View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-42

1993

A Proposed Bus Arbitration Scheme for Multimedia Workstations

Saied Hosseini Khayat and Andreas D. Bovopoulos

The integration of video and audio into computers requires the support of continuous streams
at the hardware level. This paper proposes a bus bandwidth management and access
arbitration scheme for a multimedia workstation. It is assumed that a multimedia workstation
consists of several specialized processing modules which are linked by a packet-switched bus.
Using the proposed scheme, the bus can support a mix of real-time continuous media streams
and random transactions while fulfilling special requirements corresponding to each traffic type.
Specifically, the bus provides very fast response to random transactions and serves continuous
media streams in such a way... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Khayat, Saied Hosseini and Bovopoulos, Andreas D., "A Proposed Bus Arbitration Scheme for Multimedia
Workstations" Report Number: WUCS-93-42 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/537

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/537?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/537

A Proposed Bus Arbitration Scheme for Multimedia Workstations

Saied Hosseini Khayat and Andreas D. Bovopoulos

Complete Abstract:

The integration of video and audio into computers requires the support of continuous streams at the
hardware level. This paper proposes a bus bandwidth management and access arbitration scheme for a
multimedia workstation. It is assumed that a multimedia workstation consists of several specialized
processing modules which are linked by a packet-switched bus. Using the proposed scheme, the bus can
support a mix of real-time continuous media streams and random transactions while fulfilling special
requirements corresponding to each traffic type. Specifically, the bus provides very fast response to
random transactions and serves continuous media streams in such a way that no piece of data falls
behind its deadline. Furthermore, the performance with respect to continuous media traffic is maintained
independent of time variations of randomm traffic. Practical implementation guidelines are provided.
Finally, the performance of the proposed scheme is compared with other possible approaches.

https://openscholarship.wustl.edu/cse_research/537?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/537?utm_source=openscholarship.wustl.edu%2Fcse_research%2F537&utm_medium=PDF&utm_campaign=PDFCoverPages

A Proposed Bus Arbitration Scheme for
Multimedia Workstations

Saied Hosseini Khayat and Andreas D. Bovopoulos

WUCS-93-42

November 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

This work supported by the National Science Foundation, Ascom Timeplex, Bell
Communications Research, Bell Northern Research, Gold Star
Communications, Italtel SIT, NEC, NTT and SynOpfics.

A Proposed Bus Arbitration Scheme for
Multimedia Workstations *

Saied Hosseini Khayat and Andreas D. Bovopoulos
Computer and Communication Research Center
Washington University in St. Louis

WUCS-93-42
September 1993

Abstract

The integration of video and audio into computers requires the support of continuous
streams at the hardware level. This paper proposes a bus bandwidth management and
access arbitration scheme for a multimedia workstation. It is assumed that a multimedia
workstation consists of several specialized processing modules which are linked by a packet-
switched bus. Using the proposed scheme, the bus can support a mix of real-time continuous
media streams and random transactions while fulfilling special requirements corresponding
to each traffic type. Specifically, the bus provides very fast response to random transactions
and serves continuous media streams in such a way that no piece of data falls behind
its deadline. Furthermore, the performance with respect to continuous media traffic is
maintained independent of time variations of random traffic. Practical implementation
guidelines are provided. Finally, the performance of the proposed scheme is compared with
other possible approaches.

1. Introduction

The next generation of workstations will be capable of handling continuous media (real-
time digital audio and video) as well as conventional media (text, still image and numerical
data). Continuous media (CM) processing has special requirements among which is a huge
appetite for bandwidth, processing power, and storage. It has become clear that conven-
tional architectures cannot meet these requirements, mainly because of their centralized
organization, which leads to processing and transfer bottlenecks. Therefore it is necessary

*This work supported by the National Science Foundation, Ascom Timeplex, Bell Communications Re-
search, Bell Northern Research, Goldstar, Italtel SIT, NEC, NTT, and SynOptics.

to move to multiprocessing architectures which allow the distribution of workload among
task-specialized modules [7, 2, 6]. As depicted in Figure 1, processing modules should be
linked by a high speed multimedia interconnect. A broadband network (e.g. ATM Net-
work) can be accessed via one module functioning as the network interface, or if necessary,
via a hardware multiplexor/demultiplexor connected to those modules which need direct
link to the network. This paper focuses on the multimedia interconnect and its bandwidth
management.

