered, the stored stack address and object ref-

erence are compared to the current address and item at the top of the stack. If the stored and

current getfields are consecutive, or if all interspersed instructions have no net effect

on the stack, then the old address and object reference will be equal to the new address and

object reference at the top of the stack, and the getfields can be considered part of the

same gesture. Otherwise, we know that the result of the previous getfield instruction

has been overwritten with some other value (if the reference has changed), or the stack is

now of a different size (if the top-of-stack address has changed), so the gesture candidate

is rolled back to the previous getfield and recorded, while the current getfield is

considered as part of a new gesture.

To ensure that no interspersed instructions examine any of the intermediate values

in the gesture, DYGS contains a list of all JVM bytecode instructions which use the value

on top of the stack. If the slot used by a getfield chain is currently on top of the stack,

DYGS checks that each interspersed instruction executed by the program is not on this list

of “gesture-ending” instructions. If an interspersed instruction is on the list, the current

gesture candidate is rolled back and recorded at that point.

5.6.3 Dynamic Analysis of Getfield-Putfield Gestures

Finding getfield-putfield gestures is a process very similar to the one described

above for finding getfield gestures. Finding sequential gestures is an almost identi-

cal process, where we increase our gesture candidate’s size as we find each consecutive

40

getfield, and then record the candidate when we see any other instruction. The only

difference is that when a putfield is encountered, it is included in the final gesture that

is to be recorded, unlike any other non-getfield instruction type.

Finding non-sequential putfield-getfield gestures is also similar to the ana-

log for getfield gestures. In this case, the gesture-ending putfield instruction could

be separated from the last getfield instruction of a chain by some number of inter-

spersed instructions that do not affect the stack. In addition to enforcing the standard

constraints on interspersed instructions regarding the top of the stack, we would have to

enforce the constraint that the penultimate item of the stack (which holds the address of the

object where the result of the chain is stored) also remains constant for the entire length

of the gesture. This constraint is required because we would need this stack item at the

beginning of the gesture, where the macro would be executed, and at the end of the gesture,

where the putfield is originally executed, in order to maintain the transparency of the

gesture.

Instead of explicitly tracking this constraint, we can take advantage of the inherent

structure of the stack to enforce it. Specifically, if we enforce the constraint that the top of

the stack is never altered between each instruction in the gesture (as we did for getfield

chains), the structure of the stack mandates that all items further down on the stack are

not altered as well. Thus, we know that if the validity of the item on top of the stack is

preserved between each step of the gesture, the penultimate item is also preserved, and our

getfield-putfield chain is valid.

5.6.4 Additional Features of DYGS

In addition to determining the frequency of each type of gesture that occurs in a program’s

execution, DYGS was designed to provide several other types of information as well.

� Gesture Printouts: DYGS provides a command line argument that allows the user

to tell DYGS to print out all gestures it encounters which meet a certain set of criteria.

The criteria are used to narrow down the number of output gestures, since printing

out all gestures would in some cases consume a number of lines on approximately

the same order as the program’s total executed instruction count. Specifically, the

user can specify a minimum length of gestures to be printed out, as well as minimum

and maximum instruction gap size between gesture instructions in the case of non-

sequential gestures.

41
� Instruction Timing: In order to achieve a rough estimate of how much time could

be saved by incorporation of detected gestures within memory macros, we would

need to know how long instructions take to execute. Logically, different instruction

types can take different lengths of time, so a simple average instruction time is not

enough. To help gather information about specific gesture-related instructions such

as getfield and putfield, DYGS includes an option that finds average execu-

tion times for a certain set of instruction types within the DYGS-modified JDK 1.1.8

interpreter. Due to the fact that this interpreter has been extensively modified and

designed for flexibility, it is not nearly as optimized for speed as commercial-grade

interpreters are, so the instruction timing numbers found here should not be taken as

real-world values. However, the numbers can give us an idea of the time instructions

take relative to the total execution time of the program and to each other. This in turn

can give us a rough idea of what percentage of time could be saved by using memory

macros (see � 5.8).

5.7 Dynamic Analysis of C programs with SimpleScalar

To this point, our analysis has focused exclusively on Java programs. The referential trans-

parency of the fields in Java classes, and the stack-based JVM (where we always know the

exact location of relevant data items) lend themselves particularly well to gestures. How-

ever, it is worthwhile to investigate potential gestures in other languages as well, since a

great number of programs today run on platforms very different from the JVM. In addi-

tion, since Java programs execute on a “Virtual Machine” which would in turn have its

own set of memory-accessing patterns, it would make sense to find gestures in a lower-

level language. Therefore, our next phase of experiments was designed to again answer the

questions presented in � 5.1, but on a different platform.

