Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-86-05

1986-03-01

Determinacy of Hierarchical Dataflow Model

Takayuki Dan Kimura

A parallel computation model suitable for icon based visual programming languages is
proposed. The model is uses to design a functional programming language for school children.
A computation is specified by boxes and arrows forming a partially ordered set of nested boxes.
Loops and Boolean data tokens are eliminated from the traditional dataflow model. Block
structures are logical consistency (exception) are added. A declarative semantics of the model
is defined formally. Using the formalism it is proved that the model is determinate.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Kimura, Takayuki Dan, "Determinacy of Hierarchical Dataflow Model" Report Number: WUCS-86-05 (1986).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/840

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/840?utm_source=openscholarship.wustl.edu%2Fcse_research%2F840&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

DETERMINANCY OF HIERARCHICAL
DATAFLOW MODEL

Takayuki Dan Kimura

WUCS-86-5

March 1986

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This research was funded by Computer Services Corporation (CSK).

Abstract

A parallel computation model suitable for icon based visual programming
languages is proposed. The model is used to design a functional
programming language for school children. A computation is specified by
boxes and arrows forming a partially ordered set of nested boxes. Loops and
Boolean data tokens are eliminated from the traditional datafiow model.
Block structures and logical consistency (exception) are added. A declarative
semantics of the model is defined formally. Using the formalism it is proved

that the model is determinate.

1. Introduction

This report introduces a computation modei based on the concepts of
datafiow and compietion. The primary purpose of the model is to provide a
semantic foundation for a new programming language called Show & Tell™*
Language (STL) which was designed for novice computer users such as school
children. STL is an icon driven programming language? that integrates the
computer capabilities for managing computation, communication, and
database in home and classroom environments. The design philosophy of
the language and its implementation on Apple® Macintosh™ , Macintosh Show
& Tell language (MSTL), will be described in separate reports3 4. This report

is self-contained and requires no knowledge of STL.

Dataflow3 was chosen for its understandability. The concurrency aspect of
dataflow was secondary. There are two factors that make it easy to
understand a dataflow language; two dimensional representation and value
oriented computation. Due o the principle of direct object manipulation$, a
graphical object is more acceptable to school children than a textual one. The
notion of variable, or equivalently the notion of state, is one of the most
difficuit concepts that school children have to learn for conventional Von
Neumann type programming. Absence of variables in a dataflow language

should make learning easier.

Dataflow also provides a good paradigm for the message based
communication facilities common in most home and classroom environments.
Data-driven asynchronous execution of an operation is a typical mode of

interaction among school children through communication media such as

paper notes, telephone, and video. Dataflow is a natural integration

mechanism for computation and communication.

A completion problem? is to fill in the missing portions of a partially
hidden pattern in such a way that the completed pattern satisfies a set of
consistency rules. Some examples of general completion problems are given

in Figure 1.

'|||, ~ 4
ISR 4

o1 10e(010+ 11)*

This sentence has characters.

Figure | : General Completicn Problem

Completion was chosen for its capability of integrating the notions of
computation, communication and data query. An arithmetic computation is
the process of solving a completion problem whose consistency rules are
arithmetic (Figure 2(a)). A communication is the process of completing the
missing information the receivers have with exactly the same information as
the sender has. The consistency rules for such a completion are defined by
whose information is to be shared with whom (Figure 2(b)). A data query is
a completion problem where consistency rules are defined by membership in

a set of records in a file (Figure 2(c)).

The computational completion problem can be solved by execution of
arithmetic operations, the communication problem by transmission of
messages, and the query completion problem by execution of pattern
matching operations. Thus, completion is a unifying concept for computation,
communication and data query. The Show & Tell language is designed as a
specification language for such completion problems. However, in this report

we will concentrate on computational aspect of the completion problem.

=
(a) Computation (b) Communication
Jane Mike Jane
725-0394 238-3511

(ciData Query

Figure 2 : Completion as Integration Mechanism

The dataflow model by itself is not an appropriate computation model for

school children. First of all, a cycle (loop) in a datafiow graph requires an

introduction of the notion of state, which makes learning the semantics more
difficult for children. Secondly, there is no abstraction mechanism inherent
in the model by which complex problems can be decomposed into simpler
ones. By the same token, there is no construct similar to the begin-end block
of ALGOL, well-known for its effectiveness in program structuring. Thirdly,
the dataflow switching operations, such as distributors and selectors, are not
high level enough for children who are not familiar with hardware related
concepts. Representing the result of decision making by a data token input
to a switching operation is counter-intuitive, and the integration of control
flow with data flow is not appropriate for novice programmers. Finally,
there is no encapsulation mechanism by which error propagation can be

controlled and modular programming can be exercised.

In order to resolve the above difficulties, a new computation model was
developed by introducing the concepts of block structure and logical
consistency into the traditional dataflow model. We call the model a
hierarchical dataflow model (HDM). In the next section we will describe the
model informally with examples using the STL syntax. Then, the formal
definition will be given. Finally, the determinancy of the new model will be

shown.

2. Boxes and Arrows

In the hierarchical datafiow model (HDM} a computation is specified by a
box-graph, a set of boxes connected by a set of arrows. No cycle or foop is
allowed in a box-graph. Each box may be empty or may contain a data
element, an operation, a predicate, or another box-graph. Boxes can be
nested. An arrow directs the flow of data from one box to another, and
defines the consistency relationship between the boxes. Each arrow has

exactly one starting box and one destination box. Arrows do not branch out.

A box-graph is consistent if there is no conflict, directly or indirectly,
among the contents of the boxes; otherwise it is inconsistent. For example, a
box-graph is inconsistent if there are two boxes containing different data
values and the boxes are directly connected by an arrow. A copy of data
value in the starting box of an arrow moves to the destination box, unless the
destination box already contains a different data value. If it does, then the

entire box-graph containing these boxes is inconsistent.

The set of empty boxes in a box-graph is called the base of the graph. A
computation in HDM is to fill the base of a box-graph with a set of data in
such a way that the completed graph is consistent. It involves both finding
data to fill the base with and testing the consistency of the box-graph. Once
a base box is filled, the content of the box never changes. Note that higher
level objects such as operations and predicates cannot be used to fill empty
boxes in HDM. Figure 3 (a) gives a simple computation problem consisting
of three independent components; one to fill in empty boxes and two for
testing inconsistencies. Figure 3 (b) displays a solution obtained by the

MSTL system.