Broadband Network

module module module module moduie
A B c

<~ V.1 7/

Multimedia Interconnect

Figure 1: General Organization of a Multimedia Workstation

Ideally, a multimedia interconnect shouid satisfy several requirements:

1. It should provide the bandwidth necessary for CM and random traffic.

2. It must provide very fast response to random transcations normally associated with
virtual memory page faults or cache coherence protocol (if there is a shared memory).

3. It must provide constant throughput for each CM stream. Desirably this should be in
the form of backlog-avoidance in the sense that the transfer of each block of CM data
must be completed before the next block arrives.

4. The performance with respect to CM streams should be de-coupled from the time
variations of the random traffic.

5. The bandwidth management and access arbitration scheme should be implementable
in very fast hardware.

6. The interconnect must be simple enough to be reliable and economical.

Currently there is no interconnect that fulfils these specifications. Most backplane buses
currently in use (Multibus II, VMEbus, NuBus, Sbus, etc.) fail to satisfy even the first
requirement. They cannot provide bandwidth beyond 100 MB/s [1], whereas a single stream
of full-motion video with image resolution of 1024 x 1280 pixels and 24-bit color and 30
frames/sec requires about 120 MB/s . Image compression schemes (e.g. JPEG, MPEG)
can reduce the rate by one or two orders of magnitude to alleviate remote transfer and
storage difficulties. However, the transfer of uncompressed video is necessary within the

computer. Using high speed interconnect—such as Apple’s QuickRing and Sun’s XDbus
with 350 MB/s and 320 MB/s respectively—is not a complete solution. Fulfilling the
other requirements mentioned above necessitates the introduction of innovative bandwidth
management schemes which are absent from today’s interconnects.

There are different candidate topologies for multimedia interconnect. This paper fo-
cuses on the bus topology. While the bus topology has certain drawbacks that make it
inappropriate for large-scale applications, it offers advantages that make it a viable solution
for small-scale purposes such as a workstation. A bus cannot support a large mumber of
bus masters firstly due to capacitive loading effects that limit its maximum operating fre-
quency and secondly because it is a shared medium whose throughput does not scale with
the number of bus masters. For small-scale applications such as multimedia workstations,
however, a bus offers acceptable throughput and speed at the lowest cost compared to other
tapologies.

The rest of this paper is organized as follows: Section 2 describes the underlying as-
sumptions of this work. Section 3 discusses the drawbacks of two possible schemes. In
section 4, first the proposed scheme is presented in detail, then two implementation meth-
ods are discussed, afterwards an example multimedia bus and traffic is described, and finally
simulation results are explained.

2. Assumptions

In this work a packet-switched bus is considered. This type of bus can support split trans-
actions [11] in the sense that a read operation is not atomic and is divided into a request
and a subsequent reply operation. Between a request and its corresponding reply, other bus
transactions are allowed to occur, thus improving bus utilization. It is assumed that all
packets are of the same size called cells, A cell has a header part containing the destina-
tion address and other identification information, as well as a payload part carrying data.
Therefore in a read operation, the request may be transferred as a single cell, while the
reply may consist of many cells.

Transmission of a cell is atomic and takes one time slot of the bus. During each time
slot, the bus master in the next time slot is determined. Thus arbitration totally overlaps
transmission, making back-to-back cell transmission possible.

Each hardware module may generate two types of cell traffic: random and periodic.
Periodic traffic occurs because of CM transactions (real-time video processing, playback,
etc.) between different modules and is relatively prolonged in time. Periods are normally
much longer than bus time slots. Every module is connected to the bus via a bus interface
unit (BIU). Each BIU has some cell buffer space . Once a module gains access to the bus,
it transmits one cell, releases it and starts another round of contention for another time
slot. The arbitration unit determines which BIU uses the bus at any time slot. In the next
sections a more detailed description of the BIU and the arbitration unit is provided.

Each continuous media stream is described by two parameters 7" and B, where T' is the
period and B is the maximum number of cells in a period. The CM source ¢ demands B;

MODULE
BIU

Tx Rx
Section Section

Packet Bus ;
< >

Figure 2: Bus-Module Interface

cells every T; time slots. Although B; and T} do not completely characterize the continuous
media stream, a complete characterization is unnecessary. Besides simplicity, the proposed
characterization has two advantages. First, it is flexible. For example, a video source may
select to send up to 1 MB every 1/30 second, 2 MB every 1/15 second, or even 1/10 MB
every 1/300 second. Second, the characterization is applicable for both compressed and
uncompressed video/audio.