We chose to investigate C programs, based on this language’s widespread use, and

the numerous differences these programs have with Java programs. To do this, we needed a

platform that could run C programs and was easily instrumentable, so that gesture-finding

code could be added. The platform selected was SimpleScalar [12], a software-based

system architecture that can emulate several common instruction sets, such as Alpha, PISA,

ARM, and x86. Most C programs can be compiled into SimpleScalar assembly code, which

can then be converted into object files and linked to form a SimpleScalar executable. These

executables can in turn be run on a variety of simulator modules provided with the package.

Here, the sim-profile module, a functional simulator written in C which provides various

42

program profiling information, was the target of the instrumentation. The resulting program

will be referred to as DYGS-SS, Dynamic Gesture Searcher for SimpleScalar.

SimpleScalar is a register-based architecture, so memory load and store instructions

operate on a group of registers, 32 in this case. When finding gestures in Java, we could

investigate the top of the stack at any point in the program’s execution to determine whether

a gesture could continue past the current instruction or not. Because of the multiple reg-

isters in SimpleScalar, we can no longer simply look in one place. Instead, we need to

be able to keep track of the gesture state of each register, which in this case refers to the

maximum-length gesture that the value held in each register could be a part of. We refer

to the process of keeping track of these values as register shadowing. We also need to be

able to transfer gesture state from a source register to a destination register when a memory

load instruction occurs. These factors make the investigation of gestures in this environ-

ment considerably more difficult by requiring additional memory and processing time, so

in this set of experiments we constrained ourselves to relatively simple gesture-recognition

methods.

5.7.1 Benchmarks in C

Obviously, a different set of benchmarks, written in C, was needed for analysis on this plat-

form. We used the CommBench benchmarks [17], a set of applications designed for use

in a network processor environment. We felt these repetitive, computationally-intensive

programs would benefit significantly from use of memory macros, since they may be per-

forming the same type of gesture many times. CommBench consists of eight programs,

but not all were used in all experiments due to compatibility issues with the SimpleScalar

platform. The individual programs that were used in the experiments are as follows:

CAST: An implementation of the CAST-128 block cipher algorithm, whose main compu-

tation consists of encryption arithmetic.

DRR: A deficit-round robin scheduling algorithm, whose main computation is mainte-

nance of queues and resource tokens.

FRAG: An application that fragments IP packet headers. The main computation is recal-

culation of the IP header checksum for each fragmented header.

REED: An implementation of a Reed-Solomon Forward Error Correction algorithm, which

performs redundancy coding and error correction on data that was Reed-Solomon en-

coded.

43

RTR: A routing lookup program based on the radix-tree routing algorithm, whose main

computation is traversing routing trees and comparing address prefixes.

ZIP: An implementation of the Lempel-Ziv (LZ77) compression algorithm, which com-

presses and decompresses data using entropy encoding.

5.7.2 Dynamic Gesture Candidate Selection DYGS-SS

Much as we defined a language of valid gesture types in Java with getfield, putfield,

and getstatic instructions, we need to define a set of valid gestures in SimpleScalar op-

codes. First, let us consider what constitutes a gesture on a register-based machine. Ideally,

we are looking for a sequence of instructions where each instruction accesses memory us-

ing the address put in a register by the previous instruction in the chain, like the one shown

in � 1.2.

In memory accessing instructions in SimpleScalar, the destination of the value re-

trieved from memory is not necessarily the same as the source of the memory address, as it

was in Java, where both were always the top of the stack. Here, the source and destination

are both specified as registers, which may or may not be the same. Therefore, through

register shadowing, we must keep track of the longest gesture that the value in each register

currently could be a part of. Then, if we encounter an memory-accessing instruction which

uses that register as the source register, the gesture length associated with that register must

be incremented and moved to the instruction’s destination register. Conversely, when any

other type of instruction accesses a register, the gesture could not continue beyond that

point, so the register’s current gesture length would be recorded then reset to 0.

Thus, our set of valid gestures can be most accurately defined as a chain of memory

accessing (load) instructions1, where each load instruction in the chain uses the previous

load instruction’s destination register as a source register, and no other instruction between

those two load instructions accesses or modifies that register.

To accomplish this task in SimpleScalar, we created an array of shadow registers,

one for each real register, which store the gesture length corresponding to the value in

each real register. All register access and modification in SimpleScalar is done through

C preprocessor macros, so modification of these macros allows us to do our accounting

with these shadow registers on the fly, as instructions are processed. Gesture lengths are

1We use the generic term “load instruction” to refer to the entire set of memory load instructions in the
SimpleScalar ISA (e.g. LoadByte, LoadWord, etc.). Please refer to the SimpleScalar documentation [12] for
more information on specific instructions.