SlE——————— (]

g R o
4| P [~
‘_._.._

N

(a) Simple Box-Graph before Execution

=m———— 11—
SliﬂFle ’ *@‘V :
2 3 NN
APEE
& N
Hoo N

Figure3: (b) Simple Box-Graph after Execution

All inconsistent box-graphs are shaded by the system when solutions are
derived. Note that the predicate < in MSTL is a system defined box-graph,
therefore they can be either consistent or inconsistent. The square on the
left-upper corner contains a user defined name {icon) of the box-graph
drawn inside the window. The icon name stands for the box-graph when it
is used in another box-graph. Such an icon name corresponds to a subroutine

name in traditional programming.

A box containing a box-graph is called a complex box. A complex box can

be open, represented in MSTL by a dash-line rectangle, or closed, represented
by a solid-line rectangle as illustrated in Figure 4. If an open box contains a
box-graph which is inconsistent, then the box-graph containing the open box
is also inconsistent by definition, i.e., inconsistency propagates through the
boundary of an open box to the larger context. If a closed box contains an
inconsistent box-graph, then the closed box becomes non-existent, i.e., the
box with its contents and all arrows incident with the box can be deleted
from the box-graph without changing the consistency property of the graph
containing the closed box. In a sense, an open box broadcasts the exceptional
condition (ie., inconsistency) of its components towards the members of its
community, and a closed box delimits the boundary of such broadcasting.
This mode of communication, or propagation of information, is in contrast

with that of point-to-point communication represented by an arrow.

Figure 4 illustrates the differences between an open box and a closed box.
The complex box A is inconsistent, because there is a conflict in "2 flowing

into 3", and the conflicting part is enclosed in an open box.

=l Edit
L1 > 1ol 3
1 >
C D
B
2 b—o 3
‘ >
£ F

(a) Open and Close Boxes before Execution

Edit

00|

n\:\\\\ﬁ\\\\“\\w

RN
\

AMAMMMNS

\\\\\\ \\\\\N
Rk

N
&k\\\\\ R

N\
NN

L

Figure 4 (b) Open and Close Bozxes after Execution

Since the inconsistent box becomes non-existing, the connection between
the two boxes C and D becomes broken, and the data in C does not flow into D.
On the other hand, the complex box B is consistent, because the conflicting

part is enclosed in an closed box. Thus, the data in E can flow into F.

A box-graph can be used to represent a function or a predicate of 2
traditional programming language in the following way: Since no cycle is
allowed in a box-graph, every box-graph must contain at least one
component box to which no arrow points and at least one box from which no
arrow starts. These boxes are called the minimums and the maximums of
the graph. The empty minimums and maximums are called the in-boxes and
the out-boxes of the box-graph, respectively. They represent the input and
the output formal parameters of the function. When all in-boxes are filled
by the argument data and the box-graph is solved, the out-boxes produce the
value of the function. If there is no solution to complete the graph into a
consistent one, the box-graph will be returned as inconsistent. In other
words, a box-graph, representing a function, can return an exception
condition as well as its value. If the box-graph does not have any out-box it
defines a predicate. When and only when the predicate is satisfied by the

input arguments, the graph will be returned as a consistent graph.

For example, Figure 5 (a) defines a predicate for testing whether a
number is negative or not. Figure 5 (b) defines a function that returns the
input value minus one if the input is positive, otherwise it returns the
exception {inconsistency). Figure 5 (¢) demonstrates how these functions can
be incorporated in another box-graph. Note that in MSTL an icon name can

be used to construct a complex box instead of a box-graph as its content.

]
(]

<

T
L]

>0
dec

Sarerarreirrmrirsanant

AYe)
dec

7

N

(c)

Figure 5. Function with Exception

13

Figure 5 (c) is the result of executing a box-graph in which the same
computation is duplicated with two different input values, one positive and the

other negative.

When a box-graph is contained in a complex box used as a subroutine, a
positional binding rule is used to associate the arrows coming into the complex box
with the in-bozxes of the content box-graph. Similarly outgoing arrows are
associated with the out-boxes. The binding rule is language dependent. We
assume in this report that all arrows incident with the complex box can be ordered
by some language specific rule. Likewise, the in-boxes and out-boxes of the

content box-graph can be ordered by some rule.

Based on these orderings, the first incoming arrow will be associated with the
first in-bozx, the second incoming arrow with the second in-box, and so on. The
same holds for binding the outgoing arrows with the out-boxes. If the number of
incoming arrows is different from the number of in-boxes, then the box-graph will

be evaluated as inconsistent. The same is true for the outgoing arrows.

In the MSTL system, the lexicographical ordering of the (z,y) coordinate on the
Macintosh screen is used for ordering boxes and arrows. The coordinate of a box is
defined as that of the left-upper corner of the box, and the coordinate of an arrow
incident with a complex bozx is defined as the intersection point with the box. The
binding rule of MSTL is illustrated by Figure 6 (a) and (b). In (a), the incoming
arrows are ordered from left to right, and so are the in-boxes. Similarly, both the
outgoing arrows and outboxes are ordered from feft to right respectively, because

the x-coordinate increases from left to right on the Macintosh screen.

12

a b .s
I 1 I ,,61&2
a D| =was pl) pd
p?
__ﬁi. p2 p3
al o8
Pl[9]| ne D2 b3 ..._4
a
P 4 '
p q [.
(a) MSTL Binding Rule (b) Positional Binding Rule
| {
}
(c) MSTL Convention | (d) MSTL Convention 2

Figure 6: MSTL Binding Rules

13

In {b), however, the effect of binding is not obvious as in (a). The
four in-boxes {b1, b2, b3, b4} are ordered based on the
lexicographical ordering of the points {p1, p2, p3, p4), and the four
arrows {al, a2, a3, a4) are ordered based on the lexicographical
ordering of the points {p5, p6, p7, p8}). Thus, arrows al, a2, a3, and
a4 are bound to boxes b1, b2, b3, and b4, respectively. Figure 6 {c)
presents an MSTL convention that allows an arrow to cross the
boundary of a complex box in order to make a binding explicit.
Figure 6 (d) introduces another MSTL convention for an arrow to

intersect with an empty box.

In summary, we will illustrate the notions introduced in this
section by a sequence of examples of MSTL programs. We will
present, first, a recursive program for the factorial function in Figure
7. Note that in MSTL a nesting of complex boxes such as 'I' can be
dynamically unfolded as required during the course of computation,
and the activation of a complex box can be displayed in a separate

window. Thick empty boxes represent input and output parameters.

Next, in Figure 8, we will construct a 4 bit full-adder without using
any arithmetic operations, starting with a set of Boolean operations,

then a half-adder for binary addition.