3. Possible Approaches

This section discussees two possible arbitration schemes and identifies their strengths and
weaknesses. In Section 4 a superior scheme is presented and discussed.

The first approach, which we refer to as indiseriminate policy, is to treat all cells in the
same way. The buffer space in every BIU is arranged as a single FIFQ queue. CM cells and
random cells in each module are queued and served in their order of arrival. The contention
among different BIU’s is resolved by conventional arbitration schemes such as a daisy-chain
or a distributed contention resolution circuit [11].

This scheme has the advantage of simplicity, but it suffers from severe drawbacks with
.respect to the third and fourth requirements mentioned in Section 1. First, there is no
guarantee that CM cells are transferred within the time frame that they belong to. This
leads to cell loss from the point of view of the real-time application. Second, there is
no control on the ratio of lost to delivered CM celis because the user-initiated random
traffic is under no constraint. Users can generate momentary bus overloads that result in
unacceptable CM performance. It is possible to alleviate these problems by over-engineering
the bus bandwidth, however this would be an expensive solution considering the large
volume of expected CM traffic.

To preserve the time structure of CM streams it is necessary to discriminate between
CM and random traffic. One natural way is to give priority to CM cells over random cells.
A problem arises, however, when there are two or more independent CM streams. The time
structure of each stream cannot be preserved unless proper scheduling among streams is

enforced. The next policy and the proposed policy presented in the next Section address
the need for scheduling and priority. The cell buffer space of each BIU will be be divided
into two FIFO queues denoted by PQ and RQ for CM cells and random eells respectively.

The second approach is to give high priority to CM cells, thereby putting the random
traffic in the background and fuifilling the fourth requirement mentioned in Section 1. To
satisfy the third requirement the cells corresponding to each CM stream are dispersed in
time. This allows the CM streams to get through without greatly disturbing one another.
Specifically, source j in module 4, described by (77, B), is allowed to place in buffer PQ;
upto one cell every N} time slots, where Bi/T} < 1 /N}and 5 ;1/Ni < 1. A static priority
scheme such as a daisy-chain is used to resolves the contention among PQ’s for the bus. If
they are all empty, the RQ buffers containing random cells are served. A second daisy-chain
arbitration sheme can be used for contention resolution among RQ’s.

The main drawback of this approach, which will be later referred to as the dispersion
policy, concerns the second requirement stated in Section 1. Random cells, as shown in
simmulation results in Section 4.4, suffer from long delays especially when CM traffic load is
significant. This is accounted for by the fact that random cells are served in the background
with respect to CM cells. Another weakness of this approach is that the cell loss, i.e. the
transfer of cells after their deadlines, is not eliminated and in fact it tends to happen
periodically becuase of the contention of periodic streams,

The scheme proposed in the next section avoids these drawbacks.

4. Proposed Solution

4.1. Cyclic Dynamic Priority Policy

The essence of this policy is to put CM traffic in the background as long as a backlog does
not occur. This way backlog-avoidance as well as minimal delay of random cells and efficient
utilization of bandwidth is achieved.

The bus periodically repeats service cycles, each of which is N time slots in duration. A
hardware unit called the bus arbiter (BA) executes a service algorithm during each service
cycle. N is a system parameter-—typically in the range of 10 to 100--chosen to optimize
performance.

The idea is to spread all CM streams in time almost evenly and to serve them in such
a way that a series of shortly-spaced deadlines, which are separated by N time slots, are
met by each stream. If a certain condition (presented later) is satisfied, it is shown that
all streams will achieve backlog-avoidance in the sense that every CM cell will get through
within its'time frame. In the meantime, during each service cycle, CM cells are delayed in
favor of random cells as long as they can be sent before their short deadline.