44

Figure 5.3: Example of a Shadow Register Manipulation

recorded as soon as we reach a point where they cannot continue, and cumulative gesture

length distributions are calculated and then displayed when the program exits. An example

of the shadow register manipulation for one step of a gesture is shown in Figure 5.3

5.7.3 Additional Features of DYGS-SS

In addition to printing out the distribution of gesture sizes as described above, there is also

support in the DYGS-SS code to print the largest gesture encountered, and to determine

whether or not gestures of the same length are identical.

To facilitate a more generalized form of gesture analysis and to provide a launching

point for future work in this gesture recognition, DYGS-SS also contains the option to

print out the frequencies of all consecutively-executed opcode 2-tuples encountered in the

execution of the program.2 Here, we are not looking for gestures of any particular type, but

are interested in finding out the most frequently-occurring 2-tuples (representing potential

2Tilman Wolf presents a similar investigation of ordered instruction frequencies within the CommBench
benchmarks in his doctoral dissertation [16].

45

gestures of length 2), in hopes that some of these tuples could be somehow encompassed

in new gesture types. Essentially, we are approaching the problem from the opposite end,

by identifying frequently occurring tuples that may be mapped to gestures, rather than

identifying gestures that may occur frequently. At this point, this idea has not been fully

investigated, and could be explored further if future work on this subject was carried out

(see Chapter 6).

5.8 Memory Macro Simulation

The Memory Macro Simulation package, also known as MacroSimulator, was conceived

as a front end to our gesture-finding programs to help solve several problems with the rel-

ative obtuseness of the gesture data that these programs present, and to better analyze the

impact of memory macros within different environments. Simply looking at statistics on

the number of gestures found and instruction execution times does not necessarily give a

coherent picture of why memory macros would be useful. Specifically, it may be difficult

for individuals to achieve a concrete understanding of how use of memory macros could

result in time savings. To this end, MacroSimulator lets the user specify various high-level

characteristics of the “machine” which is being simulated, including information about the

average execution times of several instruction classes, such as getfields, putfields,

or all instructions that do not access memory. Analysis of simulated program execution

times under different sets of these characteristics may allow us to gain a better under-

standing of which environment and program types are most conducive to incorporation of

memory macros.

MacroSimulator was designed for the purpose of increasing the understandability of

the data, so emphasis was placed on simplicity in the interface. More accurate simulators

could be crafted, and the methods used here to simulate are not necessarily the most precise,

but they serve the purpose of making the performance gains more understandable with a

minimal amount of processing effort. To this end, MacroSimulator currently only simulates

memory macros in Java, because they are conceptually simplest, but there is no reason it

could not be extended to support more complex gestures or gestures in other languages.

MacroSimulator can be decomposed into several components, each of which may

or may not be included according to the needs of the user. Figure 5.4 shows the interaction

between these components, which are defined as follows:

46

Figure 5.4: Interaction between MacroSimulator Components

5.8.1 Simulator

The core of the program, a Java application which takes in a file that describes the gestures

used within a program and “simulates” execution of the program using a set of provided

average instruction execution times. The Simulator has two main modes, one that uses the

virtual CPU to handle each step of a multiple indirection, and one that allows the virtual

memory module to handle the entire indirection chain in one atomic step (i.e. using memory

macros). Comparing the results of the same program run under both these modes should

give the user an idea of how much time could be saved by using memory macros. In order to

simulate program execution times, the program needs access to individual execution times

of instruction classes mentioned above. These values can be loaded with a command-line

argument, or the Simulator can use a set of standard, hard-coded values taken from various

test platforms. As the Simulator processes the input program, it passes through the states

of the state model and calculates how much time must be added to the total program for

each of those states, based on the provided instruction execution times.

The core simulator does not operate on the program to be analyzed, but rather an

intermediate file which encapsulates the gesture information of that program. Specifically,

47

the program to be analyzed goes through two steps of processing before it is fed to the core

simulator. These two steps are respectively handled by the following two components.

5.8.2 Statistical Analyzer

This component reduces the input program to an a gesture data file. This file contains the

number of instructions in the file to be processed, and the probabilities that a getfield

is the next instruction encountered during execution, for chains of varying lengths. For

example, this file contains such information as:
P(getfield

�
last instruction was not a getfield)

P(getfield
�
instruction was a getfield)

P(putfield
�
instruction was a getfield)

P(getfield
�
last two instructions were getfields)

..and so on

5.8.3 GLF Program Generator

This component handles generation of a variable-length program from a gesture data file.

In this step of processing, we generate a new “program” of a user-specified length based

on the probabilities given in the gesture data file. This “program”, which is designed to run

in the core simulator, is not composed of real instructions but rather a sequence of symbols

indicating the length of the gesture that the corresponding current instruction would be a

part of (including length 1 for instructions that are not part of a gesture), which we call

gesture-length format (GLF). Since our simulator is only concerned with whether or not

an instruction is part of a gesture, this is all the information we need to include in GLF.