Figure 8 (a) through (h) except (b} define a standard set of Boolean
operations. The name icons are chosen from the standard symbols
for corresponding gate circuits. The boolean values are represented
by integers | and 0, even though T and F will do as well. Figure 8 (b)

is the result of solving (a) with the inputs | and 0, and demonstrates

14

how and operation works. Note that the inconsistent box becomes
nonextant and nothing flows out of the box. Figure 8 (i) defines a
half-adder using the previously defined functions (subroutines), and
and exclusive-or. It has three inputs x, y, and ¢ (carry) from the feft,
and two outputs, ¢ (next carry) and s (sum). Crossing arrows have no
effects on dataflow. Figure 8 (j) is a construction of a full-adder of
length 4 using the half-adder of (i), and for testing the construction,
the input value (0101) is given for x and (0111) for y, to generate the

output (1100) for the sum.

tdit

Edit

7
i

Z
.
v

5

> 120 —

Figure 7: Recursive Definition of Factorial

i}
[]

and === [0 and
DR P DE L
ij | %
]]
(a) (b)
g0 or] E e ——
DS 7 Jo- :
' |
=
Db | e
(c) (d)

Figure 8: Full-Adder Example

16

[T}
[

nand =iFF—=| E[

nor

n| .

(f)

I exnclusive-or

llllll

equivalence

!

z

.

Figure 8: Full~Adder Exampie

(h)

17

[TH]]
]

halfAdder

1 0
(i)
m————— Ity —
! !
0
Ha
0

(i)

Figure 8: Full-Adder Example

3. Definitions

In this section we will give a formal definition of HDM. The main
purpose of for malization is to prove that as a computation model HDM is
determinate, i.e., the outcome of a computation specified by a box-graph is
unique and independent of the order in which the computation is carried

out. The determinancy will be shown in the next section.

There are at least two different ways of defining the semantics of arrows
in a box-graph; one is imperative (or prescriptive) and the other is
declarative (or descriptive). The imperative interpretation of an arrow
connecting box b; to box b, is : "Move the data in b intob,." Traditional
datafiow models of computation assume this interpretation. The declarative
interpretation of the same arrow is : "If b, is not empty, then b, contains the

same data as by." This describes the goal state of the action designated by

the imperative interpretation of the arrow.

When by and b, contains a different data value, there exists a pragmatic
difference between the two interpretations. Based on the imperative
interpretation, either the content of b, will be replaced by the content of b
or the operation of data movement will be suspended until b, becomes
empty. In either way, it is necessary to assume that the box content can be

changed from one value to another during the computation.

With the declarative interpretation, on the other hand, an arrow
connecting two different values can be considered as an inconsistent
statement designating a non-achievable goal. In order to make HDM an

applicative model, we will adopt the declarative semantics. Thus, once a box

19

20

is filled with a data value, the content of a box never changes. In the
following description of HDM, we will add an imperative interpretation as a

comment, when it is appropriate to do so.

The following mathematical notations will be used in the remaining
part of the report.

C: is a subset of, (instead of 'is a proper subset of"),

¢ : the empty set,

=: equal by definition,
~>: implies by definition,

<=>: if and only if by definition,

%(S): the cardinarity of set S,

N: the set of natural numbers, (0,1, 2, ...).

A Abierarchical dataffow mode/ HDM = (T, G, T), consists of a datz
type T, a set of por-graphs G, and an evaluation funclion T. The data
type defines the domain of computation and the set of primitive
operations available on the domain. A box-graph is a two dimensional
pictorial expression consisting of arrows and nested boxes. The box-
graph defines a logical relationship among the box contents. A box-graph
is consistent if the content of each box in the box-graph satisfies the
constraints imposed by the neighboring box contents. Otherwise /7 /s
inconsisten! The evaluation function decides whether a box-graph is
consistent or not. A complelion problem is to fill in the empty boxes
with data values in such a way that the consistency of the box-graph may

be preserved. A solulion is a set of data values used for the completion.

21

3.1 DataType

We define a data type T as a set of functions and predicates defined on

the data value set.
T = (D, F, P), where
Dis the set of dlsta obfects,

FC U (Dm-Dn) is the set of functions on D,
m.n >0

PC U (Dm-2) isthe set of predicates on D.

m>0
The arsty of a function (or a predicate) is defined as follows:
arity : (F UP) >N xN
arity(f) = (m, n) if feDm->Dna,
arity(p) = (m, 0) if peDm-2,

Note that any function or a predicate requires at least one argument.

For the semantic definition of box-graph later, we extend the domain D

into a complete lattice as follows:
D’=DuU{LT}, L,7€D,

where T and L are the sdentsty and the zero element of D°, respectively.
The partial ordering is depicted by Figure 9 and defined as: L =d =71 for
each d €eD. We denote the joinof a set of elements by U, and the meer of a
set of elements by M. Note that by definition U$é =1 and N =1. When
they are used as infix operators, they denote the operations defined on two
elements. Thus,

dUTt=7, dN1=1 dUd=d, dNd=d, dUd =71, dNd =L
where d,d" €D and d=d".

22

T -
Il T
e AN
T P ."L . e
-ﬂ‘*’. .,-"'. i ‘,‘ \ ~ - .,
- i ™., e
Y S
'11 Ll-'; d-: d‘fi L L e @
SRR ¢ s
" - - ~
. ““-\.,‘_ o I y P4 P
S .. B i ‘_,f
Tem ™ e
— F

Figure 9 Partial Ordering on 0¥

Furthermore,

D* =D U {1} C D": the set of datz valves,
1 is the nul/ value representing the notion of undefinedness,

F+ =(f+|f eF}:the set of naturally extended functions of F, where
f+:(D*)m > (D*)n is a paturally ertended function of f such that
f (2,55, ..., 3 =(1,..., 1), if x;= 1 for some | =i =m,

= f(x;,%,,...,Xy) otherwise.
P+ ={p*|p €P):the sel of naturally extended predicates of P, where

p*:(D*)m > 2 is an erfended predicareof p such that
p*(Xy, Xg,...,Xgy) =0, if x; = L for some 1 i Sm,

=p(1y, Xp,..., Xy} otherwise.

Note that {+ and p* are monotonic functions.

3.2 Box-Graph (The Syntax of HDM)

A box-graph G = (B, B, A, 8, d, it) €G is a 6-tuple such that

B is the non-empty finite set of dores,

By CB is the set of open boxes,
(B, = B - B, is the set of closed boxes,)

A is the finite set of arrows,

23

s: A — B is the source of an arrow,

d: A - B is the desunation of an arrow,

u:B->DUFUP UG U{¢d} isthe content of a box,

satisfying the conditions (B1) through (B4) given below.