Suppose that there are J modules connected to the bus, there are K; active continuous
media streams that originate from module 4, and stream 7 in module ¢ has demand (T}, B2),
J=1,2,..., K; . There is a software module called the bus manager (BM) which assigns a

number M to the CM stream described by (7%, BY) . M} denotes the number of time slots
reserved for this stream in every cycle and is the smallest integer satisfying the following
condition: ; ;
Eigﬁﬁ. (1)
L=WN
Each module has two FIFO queues in its BIU for outgoing cells. One, denoted by PQ
(periodic queue), is dedicated to CM cells, and the other, denoted by RQ (random queue),
holds random cells. In every service cycle, module i puts up to Zﬁ} M; cells into PQ;,
M; of which are out of the 5 stream. The goal is to drain every PQ before the next service
cycle starts. This and the backlog-avoidance condition that comes later ensure that for each
source at least B} CM cells get the chance of transmission every T} time slots. Random
cells generated by module ¢ are buffered in RQ; as they arrive. The goal is to serve all RQ’s
as soon as possible without violating the former goal. Note that when an RQ becomes full,
it does not lead to cell loss, but it results in a suspension of the processes which fill that
queue. The bus manager compiites

J K;

eE Y S M. (2)

i=1 =1

where () is the number of time slots in a service cycle reserved for all CM streams and is
updated when a CM session is admitted or terminated. Admission or rejection is done by
the bus manager using this number and an admission rule that is presented later. Every
time @ is updated, it is written into a special register in the bus arbiter. The bus arbiter
continually executes the following service algorithm:

procedure service{ N, ()
while 1 =1 do

n= N;
=0,
while n > 0 do
if n > g then
if some RQ; non-empty then
serve one cell from a non-empty RQy;
else
if some PQ; non-empiy then
serve one cell from a non-empty PQi;
geg—1;
fi
f
else
if some PQ; non-empty then
serve one cell from a non-emply PQ;;
geg=-1;
else
if some RQ; non-empty then
serve one cell from a non-empty RQ;;
fi
fi
fi

O A

od
od
endprocedure

It is seen that, given @ < N, the cycle time is divided into two intervals. The first is
the interval during which ¢ < n . In this interval priority is given to random traffic, and if
all random queues (RQ’s) are empty, the bus is granted to CM traffic. Note that in any case
n is decremented by one at any time slot. The second interval starts when g =n . (Note
that ¢ >n denotes a faulty condition that should not logically occur.) In this interval CM
traffic gains high priority, and, in case there is no CM cell in any periodic queue (PQ’s),
random cells get service. This case may occur due to random fluctuations of CM traffic or
slight over-allocations of bandwidth. It is interesting to note that the boundary between
the two intervals is pushed toward the end of the cycle as CM cells are served in the first
interval. For moderate amounts of CM and random load, CM traffic is almost transparent
to random traffic. Therefore random cells suffer delay only due to the share of random traffic
in the total load. This is an enormous improvement over the previous schemes. On the
other hand, performance with respect to CM traffic is completely independent of random
traffic because a sufficient number of time slots is reserved for CM traffic in every cycle. It
is shown later that a mild condition on the demands of CM streams will result in a perfect
backlog-avoidance.

Admission Rule — Admission of new continuous media sessions is the job of the bus
manager, which is a software process. A request for a new CM session is done by sending
the new demand (Tyew, Brew) t0 the bus manager. The bus manager computes My, using
(1) and admits the session if the following condition holds:

Mpew <N —a— Qcm‘rent 3 (3)

where Qeyrrent is the total number of time slots in a cycle reserved for currently admitted
CM streams using (2) and o denotes the number of time slots reserved for random traffic.
This number is set by the super-user and prevents the response time of the system from
degrading to unacceptable limits.

Backlog-avoidance Condition — Backlog-avoidance for a CM source with demand
(T, B) can be achieved if the source can actually send at least B cells in every period T.
This allows loss-free transmission of the stream with no more than 2B cells of memory
space. Backlog-avoidance is ensured if

BsM([%]—z),)

where N is the bus service cycle and M is found using (1). Given that N < 7T, condition
(4) is based on the fact that for any choice of T and N, there are at least [T/N]—2 intervals
of length N totally overlapped by an interval of length 7. When N <« T —usually true
in practice—this condition is not very restrictive because it is very close to condition (1),
which is already satisfied. Another way to secure backlog-avoidance is to choose T and N
such that T is an integral multiple of N and make source periods run in synchronization

with bus service cycles. This requirement is not hard to fulfil in practice. For example, if a
bus service cycle is 10 s, the continuous media application should choose its transmission
period to be a multiple of 10 us, which is not a major restriction.