This choice means that simulation of instruction execution times are not always going to

be accurate on a per-instruction basis, since all non-getfield gestures are grouped into

the same category. However, the average non-getfield instruction execution time over

the length of the entire GLF program, the figure which we are more concerned about when

determining how effective memory macros are, should be fairly accurate.

We chose to gather probabilities and generate our own programs rather than simply

making a direct analog of the input program in GLF for several reasons. First, this approach

allows us to make programs similar to the input program but in radically different sizes.

Secondly, this approach also gives us the ability to generate many programs that are similar

to the input program in composition but still unique. Generating programs this way allows

48

us to find new test cases in a much more efficient way than searching for and individually

analyzing true candidate programs.

5.8.4 Visualizer

It may be difficult for individuals to visualize the interplay between the CPU and memory

which would cause a reduction in bus cycles if memory macros are used. To alleviate this

problem, a GUI created by Chris Hill with the Java Swing package has been integrated

with the rest of the MacroSimulator package. The GUI’s menus provide access to a va-

riety of options that are recognized by the Simulator, including commands to load one or

more GLF files, run and reset the simulation, or run the program in both simulation modes

(with and without memory macros) in parallel. The Visualizer also provides support for

user customization of the instruction class timing parameters and other simulated program

characteristics discussed above. The GUI also has the ability to visually represent the ex-

change of information between the CPU and memory units of a machine, to provide a

clearer picture of the benefit of using memory macros.

5.8.5 Use of MacroSimulator

A user of MacroSimulator may choose to use only certain aspects of the entire package,

which we hoped to facilitate by our separation of the various modules. For example, a user

looking for increased execution speed may choose to not include the Visualizer, or could

choose to generate a GLF file in a different way (perhaps through a direct mapping of a

source program) and not include the GLF Generator and Statistical Analyzer. In addition,

any gesture-finding programs that could be crafted to generate a data file in the same format

as those created by Statistical Analyzer could interface with MacroSimulator. Chris Hill

developed a program which gathers the same statistical data from Scavenge, and a program

could just as easily be created to generate statistics from our javap experiments or any other

gesture-finding approach.

5.9 Experimental Results

5.9.1 Javap

The results from our analysis with javap (see Figure 5.5) showed that double indirections

occurred in about half the benchmarks, and there were no instances of triple indirections or

49

SPEC Benchmarks
Name Gestures Found

check 0
compress 0
jess 0
raytrace 3
db 0
javac 216
mpegaudio 102
mtrt 0
jack 14

Java API Packages
Name Gestures Found

java.io 4
java.lang 0
java.math 0
java.net 0
java.security 0
java.text 44
java.util 3

Figure 5.5: Length-2 Gestures Found by Javap

larger anywhere within the classes that were tested. Only two benchmarks had frequently

occurring successive gestures within the code: javac (216) and mpegaudio (102). No other

benchmark had a gesture count above 14, and no chains were found in six of the bench-

marks. Among Java API .class files, java.text had the most, with 44 getfield chains

among its classes, but no other packages had above four, and four packages had none.

5.9.2 Scavenge

The number of gestures found by Scavenge in each of the benchmarks (see Figure 5.6)

significantly differs from the number found for each benchmark in the javap experiments

(see Figure 5.7). In this experiment, we see a more even distribution of gesture counts

among all benchmarks. Some benchmarks that had very few or no gestures in javap have

many in this experiment, while others saw their gesture count radically decreased. These

results are not in conflict with our claim that Scavenge has more accurate and powerful

gesture recognition capabilities than javap. Differences in the number of gestures found

50

Benchmark Name Gestures Found
check 47
compress 3
jess 26
raytrace 6
db 3
javac 162
mpegaudio 0
mtrt 6
jack 117

Figure 5.6: Length-2 Gestures Found by Scavenge

are likely due to the fact that we are examining all the .class files used by a benchmark

and only those files, whereas javap was limited to what was in the program’s directory. For

example, 200 check’s gestures were found in parts of the Java API that the program used

but were not in the program’s directory, whereas 222 mpegaudio’s decrease was due to the

fact that it had .class files in its directory structure that were not referenced from any

point within the program.

Our memory macro counting results (see Figure 5.8) show that the number of unique

memory macros for a given benchmark was reduced by the field reordering algorithm in

most cases, usually by 25-50% (see Figure 5.9). In addition, it seems that we are more

successful in eliminating macros from those benchmarks that would need a large number

of macros to begin with. This is what we would expect based on our heuristic, assuming

the field numbers used in the macros are semi-random to begin with. Furthermore, we see

that the heuristic used never increased the number of macros needed.

