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Abstract

Context-aware mobile applications require constant
adaptation to their changing environments. Technolog-
ical advancements have increased the pervasiveness of
mobile computing devices such as laptops, handhelds,
cellular phones, and embedded sensors. The sheer
amount of context information necessary for adapta-
tion places a heightened burden on application devel-
opers as they must manage and utilize vast amounts
of data from diverse sources. Facilitating programming
in this data-rich environment requires an infrastructure
for sensing, collecting, and providing context informa-
tion to applications. In this paper, we demonstrate the
feasibility of providing such an infrastructure. It allows
programmers to focus on high-level interactions among
programs and to employ declarative abstract specifica-
tions of context in settings that exhibit high levels of
mobility and transient interactions with opportunisti-
cally encountered components. We also discuss the
novel context-aware abstractions we implemented and
the programming knowledge necessary to write applica-
tions using our middleware. Finally, we provide exam-
ples that demonstrate the flexibility of the infrastructure
and its ability to support a variety of applications.

1 Introduction

Traditionally, context-aware computing refers to an
application’s ability to adapt to changes in its environ-
ment. For example, calendar or reminder programs [4]
use time to display pertinent notifications to users.
Tour guide applications [1, 3] display different infor-
mation based on the user’s current physical location
or proximity to an attraction. Still other programs

implicitly attach context information to data, for ex-
ample to research notes taken in the field [10]. Each of
these applications must independently gather context
information from the required sensors and tailor the
provision of context to its needs.

With the increasing popularity of communicating
mobile devices, context-aware computing has moved
from a target environment of an autonomous device
gathering information single-handedly to a sophisti-
cated network of connected devices, all providing con-
text information to each other. A key difference be-
tween our approach and previous work lies in our ex-
tension of context to include not only sensor informa-
tion but arbitrary data resources in the surrounding
physical neighborhood. This supports development of
powerful context-aware applications that allow com-
plex device interactions. In this environment, an appli-
cation’s behavior may depend on information collected
from hosts several hops away.

Given this expanded context, the range of appli-
cations a developer can provide multiplies to include
applications that utilize high-level component coordi-
nation. For example, an application monitoring traffic
conditions on a highway can collect traffic observations
from cars in its direction of travel. This information is
displayed to the driver, and it can also help the driver
plan an alternate route. As another example, a set
of robots exploring the surface of a planet might each
be assigned an experimental task. The robots carry
different sets of sensors that provide varying types of
information. A single robot on the planet might uti-
lize sensor information from other robots, selected in a
context-sensitive manner.

Potential applications in many domains abound, but
the difficulty of programming these applications lies in
the need to manage large amounts of distributed and
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transiently available context data. This challenge mo-
tivated us to develop an infrastructure that facilitates
program development by hiding the details associated
with mobility, distribution, and transient connectivity.
We provide an application developer only that which is
necessary for him to successfully operate on his needed
context. Specifically, our middleware, EgoSpaces, al-
lows applications to define individualized contexts tai-
lored to their needs. An application may define differ-
ent contexts that reflect diverse concurrent and chang-
ing needs and which encompass varying data from mul-
tiple sources. Each of these contexts may access a wide
range of data, and EgoSpaces manages this informa-
tion for the application. This relieves the programmer
from having to open sockets between the communi-
cating parties and manage the network disconnections
common in mobile environments. The middleware’s
communication and management primitives facilitate
rapid development of context-aware applications.

This paper presents the design, implementation, and
use of an infrastructure based on the EgoSpaces model
of asymmetric coordination. Section 2 briefly reviews
the coordination model, highlighting how it manages
sophisticated contexts. Section 3 details the mechanics
of using the infrastructure to program context-aware
applications. Section 4, describes sample applications,
show how they rely on the infrastructure, and discuss
lessons learned in their development. In Section 5, we
present the middleware’s design and implementation
which focuses on modularity to allow reuse of compo-
nents as necessary. Section 6 provides conclusions.