If backlog-avoidance condition is ignored, then there is a possibility that at most 204
cells occasionally miss their deadlines. This may be still a reasonable performance for some
applications because cells loss is upper-bounded by a known value.

Choice of Parameters — There are two parameters to be chosen, N and T. N is
a system parameter under control of the super-user, and T is an application parameter
selected by the user. For best results, their values should be chosen far apart.

Qualitatively speaking, for a fixed random and CM load, increasing the cycle time N
increases the room for delay of CM cells in favor of random cells and helps CM traffic be
absorbed in the background , thus reducing the delay of random traffic. It helps to imagine
that N is infinitely large. This implies that all CM cells can be delayed forever; in this
case obviously random cells will see no CM traffic and only experience the delay due to
their own traffic. This is an extreme case which is not possible because CM cells have finite
deadline. NV can be at most equal to the smallest 7. On the other hand, increasing N
implies increasing all M’s, which results in increased buffer space in the BIU’s. Therefore
delay is traded against buffer space. Another implication of large N is the difficulty to fulfil
the backlog-avoidance condition and the larger number of lost cells when that condition is
not met. '

The choice of T' has a similar effect as the choice of N. For example, for a given random
and CM load, suppose that all 7°s are doubled. N can also be doubled as a consequence,
resulting in improved delay performance for random cells. On the other hand, to keep the
CM loads fixed, all B’s must be doubled, resulting in an increased memory requirement.

B can also be a parameter of choice in some applications. In the case of uncompressed
video/audio, a fixed number of cells £ is generated in every frame, and B is normally set
equal to 8. For example, a high quality video may need § = 10000 cells every 1/70 sec.
One may choose to have the best quality, in which case B is equal to 3, or may settle for a
lower quality by setting B = 5000 in order to reduce memory usage and also to increase the
chance of the stream being accepted by the system. For a compressed video/audio stream,
however, the number of cells generated per frame is a random variable with an upper bound
B. B may be chosen to equal £, ensuring that quality is not lost, or it may be set to a value
slightly lower than 8 , sacrificing some quality only occasionally. It may also be possible to
take advantage of statistical pooling in the sense that all compressed CM sources set their
B slightly lower their 5 values and share a pool of time slots equal to the sum of their M’s.
This allows more sessions to be admitted and less memory to be consumed, but the cost is
additional complexity.

4.2. Implementation

The service algorithm can be realized with simple and fast hardware, thus fulfilling the fifth
and sixth requirements mentioned in Section 1. For any module, there is one BIU connected

to the bus (Figure 3). Assuming every module can be a sender of real-time video/audio,
each BIU has two cell queues, RQ (random queue) and PQ (periodic queue), either of which
can have cells fo transmit at any time slot.

PBGR{ PO RQ |RBGR

— [t——
PBRQ g Q RBRQ
- E

Figure 3: Transmit Section of a BIU

The bus arbiter should grant the bus to only one queue during any time slot according
the service algorithm. There are two signal lines associated with every queue. BRQ (bus
request) is an output signal which is active (low) when the queue is non-empty. BGR (bus
grant) is an input signal issued by the arbiter and is active (low) when bus is granted. When
BGR becomes active for a queue, BIU drains that queue by one cell, which is sent in the
next time slot. BRG and BGR have a prefix R (P} to show they are related to an RQ (PQ).
The bus arbiter has two registers N and Q initially loaded by the bus manager, as well
as two counters n and ¢. At the end of every cycle n and ¢ are re-loaded from N and @
respectively. There are two methods of implementation.

Serial Implementation — The bus arbiter and BIU’s each have two input signals RGT
and PGI (GI for grant in) and two output signals RGD and PGO (GO for grant out). A daisy
chain is formed as in Figure 4.

PGI _ . _ PGO
rai | BIU BIU BIU BIU | oo
RGO __ RGI
PGO BA PGl

Figure 4: Serial Implementation (Double Daisy-chain)

Every BIU uses the following logic with respect to each of its queues.
G0 = GIV BRQ

BGR = GI V BRQ

The BIU blocks a RGI (PGI) signal from passing on to the next BIU, if its RQ (PQ) has a
cell to send. In every time slot, the bus arbiter executes the following logic:

10

if n > ¢ then
activate RGO;
wait for signal to ripple through;
if RGI aciive then
activate PGO;
wail for signal to ripple through;
if PGI inactive then
g+=g—1;
fi
i
else
activete PGO;
wait for signal to ripple through;
if PGI inactive then

géeg—1;
else
activate RGD;
fi
fi
ne—n—1;

This logic, being trivial to realize, works properly if a time slot is longer than two
complete ripple-through times for grant signals. This sets a lower bound on the length of
a time slot for a given number of modules—or equivalently an upper bound on the number
of modules for a given time slot. If other considerations dictate a shorter time slot, parallel
implementation must be chosen.