5.9.3 DYGS

As can be seen in Figure 5.12 and Figure 5.13, the number of gestures found by DYGS

varied widely between benchmarks. Within each benchmark, the number found scaled

roughly with the total number of instructions executed, perhaps indicating that the ges-

tures encountered occurred in the heart of the program’s computation and not only during

initialization or other do-once tasks. Two benchmarks, 213 javac and 222 mpegaudio,

contained gestures of a length greater than two, and none contained gestures of a length

greater than three.

51

Figure 5.7: Gestures Found by Javap vs. Gestures Found by Scavenge

Benchmark Name Macros Needed
Before Reordering After Reordering

check 13 8
compress 2 2
jess 6 3
raytrace 4 3
db 2 2
javac 19 9
mpegaudio 21 16
mtrt 3 3
jack 6 2

Figure 5.8: Number of Macros Needed before and after Field Reordering

52

Figure 5.9: Macro Reduction through Field Reordering with Scavenge

The benchmarks with the longest gestures also tended to have the highest frequency

of gestures. This high-frequency group contained the 202 jess, 228 jack, and 209 db

programs, in addition to the two already mentioned. Even within the high frequency group,

the overall frequency of gestures in proportion to the number of instructions executed was

still quite low, below 1% of the all instructions. However, because these benchmarks are

computationally intensive, the gesture count itself was still very high in the case of some

of the larger benchmarks, occasionally reaching past seven decimal places.

In most benchmarks, getfield-putfield gestures occurred with a higher fre-

quency than getfield gestures, the only exceptions being 209 db and 222 mpegaudio

(see Figure 5.14, Figure 5.10, and Figure 5.11)3. In addition, the only length-3 gestures

found in any benchmark were getfield-putfield gestures. No gestures involving

getstatic were found in any of the benchmarks.

3Some size-100 benchmarks required more memory than was supported by the test platform and did not
finish execution.

53

Benchmark Instructions Length-2
Name Size Examined Gestures Found

check 1/10/100 20273308 4
compress 1 1061896761 7
compress 10 1280284405 13
compress 100 2364623359 79
jess 1 9922216 1574
jess 10 137656198 665
jess 100 1252658299 46499
raytrace 1 60305684 10
raytrace 10 181155032 10
db 1 2839136 1089
db 10 96462412 102723
db 100 4509395032 23126420
javac 1 7996005 295
javac 10 73909249 43455
javac 100 1513149003 1089496
mpegaudio 1 150360205 190431
mpegaudio 10 1582552168 2165268
mpegaudio 100 14834492570 18948300
mtrt 1 58945118 10
mtrt 10 224181327 16
jack 1 178505154 33526
jack 10 355883979 67048
jack 100 1728250510 322600

Figure 5.10: Getfield Gestures Found by DYGS in SPECjvm98 Benchmarks

5.9.4 DYGS-SS

In our examination of gestures in the CommBench Benchmarks, all contained gesture

lengths of at least three and two contained gestures of length four or longer. In addition,

some benchmarks contained very high percentages of instructions that could be included in

gestures. In both the REED encoder and RTR, potential gestures encompassed over 10%

of a program’s total instructions, whereas no more than 1% of any Java benchmark’s total

instructions were encompassed by potential gestures (see Figure 5.15 and Figure 5.16).

One particularly interesting benchmark was the ZIP decoder, which did not contain

an unusually high percentage of gestures of any length, but did contain several extraordi-

narily long gestures. Whereas no other benchmarks had gestures of a length greater than 4,

54

Benchmark Instructions Number of Gestures Found
Name Size Examined Length-2 Length-3

check 1/10/100 20273308 35 0
compress 1 1061896761 58 0
compress 10 1280284405 64 0
compress 100 2364623359 314 0
jess 1 9922216 34199 0
jess 10 137656198 97941 0
jess 100 1252658299 3647386 0
raytrace 1 60305684 69 0
raytrace 10 181155032 78 0
db 1 2839136 44 0
db 10 96462412 44 0
db 100 4509395032 44 0
javac 1 7996005 1481 86
javac 10 73909249 249183 100816
javac 100 1513149003 7638809 3377757
mpegaudio 1 150360205 1214 312
mpegaudio 10 1582552168 11674 3576
mpegaudio 100 14834492570 93169 31244
mtrt 1 58945118 37 0
mtrt 10 224181327 40 0
jack 1 178505154 33981 0
jack 10 355883979 67928 0
jack 100 1728250510 330841 0

Figure 5.11: Putfield Gestures Found by DYGS in SPECjvm98 Benchmarks

this benchmark was found to have several long gesture types, up to a length of 128 instruc-

tions. The full distribution of instruction lengths can be seen in Figure 5.17. These long

gestures occurred in the process of Huffman decoding a block of data. Specifically, the zip

program performs decoding using a multi-level table lookup, and maintains a linked list of

all the dynamic Huffman tables it creates for each block of data. When a Huffman table is

no longer needed, it is freed, which requires a traversal through the linked list to find the

table in question. This traversal accounts for the long gestures seen in the results.