Note that ‘s’ and 'd’ are total functions, and therefore each arrow must

have the unique starting (source) box and the unique ending (destination)

box. A box may contain nothing, a data value, a function, a predicate, or

another box-graph. The following terminologies will be used in describing

the conditions for the box-graph.

Definition.

b eBis empzy if pb) = ¢.
base(G) ={b B | ub) = ¢) : the base bores of G €G6.
b €Bis compler if ulb) €G.
d-1(b) : the incoming arrows of b € B.
s-1(b) : the owigoing arrows of b €B.
pred(b) =s(d-1(b)) : the predecessor bores of b €B.
succ(b) =d(s-1(b)): the sucvessor bores of b € B.
in-box(G) =(b €B | p(b) = o Ad-1(b) =)
the mn-bores of G €G.
out-box(G) =(b eB | pb) = p AsHb) =&}
the out-bores of G €G.
arity(G) = (#*(in-box(G)), *(out-box(G))) :
the arsty of G € G.

An empty box is called an in-box if it has no incoming arrow. Similarly,

an empty box is called an out-box if it has no outgoing arrow. The in-boxes

24

and out-boxes of G represent the input parameters and output parameters,
respectively, when G is considered to represent an operation. The arity of a
box-graph, therefore, is defined as the ordered pair of the number of in-
boxes and the number of out-boxes in the box-graph.

With these notions and terminologies we are ready to present the

conditions for the box-graph.

Conditions for the box-graph:

{B1) No two boxes intersect with each other.

This is a geometric condition rather than a logical condition. In order to
eliminate a semantic ambiguity caused by overlapping boxes, all boxes must
be properly nested. FigurelO illustrates an example of such ampiguity.
Depending on whether we consider (i) box A contains '+ and box B is empty,
(i) box A is empty and box B contains "+, or (iii) both box A and box B

contains +', the answer could be 4 for (i), 6 for (ii), or 8 for (iii).

4or6or8

Figure 10: Ambiguous Box-Graph

25

(B2) (B, A, s, d) is a directed acyclic multi-graph (damg), ie.,

(Vae A" (vi<|a|)s(ag,) = day)) = s(a;) z dla)),
where a is a sequence of arrows,
| a |is the length of the sequence,
Q; is the i-th element of the sequence, 0 <i = ! al
There are two main reasons for restricting a box-graph to be acyclic.
First, the acyclicness contributes to making HDM an applicative
(functional) model, because once an empty box is filled with a data value, the
content will never change in the remaining part of the computation. In
other words, HDM is a history independent computation model. As a
consequence, an implementation of HDM is not required to keep the entire
history (or the state sequence) of computation. We expect that a program
derived from HDM is easier to understand because there is no internal state
to remember which may affect the execution of the program.
Secondly, the acyclicness makes HDM a deadlock-free and race-free
parallel computation model. As we will show in the next section, the model

is also determinate and retains the desirable Church-Rosser property.

Note that since the box-graph is a multi-graph, there may be more than
one arrow between a pair of boxes. Also note that since the graph is
directed and acyclic, (B, <) is a partially ordered set with the following
ordering:

by <by <= (FaeA*)

(s(ag) =by Adlay) =by AVi<|of) s(eg,) = dlay)),
i.e., there exists a path from box b; to box b,.
Furthermore, B is a weli-founded set because B is finite. These facts wilf

be used later in proving the deter minancy of the modei by the principle of

26

structural induction. A box, b € B, is called a minimum, if d-1(b) = &,
because for no b’ €B, b’ <b. Similarly, b is a marimum if s1(b)= o
According to this definition, an in-box is an empty minimum and an out-box

is an empty maximum.

(B3} For each box b € B containing a function, a predicate or
another box-graph,
(B3.1) the set of incoming arrows is a totally ordered set and
50 is the set of outgoing arrows, i.e.,
d-!(b) and s-1(b) are totally ordered sets.
(B3.2) the number of incoming and outgoing arrows of b

matches with the arity of its content p(b), ie.

(vbeB)(b) eF* UP* UG =
(#(d-1(b)), #(s-1(b))) = arity(u(b))).

The condition (B3.1), along with the next {B4), will be used to associate
the contents of the predecessors and successors of a box with the content
of the box. They define the binding rule for the operation represented by
the content of the box. Note that since d-1(b) and s-1(b) are totally
ordered, so are pred(b) and succ(b). In MSTL, the ordering of d-!(b) is
defined geometrically by the lexicographical ordering of the (X, Y)-
coordinates of arrow heads residing on the b's boundary, and the
ordering of s-1(b) is based on the (X, Y}-coordinates of the tails of arrows

on b.

The condition (B3.2) is necessary for preserving semantic integrity of
data type operations. Note that this condition applies to a complex box
where Li(b) € G, arity(p(b)) = (#(in-box((b))), #(out-box(p(b)))).

27

However, the empty boxes and the boxes that contains a data value need

not satis{y this condition because they do not represent an operation.

(B4) For each box-graph G € G, the in-boxes of G is a totally ordered
set, and so is the out-boxes of G.

This condition is used to specify the binding rule for complex boxes. In
MSTL, the ordering of boxes is also defined geometrically by the
lexicographical ordering of the (X, Y)-coordinate of the left-upper corner of
each box. It is a consequence of conditions (B3) and (B4) that for every
complex box b, there eXists an one-to-one correspondence between the
incoming arrows of b and the in-boxes of W(b), and between the outgoing
arrows of b and the out-boxes of [i(b). Figure 6 (a) of Page12 illustrates the
binding rule in MSTL.

(End of conditions of por-graph)

3.3 Evaluation Function (The Semantics of HDM)

The most fundamental property of a box-graph is whether it is consistent
or not, i.e., whether the content of a box satisfies the local constraints
imposed by the neighboring boxes. The evaluation function T is defined as

a characteristic function for consistent graphs.

In order to define the notion of consistency more precisely, we introduce
the semantic concept of elaboration, which is an assignment of data values to
the set of arrows. The concept of elaboration in HDM is similar to the
concept of interpretatiop in mathematical logic. A box-graph is consistent if
there eXists an elaboration for the box-graph, as, in mathematical logic, a set

28

of propositions are consistent il there exists a model (interpretation) for the
set. The semantics of HDM is declarative rather than imperative. The
consistency of a box-graph is dependent on the existence of an elaboration

and is independent of how the elaboration is consiructed.

