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ABSTRACT

It is shown that when a continuous buffer is driven by a semi-Markov modulated fluid flow source(s),
the stationary distribution of the buffer content is governed by the same differential equation describing
the distribution for continuous time Markov modulated fluid source(s) [1]. It is also shown that the
same techniques can be utilized to decompose and solve the eigenvalue problem associated with the
differential equation [6]. Finally it is shown that the stationary distribution of buffer content depends
only on the mean time spent by each multiplexed semi-Markov source in each state.

Key Words: FLUID SOURCE MODEL; CONTINUQUS BUFFER; SEMI-MARKOV MODULATED
FLOW

1 Introduction

One of the important problems in the implementation of broadband telecommunication networks is
the selection of appropriate traffic models which capture the important features of complex sources
and at the same time allow managable analysis. There has been much effort to analyze the behav-
ior of multiplexers (buffers) under different traffic sources. However, in most cases the exponential
distribution with its nice properties have played a key role.

One model that has been studied is the fluid low model, in which sources generate a continuous
flow of traffic in time and buffer content changes by continuous amounts. An advantage of this
approach is that the computational complexity of the problem is independent of the buffer size. In
[1] the multiplexing of a finite number of independent and identically distributed (i.i.d.) two-state
Markov modulated sources is analysed, and it is shown that there is a closed form solution for the
stationary distribution of the buffer content. In [3] a problem with m i.i.d. sources and n channels
alternating between idle and active periods according to exponential time distributions is analysed.
Using Kronecker decomposition it is shown that the computational complexity of the problem is
O(n®*m3). In [6] there are K distinct and independent general multi-state Markov modulated fluid
sources multiplexed, and it shown that Kronecker decomposition can vastly reduce the complexity of
the problem.

Actual ATM (Asynchronous Transfer Mode) traffic does not always fit the two-state continuous
time Markov process model however. Even the assumption that source activity periods are expo-
nentially distributed is not appropriate in ATM networks. Therefore there is a need for models and
analyses that go beyond the exponential assupmtion and are still simple. A multiple state semi-Markov
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source model has more flexibility to approximate the actual traffic. In this paper it is demonstrated
that the techniques used in the above-mentioned works are still useful when the exponential assumption
is relaxed.

The paper is organized as follows. In Section 2, a key property of semi-Markov processes at
equilibrium is discussed. In Section 3, the model of a continuous buffer is outlined. In Section 4,
the differential equation which yields the distribution of buffer content at steady state is derived. In
Section 5 the superposition of a number of independent and identically distributed semi-Markov traffic
sources is discussed.

2 Key Idea

Let a traffic source be modelled as a fluid source that is modulated by a finite state irreducible semi-
Markov process S(t) . The stationary rate at which an ergodic semi-Markov process makes a transition
from state i to state j, (¢ # j), is defined to be

t+h)=7S(t) =1
iy i DSEHH) =550 =4}
h—0t—co h

qij

It can be easily shown that the above limit exists and is well defined.

Proposition : If the semi-Markov process is irreducible and nonlattice, then ¢;; = %3— for all
distinct ¢ and j.
Proof :

Let Y () be the time from ¢ until the next transition, and Z(¢) be the state entered at the first
transition after t.

P{S(t+h) =j|S(@t) = i} =
P{Z(t) =5 Y () < h|S(t) =i} + O(h) =
P{Z() =4,Y({t) < h,5(t) =i}
Prob{S(t) =i}
It can be easily verified using alternating renewal theorem [5] that as ¢ tends to oo the above probability
converges to

+ O(h)

Pily Bs®dy | o

Dividing the limit by h, letting h go to zero, and noting that F;;j(0) = 1 one finds ¢;; = Pij/u;.

Now define
def Fi—1

Hi
Note that, 30, g;; = 0, for all <. Given the above concept of stationary rate, the equilibrium probability
of being in state j at time ¢ + At, given that the state is 4 at time ¢, equals ¢;; &t + O(At). Thus the
properties of a semi-Markov process at equilibrium resemble those of Markov process. For example
the forward Kolmogorov equation [5] at equilibrium yields

i

PQ =0 |,

where Q def [¢;;] and P = [Po, P1,-- ., Pn] are respectively the transition rate matrix and the vector
of equilibrium probabilities for the semi-Markov process.
In a later section it is shown that utilizing the above-mentioned concept, one can derive the

differential equation of a continuous buffer.



3 Mathematical Model of a Buffer

Consider a buffer whose content can be represented by a real number z such that 0 < z < X, where
X is the capacity of the buffer.

Assume that there is a fluid source input to the buffer, with flow rate «(s(t)), where s(t) is the
state of a finite irreducible semi-Markov process at time ¢. Let S = {1,2,..., N} represent the state
space of the process, and let F;; be the distribution of sojourn time of the process in state ¢ before
making a transition to state j. Further, let p;; be the transition probabilities of the imbedded Markov
chain. The buffer is drained by a channel at rate

def [ B ifz>0
7@ = {o:(s(t)) if 2 = 0.