2 EgoSpaces Model Overview

In our computing model, hosts can move in physical
space, and applications are structured as a community
of logically mobile agents that can move among these
hosts. Agents can communicate among themselves and
move among hosts when the hosts involved can phys-
ically communicate. Software agents control pieces of
data they share with other agents to foster coordina-
tion. Data items can hold application information or
data generated by environmental sensors.

The EgoSpaces model [6] uses asymmetric coordi-
nation to gather and utilize context information in an
ad hoc mobile environment, i.e., each agent filters the
world around it through its own unique and changing
perspectives. The amount of context information ulti-
mately available to an application may span a large
network; this generates an overwhelming amount of
data for the application to manage. EgoSpaces allows
an individual application agent to precisely specify the
context necessary for completing its tasks, and the in-

frastructure provides this context for the application.
As the environment changes, the set of data satisfying
the application’s specification also changes, and the in-
frastructure adapts accordingly. Throughout this pa-
per, we use the term reference agent to refer to the
particular agent whose context we are discussing.

2.1 The View Concept

To provide scalable coordination in an ad hoc net-
work, EgoSpaces relies on a key abstraction called a
view. This concept is agent-centric because a reference
agent defines views with respect to its individual needs
for resources from and knowledge about its environ-
ment. In principle, a reference agent’s context consists
of all information available in the network. In practice,
however, the reference agent’s behavior generally relies
only on information available in a region surrounding
its location. An agent sees the world through a set
of personalized views that it may altered at will. The
software engineering gains of the view abstraction stem
directly from the level of flexibility and simplicity it of-
fers application developers.

Each view presents a projection of all data avail-
able to the reference agent. The unique properties
of ad hoc mobile networks force context restriction
based on attributes of the hosts and links in the net-
work. EgoSpaces combines these network and host con-
straints with restrictions on the data and agents that
own the data. An agent describes its personal needs
through a declarative view specification. An example
view specification is:

Traffic information (reference to data) col-
lected by traffic monitoring agents (reference
to agents) on cars (reference to hosts) within
100 meters in front of my current position
(network restriction).

Network Constraints. To restrict the scope of the
network, the application specifies an abstract metric
over network properties. This metric calculates a log-
ical distance from the reference host to other network
hosts. The application also provides a bound over al-
lowable distances which restricts which hosts belong to
the neighborhood. The specific needs of this restriction
and a protocol for providing it are detailed in [9].

Host and Agent Constraints. Host and agent
constraints allow an application to restrict a view’s
data based on properties of the hosts and agents that
hold the data. In EgoSpaces, every host and agent
has a profile describing its properties. Host proper-
ties include, for example, the unique host id, the iden-
tity of the computer’s owner, or services the computer
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provides. Agent properties include the agent’s oper-
ating host or the agent’s application task. To restrict
which hosts and agents contribute to its view, a refer-
ence agent provides constraints over profile properties.

Data Constraints. The data constraints allow a
reference agent to restrict the individual data items in
the view. Applications can associate “meta-data” with
each data object that describes the data or its intended
use. The data constraints can then operate over this
meta-data to restrict view membership.

Access Controls. In EgoSpaces, each agent spec-
ifies an individualized function that limits the ability
of other agents to access its local data. From the op-
posite direction, when an agent specifies a view, it at-
taches to the view a set of credentials that verify it to
other agents. The specifying agent also declares the
operations it intends to perform on the view. When
determining the contents of a view, EgoSpaces evalu-
ates each contributing agent’s access control function
over the view’s credentials and operations. The access
control function is evaluated for each individual tuple,
which provides a fine level of granularity.

Given these components, a view specification con-
sists of three patterns (one over data items, one over
agent profiles, and one over host profiles), the network
constraints (consisting of a metric for network path
costs and a bound on the metric), and an operation list
and credentials that allow provision of access controls.
With this information, our middleware constructs the
application’s desired view. Next, we discuss our use of
tuple space based coordination. In the end, a reference
agent’s view consists of the set of tuples (data items)
that satisfy the above constraints.