Paralle]l Implementation — This implementation requires that all RBRQ and PBRQ lines
be the input to the bus arbiter (Figure 5). A combinational logic circuit is used to gencrate
all RBGR, PBGR signals in parallel.

BIU BIU BIU BIU |

AR AA AA AA

RBRQ RBGR
PBRQ PBGR
Yy Yy Yy YY

Parallel Arbiter

Figure 5: Parallel Implementation

This can be done in different ways. One realization is the following: The bus arbiter
has three sub-units, I, IT and III (Figure 6). Sub-units I and IT are identical. Each consists
of a priority encoder cascaded by a binary decoder. All RBRQ lines (PBRQ lines) are input
to sub-unit I (II). A binary code corresponding to the active line with highest priority is
generated at the output of priority encoder, which is the input to a binary decoder. The

11

Sub-unit T ;

2110—5—-} PO | lyd Decoder RBGR's
Encoder
" Sub-unit
ENRQ HI
PBGR's
PBRQ's Priarity PBGR’s
-' Enceder |, B Decadee
Sub-unit It

Figure 6: A Parallel Arbiter

outputs of the decoder correspond to BGR lines with only a single active line corresponding
to the highest priority input. Another output RNRG (PNRQ)-—NRQ for no request—is also
generated , which becomes active when there is no active BRQ. Sub-unit III, which contains
two registers IV and @ and two counters n and g, takes RNRQ and PNRQ inputs and generates
two outputs based on the following logic. The outputs select one set of BGR lines generated
by sub-unit I or II to appear at the.output of bus arbiter and de-select the other set.

if n > ¢ then
if BNRQ inactive then
select sub-unit I ;
de-select sub-unit IT;

else
if PNRQ tnactive then
select sub-unit IT,
de-select sub-unit I,
g—g—1;
fi
fi
else

if PNR inactive then
select sub-unit IT;

de-select sub-unit I';

12

géeg—1;
else
select sub-unit I
de-select sub-unit I
fi
fi
n+—n—1;

Even a faster realization is possible if the above logic is totally built as a single two-level
combinational logic circuit.

4.3. Application Example

First, a packet bus is described which serves both as a example of a high performance
multimedia bus and as a model used in our simulations.

Multimedia Bus ~ This bus *, initially inspired by Sun’s XDbus, has a 64-bit useful
data path operating at 40 MHz. A bus clock cycle is 25 ns in which 8 bytes of data can be
transferred. For the sake of efficiency there are two types of packet: request and reply. A
request packet is of fixed size of 16 bytes, while a reply packet is 128 -+ 8 bytes, 8 bytes of
which is-header.

‘The bus is logically divided into two separate buses, A-bus and B-bus. A-bus, being
64 + 4 bits wide, is dedicated to reply packets. Data is carried over 64 lines, and header is
carried at the same time over 4 dedicated lines. Thus the time overhead associated with
headers is eliminated at the cost of 4 additional lines. B-bus is only 8 bits wide and carries
only request packets. The above choices make it possible to transfer 128 bytes of useful
data every 400 ns. Also note that it takes equal time to transfer a request or a reply and
this can be done concurrently. Therefore a useful bandwidth of 320 Mbytes/sec is provided,
fulfilling the first requirement of a multimedia interconnect.

Arbitration for B-bus is done using conventional schemes because requests are generated
at random. CM traffic is absent from B-bus because it is reservation-based in contrast to
request-reply-based. However A-bus carries a mix of random and CM traffic, and arbitration
is done using the scheme proposed here. With 400 ns slot time, both serial and parallel
arbiters work properly.

Example Traffic — Suppose, as an example, that there are 10 modules interconnected
by the above multimedia bus.

e Module A B : Processing units
e Module C,D : Image processing units

e Module E : Shared memory

*If advantageous, one may design a bus based on standard ATM cells in order to make the interconnect
conformable to ATM networks.