Given an elaboration of a box-graph, the data values assigned to the
incoming and outgoing arrows on an individual box should satisfy the local
conditions imposed by the content of the box. Figurell illustrates the
concept of elaboration by a simple example. Figurell (a) specifies the local
consiraints imposed by various boxes occurring in (b) and (c). An empty
box imposes no constraint except that all outgoing arrows must have the
same value. A box that contains a data value must have the same value as
the content of the box for all outgoing arrows and for all non-null incoming
arrows. The formal definition of these constraints will be given later in this
section. The box-graph of (b) is consistent because it has an elaboration
whose values are assigned to each corresponding arrow in the box-graph.
For the box-graph of (¢) there is no such an elaboration, therefore the box-

graph is inconsistent.

A mapping ©: A - D* is an e/gboration of G =(B, By, A, s, d,) €G, if
the following conditions (E1) through (E5) hold for any b €B.

Notatjon: We will denote the i-th in-arrow of b by a;, and the j-th out-
arrow by Aj, where 1 <i<m, and 1 ¢j < n. (See Figure 12.) Note that d-!(b)
and s-1(b) are totally ordered sets by the condition (B3.1), and they can be
represented as sequences:

d-1(b) =(a;) =(ay, ay,...,2q),

s-1(b) =(a) =(A1, Ap ..., 4,) {(End of Notation)

29

NNy
o
lam laxb

(a) Local Conslraints

e N AT NN

X
6 12
@) 12 6 13
(b) Consistent Box-Graph (¢) Inconsistent Box-Graph

Figure 1 | : Elaboration of Box-Graph

30

Ay A4y Ay

Figure 1 Z2: In-Arrows and Out-Arrows

Conditions for the Elaboration:

Let © be an elaboration of G = (B, B,, A, s, d, U} €G, thenfor any b €B:

(E1} When b is empty, ie., ub) = ¢.

There are three sub-conditions; on the in-arrows, on the out-arrows,

and on the relationship between them.

(E1.1) U{&(a;) | a; € d-l(b) } €D+
No two in-arrows have distinct values of D under ©.

(E1.2) (Va,a'e s H(b))(B(a)=6{a)) where s-I(b) z &,

Every out-arrow has the same value of D* under 6.

(E£.3) &(a) = U(6{a;) 1a; ed-l(b}} where d-!(b) 2 d Aa es-l{b).
Each out-arrow has the least upper bound (lub) of the values
assigned to the in-arrows under 6.

If d-1(b) = &, then {E1.3) does not apply and any value can be assigned

to the out-arrows as long as they are all the same. If s-!1(b) = &, then

only (E1.1) applies. Note that when d-1{b) 2 ¢ the values of the out-
arrows are the same member of D* and uniquely determined by the
values of the in-arrows. Whether b is a closed box or an open box

does not matter.

An empty box may receive data from any number of boxes provided
that they are the same. It sends the received datum to the successors. If it

receives different data, the box-graph G must be inconsistent.

(E2}) When b contains a data value, ie, ub)=c €D
(B2.1) U(6(a;) | a; d-1(b)) =c.
If an in-arrow has a value of D, then it must be p(b).
(E2.2) (VA es-1(b))(&(a) =) where s-t(b) z $.
Each out-arrow has W(b) as its value under 6.
If s-1(b) = &, then only (E2.1) applies. Note that the in-arrows may
have the null value, but the out-arrows must have the same value as

w(b) e D. Whether b is a closed box or an open box does not matier.

A data box may receive values from any number of boxes provided that
the value is identical to its content. It sends its conient to all of the
successor boxes. If the data box receives a different value from its content,

then the box-graph G must be inconsistent.

{E3) When b contains a function f, ie., (b) =f* ¢ F*, where

f*r:Dm->Dn for some m,n> 0.
Note that the arity of b is the same as the arity of pu(b) by the condition
(B3.2) for the box-graph and that the s-1(b) and d-i(b) are totally ordered
sets by the condition (B3.1). There are two cases depending on whether

b is a closed box or not.

Casel: When b is a closed box, ie., b €B,.

The values on the out-arrows are the values of the function f+

evaluated with the values on the in-arrows as the arguments. If some

31

32

in-arrow has the null value, then all of the out-arrows must have the
nuli value, ie.,
(E3.1) 8(s-1(b)) = f*(& d-1(b) }), or equivalently,

(6{ay), &ay), ..., &(a,)) = £+(6(a)), B(ay), ..., 6lay)).

Case 2: When b is an open box, ie, b €B,.

All of the values for the in-arrows are defined and the condition is the
same as the Case 1. Thus,
(E3.2) 6(d-i(b}))eDm A &(s!{b))=f+(6(dtb)))

A function box receives all arguments from the predecessor boxes, and
sends results to the successor boxes. Since the functions and predicates in
HDM are considered as system defined box-graphs, they are either consistent
or inconsistent. If not all input arguments are defined, then the function
itself, pu(b), instead of G, must be considered inconsistent. Thus, if b is a
closed box, then the out-arrows must have the null value. If b is an open

box, then both p(b) and G must be considered inconsistent.

(E4) When b contains a predicate p, i.e., u{b) = p* € P+, where
p*:(D*)m>2 for some m> 0.
Note that s-1(b) = ¢ by the condition (B3.2). If b is a closed box, then
there is no condition on 6 with respect tob. If b is an open bozx, then
all of the values for the in-arrows must satisfy the predicate p*, i.e.,
p*(& d-1(b))).
Note that p*(6(d-}(b))) - 0 if &(a) = L for some a € d-1(b).

A predicate box receives all arguments from the predecessor boxes, and

tests whether they satisfy the condition specified by the predicate. If the

33

condition is satisfied, then G is consistent regardless whether the box is open
or closed. If the condition is not satisfied and, furthermore, the box is open,
then G must be inconsistent. If some input arguments are undefined when
the box is open, then G as well as the predicate must be considered as

inconsistent.

(ES) When b contains another box-graph, i.e., ib) € G, where
wb)=6= (B,B,A,s,d §1) €G.

Note that in-box(6) and out-box(6) are totally ordered sets by the
condition (B4) of §3.2. Similarly, d-!(b) and s-1(b) are totally ordered
sets by the condition (B3.1) of §3.2. By the condition (B3.2), there is
an one-to-one correspondence between in-box(6) and d-1(b) as
follows:

in-box(6) =(b;} =(by, by, ..., by),

d-1(b) =(a;) =(ay, ay...,ay)
Similarly there is an one-to-one correspondence between out-box(6)
and s-!(b) as follows:

out-box(6) = (p;) =(my, 8y, ...,8,),

s-1(b) =(a;) =(Ag, Ap ..., Ay)
Note also that by definition b; does not have any incoming arrow and

B; does not have any outgoing arrow in 6. See Figure 13 below.