55

Benchmark Instructions Gestures Found Bus Cycles
Name Size Examined Length-2 Length-3 Saved

check 1/10/100 20273308 39 0 39
compress 1 1061896761 65 0 65
compress 10 1280284405 77 0 77
compress 100 2364623359 393 0 393
jess 1 9922216 35773 0 35773
jess 10 137656198 98606 0 98606
jess 100 1252658299 3693885 0 3693885
raytrace 1 60305684 79 0 79
raytrace 10 181155032 88 0 88
db 1 2839136 1133 0 1133
db 10 96462412 102767 0 102767
db 100 4509395032 23126464 0 23126464
javac 1 7996005 1776 86 1948
javac 10 73909249 292602 100816 494234
javac 100 1513149003 8728305 3377757 15483019
mpegaudio 1 150360205 191645 312 192269
mpegaudio 10 1582552168 2176942 3576 2184094
mpegaudio 100 14834492570 19041469 31244 19103957
mtrt 1 58945118 47 0 47
mtrt 10 224181327 56 0 56
jack 1 178505154 67507 0 67507
jack 10 355883979 134976 0 134976
jack 100 1728250510 653441 0 653441

Figure 5.12: Total Gestures Found by DYGS in SPECjvm98 Benchmarks

5.9.5 MacroSimulator

Various datasets can be generated with MacroSimulator by adjusting its source data and

simulation parameters. Here we simply give an example of the data that can be generated

from this package, to show how MacroSimulator can be used to help us understand how

various factors affect program execution time.

Suppose we wish to see what percentage of execution time could be saved in a

100,000-line Java program where 10% of instructions are length-two getfield gestures

and 1% of instructions are length-3 getfield gesture. We can enter these percentages

into a statistics file, which can then be loaded into the GLF Program Generator to generate

a 10,000-element GLF file (or any number of files) with those approximate characteristics.

56

Figure 5.13: Number of Gestures Found in Size-10 SPECjvm98 Benchmarks with
DYGS, by Length

This GLF file can then be loaded into the Simulator. Here, we choose not to use the default

instruction execution times, so we specify to the Simulator that getfield instructions

take on average 15 ns, all other instructions take 20 ns on average, and the processing of

a macro within PIM takes an additional 2 ns over standard memory retrieval time. The

Simulator, running once in each of its two modes, gives us an execution time of about

114,000 ns using memory macros and 116,000 ns not using memory macros.

Since the process of finding the necessary macros and loading them into memory

can be done statically, the processing time of this step is not included in the simulation.

However, we can use the results from our simulations to determine how fast we would

have to do this macro finding in order to achieve an overall performance gain. In our above

example, if the program is only run once, then the macro processing phase must take less

than 2000 ns in order to achieve an overall performance gain. Likewise, if the program is

run twice, then macro processing must take less than (2*2000 ns) = 4000 ns, and so on. An

57

Figure 5.14: Number of getfields vs. Number of putfields in Length-Two
Gestures, for Size 10 Benchmarks

Benchmark Instructions Number of Gestures Found Bus Cycles
Name Examined Length-2 Length-3 Length-4 Saved

cast 138679064 27889219 384508 0 28658235
drr 213072619 40303573 32033378 0 104370329
frag 43441982 6616877 1109 0 6619095
reed (encoder) 622925521 100709785 19417 0 100748619
reed (decoder) 1205431411 146813094 19422 0 146851938
rtr 1100034475 305671607 67502675 3630787 74764249
zip (encoder) 227631430 46360791 211 0 46361213
zip (decoder) 39909399 8506706 249 21 8511166

Figure 5.15: Gestures Found by DYGS-SS in CommBench Benchmarks

58

Figure 5.16: Number of Gestures Found in CommBench Benchmarks with DYGS-
SS, by Length

example set of macro processing times calculated with this method for each of SPECjvm98

benchmarks is listed in Figure 5.18.

It should be clear from this example how MacroSimulator can be used to investigate

the effects of many other hardware and software properties, such as:

� Gesture Frequency

� Gesture Length

� Program Length

� Program Memory-Intensiveness

� getfield/putfield Instruction Execution Times

� Disparity between getfield/putfield Instruction and Non-Gesture Instruction

Execution Times

59

Figure 5.17: Gesture Distribution by Length in Zip Decoder Benchmark

� On-PIM Gesture Execution Times

on the execution time savings of memory macro use.

5.10 Conclusions

5.10.1 Javap

Our results from the javap analysis show that getfield gestures do occur in the bytecode

of certain Java .class files. In some cases, these gestures occur in many places within the

code, although the gestures are limited to a length of two consecutive instructions. How-

ever, this approach does not give us complete information regarding how many gestures

occur in all the .class files used in a given program, since we are limited to scanning a

certain subdirectory structure.