13

e Module F : Monitor & keyboard

e Module G : High speed network interface

Module H : Video storage unit

Module I : Data storage unit

Module J : Video camera unit

Assume the following scenario. There are two compressed video streams arriving at module
G from the network. One stream is destined for module H. The second stream goes to mod-
ule C, for say image decompression and enhancement, and then goes to module F. Another
compressed video stream comes out of module J headed for module G to go to a remote
user and is simultaneously received by module F' to be displayed. Suppose the demand of
each compressed video is (250000,4608). This means that each stream is guaranteed to use
4608 time slots every 0.1 second, which corresponds to about 6MB/s. This is equivalent
to a video image of resolution 1024 x 1280 and 24 bits/pixel with an average compression
ratio of 1/20. Choosing a 0.1 second period allows for the time variation of the stream
to be smoothed out. The demand of decompressed video stream is (250000, 92160), which
corresponds to 92160 cells every 0.1 second, or about 118 MB/s. There will be 4 streams
to be transferred over the bus, 3 compressed and 1 uncompressed video.

Let the bus service cycle be 50 . Applying condition (1) yields
Mcompressed =1

Muncompressed =19

‘Therefore module F is allowed to use 2 time slots (for two streams), module C 19 slots, and
module J 1 slot every bus service ¢ycle. Overall there are 22 time slots reserved for CM
streams (Q = 22) . It is easily checked that condition (4) already holds. Thus at most %44
of the bandwidth is used up by continuous media, the rest is for random traffic. Random
traffic mainly arises due to virtual memory page faults, shared memory usage, data and
control messages passed between modules, and non-CM network activities such as image
retrieval, remote transfer of position of a pointer in tele-presentation, or multimedia email.

4.4, Simulaﬁon Results

Simulation was done as an attempt to visualize the performance of the proposed scheme as
well as candidate schemes. Throughout this study a Bernoulli trial model was adopted to
simulate the arrival of random cells, in which module j generates at any time slot a random
cell with probability p;. This model is not realistic, but it served as a common reference -
input to different schemes in order to make the performance comparison possible.

CM traffic was chosen to be deterministic and resembled closely those streams described
above, with the exception that compressed video streams generate at every period a fixed

14

number of cells equal to their maximum demand. This is an extreme case, and the results
should be interpreted as worst case. The following definitions have been used throughout:

CM load = > Bi/T:,

all streams

Random load = Z Dj -

all modules
The only performance criterion under consideration has been the delay of random cells.
Another performance criterion could be the loss (i.e. after-deadline transfer) of CM cells,
but since the condition (4) was satisfied by every CM stream, CM loss could not occur and
was not considered. :

A comparison of the indiscriminate policy, the dispersion policy and the cyclic dynamic
policy is shown in Figures 7 ,8 and 9. Figures 7 and 8 show the mean and standard deviation
of delay of random cells for a fixed value of CM load at 0.5 . It is seen that delay is the
lowest for the cyclic dynamic priority policy (with service cycle N equal to 40 } especially
at heavy random traffic. Figure 9 is a histogram comparing the distribution of delay for
the three schemes when random load is fixed at 0.5 and cycle N fixed at 20. Performance
of cyclic dynamic priority is shown in the next three figures. Figure 10 is the histogram of
delay for a fixed N = 40 and different random loads. Figure 11 plots mean delay versus
service cycle N with random load as parameter. CM load is fixed at 0.5 for these plots.
It is shown that increasing /V decreases the delay of random traffic. Figure 12 shows the
mean delay in the presence and absence of CM traffic. It is seen that in the absence of CM
traffic, the mean delay is a constant independent of N, and when CM traffic is present, as
N is increased, the mean delay asymptotically approaches the value of the mean delay in
the absence of CM traffic. This can be interpreted as the absorption of CM traffic in the
background. It is seen that in the above example, the service cycle N may be chosen equal
to 60 in order to achieve the best performance.

5. Conclusion

‘This paper proposed an arbitration scheme for a packet-switched bus that allows a mix of
continuous media stream and random transactions to be supported on the bus., The scheme
offers perfect service of continuous media streams in the sense that no piece of data is sent
after its associated deadline, and it provides almost minimal delay for random packets by
effectively putting the continuous media traffic in the background. Implementation of this
scheme was also shown to be practical and simple.

Acknowledgement — The authors have enjoyed fruitful discussions with Dr. Jonathan
S. Turner, H. Saidi and R. Gopalakrishnan.