To avoid uninteresting cases, assume that there are intervals of time during which the source flow rate
exceeds the channel capacity, ¢.e. a; > 8 for some ¢, 1 <i < N.
The rate of change of the buffer content is as follows:

d_:,t: _ {a,——ﬁ ifz>0
dt (a,‘—ﬁ)"' fzx=0

Let pi(t,z) & Prob[z(t) < z, s(t) = 4] and
def ..
mi(z) = tll’lglop,(t, z)

Further, let
7(2) ¥ [m1(2), 72(2), ..., 7N (2)]

The distribution of buffer content can be found as follows:

N
Problbuf fer content < z] = ) mi(z) .

i=1

4 Differential Equation for a Buffer

In this section it will be shown that using the concept of stationary rates of a semi-Markov process,
one can derive a differential equation similar to the one introduced in [1].

pi(t+ At,z) = pit,x — (o — HAL)(1 - Y qixAt)
ki

+3 pilt,z+ o(At))gijAt + o(At)
i#i
Using the previous equation, one can derive the differential equation describing the dynamic behavior
of the multiplexer

Opi(t, Fpit,
i) (ﬁ—a.-)—‘f-%ﬂ+%jpj(t,m)qj,—

Since the stationary behavior of the system is of interest, %é:’—xl = 0, and mi(z) = limy— o pi(t, z).
Then, the last equation becomes

(e~ _ Sy
)



for all <. The last set of equations can be cast in a matrix form as follows:

dr(z). .
?D = ‘H'(:B)Q )

where Q = [¢i;] and D &f diag(o; — 8). I R def diag(a;) is defined to be the flow rate matrix,

D =R-p3L

The previous differential equation gives the stationary distribution of buffer content = and is
formally the same equation as those found in the literature on fluid flow model such as [1], [3] and
[6]. In these references the equation is derived under the condition that the sources is described by a
N-state continuous time Markov process. Here it is proven that the same equation holds if the source
is N-state semi-Markov process.

The method for solving the above differential equation has been extensively discussed in the above
mentioned references. If {2} and {¢;} is the set of eigenvalues and corresponding eigenvectors of the
matrix QD ™!, then the solution of the above differential equation is of the form

11‘(:1:) = Z(}.;qbiez"x

When the dimension of the matrix QD! is small, there are standard methods for the computation
of the eigenvalues and the eigenvectors. When the dimention of the matrix is large, numerical stability
problems might arise. As will be demonstrated in the next section, in the important special case
in which the source is the superposition of K independent semi-Markov processes, computational
problems can be avoided because the above equation can be decomposed into K equations of smaller
dimension. This property has been known and used in the context of the superposition of continuous
time Markov chains [6]. The results will be reported here for completeness.

5 Superposition of Sources

Suppose that there are K semi-Markov modulated fluid flow sources input to the buffer.
Let S; = {1,2,---,N (i)} represent the state space of the i** source, and let s;(t) be the state of the
ith source at time . At time ¢ the flow rate of the i** source is o;(si(£)).

The flow rate of the superposition of the sources at time ¢ is

a(s(t)) = Z ai(s:(t))

The only assumption used in the derivation of the differential equation for a single source

dn(z)
dr

D = #(z)Q

was that the transitions rates between states were well-defined and that the probability that more than
one transitions happened in an interval of length h is an o(h) event. When the source is the super-
position of K independent semi-Markov fluid sources, the probability that more than one transitions
take place in an interval of length h is once again an o(h) event.

Let s(t) = (s1(%),- -, 3x(1)) be the state of the superposition of the K sources, with values in the
state space § = S x Sz X -+ x Sk. If the vectors describing the superposition of the K sources are
arranged in a lexicographical order and then labelled with integers 1,2,---, N, where N = Hfil NG,
one can see that the following relations among generators and flow rate matrices of individual sources
and of the superposition source exist:



Q=QoeQ:8---©Qx

and
R=R ®R:®:---®Rx ,

where & is the Kronecker sum [2], and R; and Q; are the corresponding flow rate and generator
matrices of the it" source.

For completeness the definitions of Konecker sum and product are given as follows [4],[2]. Let
A = (a;;) and B = (b;;) be square matrices of dimension N and M respectively. The Kronecker
product of A and B is defined to be

(A®B)ijkn = airbjn
The Kronecker sum of A and B is defined as
(A®B)ijrn = aibjn+ birbjn
or alternatively,
A®B = AQIy + Iyn®B ,

where 6;; is Kronecker delta and Iy is an N-dimensional identity matrix. Both Kronecker product
and sum are of dimension NM x NM.
The differential equation describing the behavior of the superposed sources is of the form

d%f)D = n(z)Q

where D = R — L. The solution of the above differential equation is of the form

N
w(z) = ) a;®ie""
e

where {®;} and {z;} represent the set of all the eigenvectors and the set of the corrsponding eigenvalues

of the matrix QD™L.
Assume that ® = $1 @ ¢2®--- @ dx , where ® is the Kronecker product. Then,

20D = ®Q
Using the matrix identity,
(A1RA2® - ®AK)B1®B @ - ®Byg) =

K
D AI®A®---®(AB)® - ®Agk,
i=]
and assuming that § = E£1 Bi, the previous equation becomes
(zh1R1 — 28101 —$1Q1) @ 2+ ® i+
$1 ® (262R2 — 20242 — $2Q2) ® 3+ - @ x + -
+01®$2®--- ® (26xRx — 20k 9k — dxQx) = 0
The above equality holds if
zpi(R; — BI) = ¢:Q:
or equivalently,
zpiD; = ¢ Q;
for all 7, 1 <4 £ K. Thus it is shown that the eigenvalue problem corresponding to the superposition
of K independent sources can be equivalent to K smaller scale eigenvalue problems.



6 Conclusion

In this paper the stationary transition rate matrix Q and the flow rate matrix R of a semi-Markov
process were derived. Given a semi-Markov modulated fluid source, the differential equation describing
the distribution of the buffer content in steady state was then derived. The application of Kronecker
decomposition to the reduction of the computatinal complexity of the problem was mentioned. Finally
it was observed that the stationary distribution of buffer content depends only on the mean time spent
by each of the multiplexed semi-Markov sources in each state.
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