5: a2

|
il
%{?

Ay Ag

Figure 1 3: Binding Rule

There are two cases depending on whether b is a closed box or not. The
following notations for the update function will be used in presenting the

two conditions:

Notations: Let G = (B, B, A,s,d, 1) €G.
(a) G/p =(B, By A,s,d, ') for any content function 1.
(b) flx/y] is the update function of f, i.e.,

flx/ylz) =x if y=2
=f(z) otherwise.
() flxy/y; |l y; €8] is the multiple ypdate function of f, ie.,
| flx/y;ly; eSlz) =3, if z-y; €S,
={(z) otherwise.

(End of Notations)

35

Case 1; When b is a closed box, ie, b €B..

Either 6 has an elaboration 6 that satisfies the binding conditions
imposed by &(d-1(b)) and &(s-1(b)), or all the out-arrows of b must
have the null value under 8 More precisely:
(E5.1) Let 6' = 6/[6(a;}/b; | b; € in-box(6)].

If &' has an elaboration ©

then ©(4;) = Uf6(a)laed-1(s)} forevery s € out-box(6)

else 6(aj) =1 for every 8; € out-box(B).

A closed box containing a box-graph 6 receives input values (input
parameters) from the predecessor boxes, moves them into the corresponding
in-boxes of 6, and solves (completes) it. If it is successfutly solved, the
contents of the out-boxes of 6 will be moved to the successor boxes.

Otherwise, no values will be moved to the successor boxes.

Case 2: When b is an open box, ie, b €B,
6 has an elaboration O that satisfies the binding conditions imposed by
8(d-1{b)) and &(s-1(b}), i.e.,
(E5.2) 6' has an elaboration 6 A
68(a;) = U(6(a) | a € d-1(g;)) for every ; € out-box(6).

An open box containing a box-graph & behaves exactly the same as a
closed box containing the same box-graph, except that when the in-boxes of
6 are filled with the contents of the predecessor boxes, and 6 fails to
complete, the entire box-graph G that contains the open boz is to be

considered inconsistent. (End of Conditions for Elaboration)

36

A box-graph G = (B, B, A, s, d,) €G is consistent if there exists an

elaboration for G, otherwise it is /nconsistent

The evaluation function T:G = 2 is defined as :
TG) =1 if Gis consistent,
0 otherwise.

i

(End of definition of Avafuation Function)

2.4 Solution

We will define the notion of solution for an arbitrary consistent box-
graph G as a set of values that completes G. Formally an assignment o of

data values to the base of G is called a so/vzion for G if the completed box-

graph G, is consistent, where G, is the same as G except that its base boxes
are filled with the data values assigned by 0. That is,
0 :base(G) - D* is a solvtionfor G <= T(Gy)=1,
where

Gy =G/pulo(b)/b | b € base(G)).

The following theorem establishes the relationship between the notion of
elaboration and the notion of solution. The theorem shows that a solution

for G can be constructed directly from an efaboration of G and the
construction is unique.

Theorem 1:

Let G = (B,B,, A, 5, d, g) €G, and let © be an elaboration of G.

Then, 0g:base(G) - D* is a solution for G,

where Cg (b)=U [e(ai)' G(Ai) | 4 c d-i(b), A] € s-1(b})).

Proof: We want to show that G/p[og(b)/b I b € base(G)] is consistent.
We claim that ©is an elaboration of G/ulog (b)/b] for any b € base(G).

Let v = gg(b). We want to show that if © satisfies the conditions (E1) for

the box b in G, then 6 also satisfies the conditions (E2) for b in G =G/ p.[v/b].

Assume that 9 satisfies (E1). Then,
v=0gl(b) = U(B(a;), &a) | 2; €d-t(b), a;€5Hb))
= (U{6(a;) | a; €d-Hb) }) UC UL &(a;) a5 €5 (b))
by the definition of U,
= (U (8la;) | a; € d-1(b))} U &(ay) by (E1.2),
= U{6(a;) | a; e d-1(b)) by (E1.3).

Since v = U (8(a;) | a; € d-1(b)) = 0g(b) = v, O satisfies (E2.1) for b in G".

By the condition (E1.3), &{A) = v, i.e., 6 also satisfies (E2.2).
(End of Proof)

Note: oy is called the mizimum solution for G (derived from 6), because
it can be shown below that for any solution o for G, 0g = 0, i.e., for any b €B,
gg (b) = o(b). Let o be an arbitrary solution of G. Since G has the unique
elaboration 6 by (E2), for any base box b of G,

gg (b) = U (&(a;), &(a;) [a; € d-1(b), a; €571(b)} = olb).
(End of Note)

A box-graph is called bound if every minimum box contains a data value
or another bound box-graph, otherwise it is called /ree In the next section,
we will show that if a box-graph is bound and consistent, then the

elaboration is unique, therefore the minimum solution is unique. Because of

37

this determinancy result, a free box-graph can be considered as a
specification of a function, or a specification of a predicate when the box-
graph has no out-boxes. The notion of bound box-graph will be formally

defined in the next section.

38

39

4. Determinancy

In the previous sections we defined the concepts of consistency,
elaboration and solution of a box-graph. In this section we wili show that
HDM is determinate, i.e., if a box-graph has a minimum solution, then it is
unique. We will also present an algorithm by which the minimum solution

can be derived.

4.1 The Uniqueness of Elaboration

The consistency of a box-graph is not sufficient for the uniqueness of a
solution for the box-graph. For example, a box-graph consisting of a single
empty box is consistent but an assignment of any data value to the empty
box is a solution because there is no constraint imposed on the content.
However, the minimum solution for the single box box-graph, that is, the
assignment of 1 to the bogx, is unique. We will introduce a sufficient

condition for the uniqueness of a minimum solution for a box-graph.

Definition: Let G = (B,B,, A, s, d,) €G.
G is bound if every minimum box of G contains a data value or
another bound box-graph, ie.,
(Vb eB)d-1(b)=% = (pb)eD* V (pb) € G A p(b)is bound))).

Otherwise, G is /ree

We will show that the above condition is sufficient for the uniqueness of
an elaboration for a box-graph. By the definition of minimum solution,
the uniqueness of elaboration entails that of minimum solution. Note that
the condition is not sufficient for the uniqueness of a solution. For example,

even though the box-graph of Figure 14 is consistent and bound, any

assignment of any data value to the out-box is a solution. However, there is

only one minimum solution for the box-graph, i.e., the assignment of L.