60

Benchmark Simulated Execution Time (sec)
Name Size with Macros without Macros Improvement

jess 1 0.1787 0.1646 0.0141
jess 10 2.3605 2.3237 0.0368
jess 100 21.8655 20.9771 0.8884
db 1 0.0471 0.0446 0.0025
db 10 1.6514 1.6268 0.0264
db 100 140.0346 137.4501 2.5845
javac 1 0.1906 0.1802 0.014
javac 10 1.6690 1.4767 0.1923
javac 100 33.2832 28.9092 4.3740
mpegaudio 1 1.8902 1.8456 0.0446
mpegaudio 10 18.4694 18.1617 0.3077
mpegaudio 100 182.4440 179.1127 3.3313
jack 1 3.4778 2.3487 1.1291
jack 10 3.4848 2.3468 1.138
jack 100 64.2033 45.2139 18.9894

Figure 5.18: Simulated Execution Times of SPECjvm98 Benchmarks with and with-
out Memory Macros

5.10.2 Scavenge

Using Scavenge, we were able to accurately determine the number of gestures that occur in

the code of all .class files associated with a given program. These results reinforce the

conclusion that we drew in � 5.10.1, namely, that gestures do occur in the context of Java

.class files, and can be recognized through static analysis methods. In comparison with

javap, gestures were found in a higher percentage of the benchmarks examined, although

the number of gestures found per program did not increases significantly, and the maximum

gesture length was still two. In addition, we were able to determine that our field reordering

heuristic often significantly reduces the number of macros that would be needed.

5.10.3 DYGS

Our analysis shows that less than 1 percent of the instructions executed in the SPECjvm98

Java programs can be composed into valid gestures, and that the percentage of gesture-

compatible instructions varied widely between individual benchmarks. Although this per-

centage seems relatively small, the absolute number of potential gestures found was often

61

quite high. Most benchmarks contained over one thousand executable gestures and some

executed over one million. We can then say that our results show that gestures may not

occur with a high frequency in running Java programs, but may occur in relatively large

numbers. Dynamic analysis also yielded gestures of length 3, which were not found by

static analysis methods, indicating that some gestures do cross method boundaries.

5.10.4 DYGS-SS

The results from our dynamic analysis of the CommBench C programs are considerably

more encouraging than our results from dynamic analysis of the SPECjvm98 Java pro-

grams. We found that memory-accessing gestures occur with greater frequency and in

greater lengths in this set of benchmarks than in the SPECjvm98 set of benchmarks. These

results indicate that use of register-indexed gesture macros could be as beneficial as the use

of stack-indexed gesture macros, or perhaps even more beneficial.

62

Chapter 6

Future Work

There are many areas of research where memory-accessing gestures could be further inves-

tigated. In this chapter we briefly discuss several of the most interesting options.

6.1 Dynamic Macro Generation

In Chapter 5, we used dynamic analysis as a means of finding more accurate gesture fre-

quency statistics, and claimed that only static analysis was well-suited for determining the

set of macros needed. However, since most gestures occur many times in the course of a

program’s execution, it may be possible to identify gestures the first time they occur and

then create a macro that could be used for each additional occurrence of the gesture in the

program. This approach would allow us to realize the benefits of dynamic gesture searching

while only slightly reducing the number of times each macro would be used.

6.2 New Gesture Types

We could also extend our work by searching for new gestures. In our experiments we con-

fined ourselves to rigidly-defined gestures that were manually chosen for their simple, logi-

cal structure. However, it may be possible to design an automated process to find additional

candidates. This automated process could potentially find gestures that are more complex

and less obvious than those used in these experiments, which could result in greater per-

formance gains through use of memory macros. Carrying this one step further, this process

could be carried out dynamically, as has been discussed in � 6.1.

63

6.3 Cache Integration

We have greatly simplified our discussion of gestures by ignoring the impact of cache. If

macro processing was done only within main memory, caching would obviously lessen

any performance gains that would be achieved through use of memory macros, since some

percentage of gestures could be serviced entirely within cache. However, there is no reason

to think that gesture-handling modules could not be used in multiple levels of the mem-

ory hierarchy. Each of these modules could work independently to service any gestures

that reference memory entirely resident on their level, and pass any gestures that could be

serviced on to the next level of memory. More ambitiously, a single integrated gesture-

handling module could preside over all levels of the memory hierarchy, where the address

accessed on each step of a gesture could be individually fetched from whatever level it re-

sides at. This module could use bus snooping or some other technique to determine where

each address of the gesture is located, then access it directly.