References

[1] Borrill, P.L., “32-bit buses—An objective comparison,” Proc. Buscon 1986 West, San
Jose, California.

15

[2] Bovopoulos, Andreas D., Gopalakrishnan, R., and Hosseini Khayat S., “SYMPHONY:
A Hardware, Operating System, and Protocol Processing Architecture for Distibuted
Multimedia Applications,” Technical Report WUCS-93-06, March 1993.

[3] Cole, Bernard, “The Technology Framework,” IEEE Spectrum, March 1993.
[4] Cram, R.M., “Microcomputer Busses,” Academic Press Inc., 1991.

[5] Giacomo, Joseph Di, “Digital Bus Handbook,” MacGraw-Hill, 1990.

[6]

6] Gopalakrishnan, R. and Bovopoulos, A. D., A Protocol Processing Architecture for
Networked Multimedia Computers,” Operating Systems Review, Vol. 27, No. 3, July
1993.

[7] Hayter, M.,and McAuley, D., “The Desk Area Network,” Operating Sytems Review,
October 1991.

[8] Lyle, James D., “SBus, Information, Applications and Experience,” Springer-Verlag,
New York Inc., 1992,

[9] Patterson, David A., Hennessy, John L., “Computer Architecture, A Quantitative
Approach,” Morgan Kaufmann Publishers, Inc., 1990

[10] “SPARCcenter 2000, Architecture and Implementation,” Sun Microsystems, Inc., Tech-
nical white paper, Draft Edition of 11/18/92.

[11] Ward, Stephen A., Halstead, Robert H., “Computation Structures,” The MIT Press,
1990. .

20. . — . ,

G—(-)Cycl:c Dynamtc Priority Policy (N=40)
D:;\;persmn Policy
& Indiseriminate Policy

—
o
T

(CM load 0.5}

Mean Delay (time slots)
o

o
T

0.0 0.1 02 03 04 0.5
Total Random Load

Figure 7: Comparison of Mean Delay for Different Schemes

150. . 1 . . - T : |
O—& Cyelic Dynamic Priority (N=40) .
1 G0 Dispersion Policy E
A—Alndiscriminate Policy
100. (CM Ioad 0.5) i

U1
©

Standard Deviation of Delay (ti'me slots)

0.0

Total Random Load

Figure 8: Comparison of Standard Deviation of Delay for Different Schemes

16

17

Cyclic Dynamic Priority (N=20)

Dispersion Policy

Indiscriminate Policy
(CM load 0.5)

o
X4
"

R

b
S
"%

T o T e e OSSN e
e 0..040#000'00‘0".0‘0‘.0"0000’0‘00000’0000.. 2

vy

0 50 60 7.0 80 90 100

bbbbbbbbbbbbbbbbbbbbbbb

100.

afeuaolod

Delay (time slots)

Figure 9: Distribution of Delay for Different Schemes

i F|]
<
M~
ik BT
SO o~ o
e .
aa..m..m ..m o]
2322 §
5558 =
[ERT O o
S85588 < 10
SEes % :
RN
“INEa

. 4.0
Delay {lime slots)

XX R X X]

T
000‘0!00'00‘040004'#0000_

Figure 10: Distribution of Delay for the Proposed Scheme

afiejuaoiag

Mean Delay {time slots)

Mean Delay (time slots)

40.

€3]
e
T

[x%)
©
T

Cyclic Dynamic Priority

o—=o random load 0.1
wt—a random load 0.2
&—A random Ioad 0.3
& random load 0.4

(CM load 0.5)

3.0

2.5

2.0

1.5

1.0

30. 50. 70.
Service Cycle N (time slots)

Figure 11: Mean Delay for the Proposed Scheme

T t T T T T

Cyclic Dynamic Priority
c—o Random load 0.4, CM load 0.2
—— Random load 0.4, CM load ¢

O Random load 0.5, CM load 0.2
Random load 0.5, CM load 0

(CM load 0.4)

50 100
Service Cycle N (fime slots)

Figure 12: Mean Delay for the Proposed Scheme

150

13

	A Proposed Bus Arbitration Scheme for Multimedia Workstations
	Recommended Citation
	A Proposed Bus Arbitration Scheme for Multimedia Workstations

	tmp.1453823647.pdf.H2KPZ