Figure 1 4: Consistent and Bound Box-Graph

Theorem 2:

Let G= (B,B,, A,s,d, 1) €G be aconsistent and bound box-graph.
Then, the minimum sotution for G is unique, ie.,
if 0y, 05:base(G) »D* are minimum solutions of G,

then o,(b) = 0,(b) for any b € base(G).

The main tool for the proof is the principle of siructural inductionfor
well-founded setsd. A partially ordered set (poset) is we//-founded if there
is no infinite sequence of decreasing elements. Every well-ordered set is
well-founded. Every finite poset is well-founded. Let P(x) be an arbitrary
predicate on a well-founded poset { X, =). The principle of structural
induction states that: To show that (Vx € X} P(x), it is sufficient to show
that (Vx € X)(((Vy =x) P(y)) =P(x)). This condition implies that P(x)

holds for each minimal element x of X.

Proof of Theorem 2: We will show that the elaboration for a consistent

bound box-graph is unique:
(P1) If 6, and 6, are etaborations of a bound box-graph G €G,

then 6, = 6,.

40

41

We use two induction principles in this proof; the mathematical
induction on the levels of nesting of box-graphs, and the structural induction
on the partial ordered set of boxes in a box-graph.

First we define the /eve/ of nesting A for a box-graph G € G as follows:
A:G->N and

{ NG) =0 if complex(G) = ¢,
=max { Mub)) ! b €complex(G}]+ | otherwise,

where complex(G) ={b e€B}| Wb) eG).

(I) Base Step (Mathematical Induction): We will show that (P1) holds
when MG) = 0, ie., when G has no complex boxes.

Note that by the condition (B2) of §3.2, (B, <) is a partially ordered set,
and B is well-founded because it is finite. Let 6; and 6, be elaborations of G.
We will show by the principle of structural induction that:

(P2) {vb €B) P(b)
where P(b) = [(6,(d-1(b)) = 8x(d-1(b})) = (6;{s-1(b)} = 6,(s-1(b))} }.

Note that (P2} is a sufficient condition for {P1), because if 6; z 6, ,

then 6,(a) =z ©,(a) for some a € s-1{b) and for some b €B.

Let b €B be an arbitrary box in G, and assume that P(b’) for any b’ such
that b’ <b. We want to show that P(b). We divide the argument into two
cases; when b has no such b’ and when b has such a predecessor b'.

Case 1: When b is a minimum element of B, ie, d-!{b) = .

We claim that p(b)} e D*. Since G is bound and b is a minimum element,
ub) = ¢, ie, b cannot be empty. Since every function and predicate
requires at least one argument by the definition of F* and P+, and d-!(b) = &,

(b} cannot be a function or a predicate. Furthermore, since MG) = 0, p(b)

cannot be a box-graph. Therefore, it must be the case that \i(b) e D*. By
the definition of Elaboration Condition (E2.2),

0y(s~1(b)) = By(s-1(b)) = p(b).
Therefore, P(b) holds when d-1(b) = ¢. (End of Case 1)

Case 2: When d-1(b) z &.
Assume that 6,(d-1(b)) = 6,(d-1(b)). We want to show that

0y(s-1(b)) = 8;5(s-1(b)),
ie, 6,(a) = 6y(a) for any a € s-i(b).

There are four cases depending on p(b):
(1) wb) =¢.
By the Elaboration Condition (E1.3), for any A € s-l'(b),
6,(a) = U(8,(a;) | a; € d-1(b)),
By(A) = U {0,(a;) | a; € d-1(b)).
Since 6,(a;) = 6,(a;) for any a; e d-1(b),
0;(A) = 65(A) for any A €s-1(b).
(2) w(b) eD*. By the definition of Elaboration Condition (E2.2);
B(s1(b)) = By(s-1(b)) = pfb).
(3) wib) eF.
Since 6;(d-1(b)) = 8,(d-1(b)) by the assumption,
B;(s-1(b)) = (b)(6,(d-1{b)}) = (b)(B5(d-1(b)}) = B5({s-1(b))
by (E3.1)if b €B,, and by (E3.2) if b €B,,
(4) u(b) e P+,
Vacuously true, because s-1(b) = ¢ by (B3.2) of §3.2.
By (1) through (4), P(b) holds when d-1(b) z ¢. (End of Case 2}
From Casel and Case2, (P2) holds when M\G) = 0. (End of Base Step)

42

43

(11) Induction Step {Mathematical Induction):

Assume that (P1) holds for any consistent bound box-graph G whose level

of nesting is less thann >0, ie.,
(A (G) <n) A(Gis bound) A (8, and 8, are elaborations of G} => 8, = 6,.

Let G = (B,B,, A, s, d, i) €G be a consistent and bound box-graph of the
nesting level n > 0, and let ©; and let ©, be elaborations of G. We will show
that ©; = 6, by showing that (vb € B) P(b). As in (1) Base Step, we divide
the argument into two cases; when b does not have a predecessor and when

it does.

Case 1: When b is a minimum element of B, ie., d-f(b) = &

By the same argument as in (I) Base Step Casel, p(b) €D* or (b) €G.
Also, as in (I) Base Step Casel, P(b) holds when p(b) € D*, Therefore we
only have to show that P(b) holds when u(b) €G.

Let p(b) =6 = (8,8, A, s d p) €6, then by the condition (3.2) of §3.2,
in-box(6) - &, and since G is bound, so is 6. Either 6 is consistent or
fnconsistent.

(1) Assume that 6 is inconsistent. Then, b must be a closed boz, because
if b is an open box and 6 (= p(b)) is inconsistent, then G must be inconsistent,
contradicting with the definition of G. By the condition {(ES.1) of §3.3,

01(a) = 8,() = 1 for any A € s-i(b), and P(b) is true.
(2) Assume that 6 is consistent and let © be an elaboration of 6, then

since 6 is bound and A(6) < n, by the induction hypothesis, 8 is unique.
Let a; be the j-th out-arrow of b, where 15 = #(s-1(b}). We want to

show that &;(a;) = 85(4;). Since 6, and &, are elaborations of G, they must

satisfy the Elaboration Condition (ES.1), ie.,

44

01(aj) = U(e(a)ia ed!(n)),
6,(4;) = U(6(a) | a e d-1(s}). _
Therefore, 8;(4;) = 8,(4;), and P(b) holds when b is a minimum element of B

and p(b) €G. (End of Case 1)

Case 2: When b has a predecessor, ie, d-!(b} z &.
Assume that 6;{d-!(b)) = 65(d-!(b}). We want to show that

6((s-1(b)) = By(s-¥(b)), i, for any a; € 5-1(b), 6;(a;) = 6(a;).