6.4 Implementation

Finally, the most obvious next step in this research is to implement a system that recognizes

and processes gestures within memory. We have already demonstrated ways to determine

the set of macros needed through static analysis, but as of yet we have not addressed the

specifics of how these macros would be sent to memory before execution, or how they

would be used during execution. These tasks would be handled by the PIM, which has

been treated as a theoretical device for simplicity’s sake in this experiment. Determining the

specific architecture of the PIM gesture-handling module is therefore a natural extension of

the present work. A hardware simulation using VHDL or some other hardware description

language would be a logical way of accomplishing this task. The macro processing module

could also be implemented in hardware, perhaps through use of a Field Programmable

Gate Array (FPGA).

64

References

[1] S. Donahue, M. Hampton, R. Cytron, M. Franklin, and K. Kavi. Hardware support

for fast and bounded-time storage allocation. In Second Annual Workshop on Memory

Performance Issues (WMPI 2002), 2002.

[2] Steven M. Donahue, Matthew P. Hampton, Morgan Deters, Jonathan M. Nye, Ron K.

Cytron, and Krishna M. Kavi. Storage allocation for real-time, embedded systems. In

Thomas A. Henzinger and Christoph M. Kirsch, editors, Embedded Software: Pro-

ceedings of the First International Workshop, pages 131–147. Springer Verlag, 2001.

[3] ej-technologies GmbH. Jclasslib 1.1. www.ej-technologies.com/

products/jclasslib/java.html, 2001.

[4] Lucas M. Fox, Christopher R. Hill, and Ron K. Cytron. Optimization of storage-

referencing gestures. Proceedings of CODES 2003, 2003. Submitted.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, San

Francisco, CA, 1979.

[6] R.M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum

Press, New York, NY, 1972.

[7] Peter M. Kogge, T. Sunaga, and e. a. E. Retter. Combined DRAM and Logic Chip for

Massively Parallel Applications. In IEEE Conference on Advanced Research in VLSI,

Raleigh, NC, 1995.

[8] Tom Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, Reading, Massachusetts, 1997.

[9] John Martin. Introduction to Languages and the Theory of Computation. McGraw-

Hill, New York, NY, third edition, 2002.

65

[10] David Patterson et al. Intelligent RAM (IRAM): Chips That Remember and Compute.

In IEEE International Solid-State Circuits Conference, San Francisco, CA, February

1997.

[11] T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Con-

ference Record of the 22nd Annual ACM Symposium on Principles of Programming

Languages, pages 322–332, San Francisco, CA, 1995.

[12] SimpleScalar LLC. SimpleScalar. www.simplescalar.com, 2001.

[13] SPEC. Specjvm98 benchmarks. www.spec.org/osg/jvm98, 1998.

[14] Sun Microsystems. Java Development Kit 1.1.x. java.sun.com/products/

jdk/1.1/, 1998.

[15] Sun Microsystems. javap - The Java Class File Disassembler. java.sun.com/

j2se/1.3/docs/tooldocs/solaris/javap.html, 2001.

[16] Tilman Wolf. Design and Performance of a Scalable High-Performance Pro-

grammable Router. PhD thesis, Department of Computer Science, Washington Uni-

versity, St. Louis, 2002.

[17] Tilman Wolf and Mark A. Franklin. CommBench - a telecommunications bench-

mark for network processors. In Proceedings of IEEE International Symposium on

Performance Analysis, pages 154–162, Austin, TX, April 2000.

66

Vita

Lucas M. Fox

Date of Birth July 10, 1980

Place of Birth Menomonee Falls, Wisconsin

Degrees B.S. Summa Cum Laude, Applied Science, May 2003,
from Washington University in St. Louis.

May 16, 2003

	Memory-Accessing Optimization Via Gestures
	Recommended Citation
	Memory-Accessing Optimization Via Gestures

	tmp.1471023011.pdf.xy27A

	Abstract: Abstract: We identify common storage-referencing gestures in Java bytecode and machine-level code, so that a gesture comprising a sequence of storage dereferences can be condensed into a single instruction. Because these gestures access memory in a recognizable pattern, the pattern can be preloaded into and executed by a ``smart'' memory. This approach can

improve program execution time by making memory accesses more efficient, by saving CPU cycles, bus cycles, and power. We introduce a language of valid gesture types and conduct a series of experiments to analyze the characteristics of gestures defined by this language within a set of benchmarks written in Java and C. We gather statistics on the frequency, length, and number of types of gestures found within these benchmarks, using both static and dynamic analysis methods. We propose an optimization of the number of gestures required for a program, showing the optimization problem to be NP-Complete.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 16, 2003
	Author: Authors: Fox, Lucas M.
	Title: Memory-Accessing Optimization Via Gestures - Master's Thesis, May 2003
	ReportNumber: 2003-32
	DepartmentName: Department of Computer Science & Engineering