There are five cases to consider, depending on p(b). However, the following
first four cases are the same as in (1) Base Step, Case 2.

(1) plb) =0 (2) wb) eD*. (3) wb) eF. (4) wb) eP-.
Therefore, we will argue for the remaining one case;

(5) Wb)=6= (BB, A s d p) €G.

Since 9; and 9, are elaborations of G, they must satisfy the Elaboration
Condition (ES5.1) if b is a closed box, or (E5.2) if b is an open box.

Let 6' = 6/p[6;(a;)/b; | b; € in-box(6)] = 6/pu[6,(a;)/b; | b; € in-box(6)],
where a; is the i-th in-arrow of b, and 6;(a;) = 6,(a;) by the premise of the
P(b). Then, &' is bound and A(6) < n.

If &' is consistent, then 6' has an unique efaboration © by the Induction
Hypothesis, and by (E5.1) in case b is a closed box, or by (ES.2) in case b is an
open box,

01(aj) - U(&(a) | a € d-!(s;)) and
©2(4;) = U(6(a) | a € d-!(n;).
Therefore, 0;(a;) = 65(a;) for every a; € 5-1(b).

If 6' is not consistent, b must be a closed box, and by (ES.1),

B1(aj) = 65(a;) = 1. Therefore P(b) holds. (End of Case 2)

From Casel and Case 2, 6; = 6,. (End of Induction Step)

From (I) and {11}, and by the principle of mathematical induction, (P1)

and consequently (P2}, holds for box-graphs of arbitrary levels of nesting.

(End of Proof)

4.2 Algorithm

The following recursive algorithm T computes the elaboration and the

minimum solution of a consistent bound box-graph:

INPUT: © G = (B, B, A, s, d, i) : bound box-graph.
OUTPUT: if G is consistent then (8, o) else Inconsistent, where
0:A->D : the elaboration of G,

o : base(G) » D* :the minimum solution of G.

METHOD: Let (bq, by, ...,b,) be a topological sorting of B based on the

partial ordering defined in (B2) of §3.2.
T(G) = begin
for k-1 to n loop
case p(b,) of
¢: alby) = U(6(a;) | a; € d-Uby));
6(a;) 1= olby) for all aj € s-1(by);
D*: if U(6(a;) |a; €d1(by)) = plby)
then 6(a) := p(by) for ali a; € s-1(by);
else return (Inconsistent); end if;
F*: if by €B, V 8(d-!(by)) eDm
then &(s-1(by)) := plby)l 6(d-1{by)) J;
else return (Inconsistent); end if;
P*: if by €By A not byl 6(d-1(by)) |

then return (Inconsistent); end if;

45

G: 6':=6/p[6(a;)/b; | b; €in-box(8)];
-- where |(b) =6 = (B, B, R, 5,d,p) €G
if T(6') = Inconsistent
then if b, €B,
then return (Inconsistent);
else 6(a;) = L for all A; €5-I(by); endif;
else (0,0) = T(6');
6(a;) := a(B) for all A; € 5-1(by),
B; € out-box(6');
end if;
end case;
end loop;
return (0,0);

end T;

Note that, by Theorem 2, a choice of a particular total ordering as a result
of topological sorting is not significant. The result of computation is

independent of the choice.

46

47

5. Conclusions

Visual programming languages wilf be used by computer users who are
not familiar with the traditional Von Neumann type machine model. It is not
appropriate 1o expose such a low level architecture to naive end users. From
that point of view, sequential programming, which is a natural consequence
of Von Neumann machine model, should not be the main method of
computer usage. Paralle! and asynchronous computation is more natural

simuiation of real world activities.

We have introduced a new parallel computation model specifically
designed for visual programming languages. The model does not contain the
notion of variable nor state transformation. The concept of inconsistency
and its range of propagation is introduced to replace the Boolean data type.
It is a functional model with a datallow flavor where no computation has
side-effects. In order to make the model high level enough to abstract all
implementation issues, the semantics of the model is defined declaratively

rather than imperatively.

The hierarchical dataflow model is only a part of the Show & Tell
Language (STL) semantics. Data query operations, recursion, iteration, and
parameterizations are available in STL, but they are not included in HDM so
that the model may be kept simple and that it can be compared easily with
the traditional dataflow model. However, HDM is an important part of the

research problem to formalize visual programming languages such as STL.

Another important probiem in this research area is a formal syniax
specification of two dimensional programming fanguages. For example, there

is not yet a formal grammar for STL. An extension of phrase structure

48

grammar to a grammar for two dimensional languages will require an

adequate definition of concatenation operation of two dimensional patterns.

Finally, there is a question of the relationship between HDM and logic
programming. Consider the box-graph given in Figure 11 (b). The algorithm
of §4.2 can not find the solution for this box-graph, because it is not bound
and the algorithm is based on the uni-directionality of dataffow in HDM. In
order to find the solution (or the elaboration) for this box-graph, we need
either logical inferencing or equation solving capability. By the same token,

is it possible to design 'Picture Prolog' based on HDM or its extension?

6. References

+ Show and Tell is a trademark of Computer Services Corporation.
Macintosh is a trademark of Apple Corporation.

2 Raeder, G. A Survey of Current Graphical Programming Techniques. /ZEF
Computer, 18:8 (11-25), August 1985.

3 McLainP., and T.D. Kimura. Show and Tell User's Manual. Technical Report
WUCS-86-4, Department of Computer Science, Washington University, St.
Louis, March 1986.

4 Kimura, T.D., JW. Choi. and] M. Mack. A Visual Language for Keyboardless
Programming. Technical Report WUCS-86-6, Department of Computer
Science, Washington University, St. Louis, March 1986.

5 Davis, AL. and RM. Keller. Data Fiow Program Graphs. /&EF Compulter:
15:2 (26-41), February 1982.

6 Shneiderman, B. Direct Manipulation: A Step Beyond Programming
Languages. /AEF Computer, 16:8 (57-69), August 1983.

7 Kimura, T.D. Completion Problem and Its Solution for Context-Free
Languages (Algebraic Approach). Moore School Report 72-09, University of
Pennsylvania, Philadelphia, PA., May 1971.

8 Manna, 1. Mathematical Theory aof Computation. McGraw-Hill, New York,
1974.

49

	Determinacy of Hierarchical Dataflow Model
	Recommended Citation

	tmp.1463768645.pdf.SmWb_