2.2 Tuple Space Based Coordination

In Linda [5], distributed processes use a shared tuple
space to share data items, or tuples. A tuple is a list
of typed fields. As discussed below, EgoSpaces extends
this definition to provide more flexible coordination.

In Linda, coordinating processes interact directly
with a single, centralized tuple space. Adaptations of
Linda divide this tuple space to accommodate mobil-
ity of hosts and disconnected operation. MARS [2]
associates a tuple space with each host in the network
and allows coordination among co-located application
agents. Lime [8] associates a tuple space with each
agent, and the tuple space moves with the agent. In
this model, the tuple space an application operates on
is defined as the instantaneous union of all tuple spaces
within communication range. EgoSpaces also asso-
ciates tuple spaces with individual application agents
because it flexibly supports both physical host mobility

and logical agent mobility.
Processes place tuples in the tuple space using

out(t) operations. Data access occurs in a content
based manner by matching a tuple against a pattern,
or template, constraining the values of the fields in the
tuple. To provide a more flexible pattern matching
mechanism, we assume a more general tuple definition.

Tuple Definition and Pattern Matching. In
EgoSpaces, a tuple is an unordered set of fields, each
consisting of a name, type, and value. Tuple field
names must be unique; a tuple can have only one field
of a given name. The use of this name field allows us
to relax restrictions on tuple pattern matching.

In Linda, patterns must be the same length as the
tuple, and the fields of the tuple and pattern are
matched according to their order. We extend pattern
matching to maintain content based matching but op-
erate over unordered tuples. A pattern is similar to
a tuple, but each field’s value is replaced with a con-
straint that restricts the field’s value. A tuple matches
a pattern if, for every constraint in the pattern, there
exists a field in the tuple with the same name and type.
The value of the field must also satisfy the correspond-
ing constraint function. While the matching mecha-
nism does require that every constraint in the pattern
is satisfied, it does not require that every field in the
tuple is constrained, i.e., a tuple must contain exactly
the fields in the pattern, but the tuple can contain ad-
ditional fields.

2.3 View Operations

A view is the set of tuples that satisfy the refer-
ence agent’s restrictions. Agents use operations similar
to Linda tuple space operations. EgoSpaces preserves
Linda’s atomic blocking operations, rd(p) and in(p),
which provide a pattern a matching tuple must satisfy.
The operations do not return until a tuple in the view
matches the pattern. When a match exists, both oper-
ations return the matching tuple, and an in operation
also deletes the tuple from the tuple space. The atom-
icity of these operations guarantees that, if a matching
tuple exists in the view, it will be found and returned.

Extensions to Linda provide atomic probing opera-
tions, rdp(p) and inp(p) that carry the same atomicity
guarantees as the original operations but return imme-
diately instead of blocking. If no tuple in the view
immediately matches, an empty value is returned.

Other Linda extensions utilize aggregate operations
that return all matching tuples. EgoSpaces provides
these operations in both blocking (rdg(p) and ing(p))
and probing (rdgp(p) and ingp(p)) forms.

Finally, in the dynamic ad hoc environment, atomic
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operations are often costly to provide. While some ap-
plications (e.g., those involving money transfer) require
strong guarantees, other applications can take advan-
tage of or even benefit from operations with weaker
guarantees. In EgoSpaces, scattered probing oper-
ations provide this style of context interaction with
best-effort semantics. EgoSpaces provides both single
(rdsp(p) and insp(p)) and group (rdgsp(p) and in-
gsp)p)) scattered probing operations.

Formal semantic definitions for all of these view op-
erations can be found in [6]. Additional programming
constructs such as reactive programming and behav-
ioral extensions are also available in EgoSpaces; they
are not detailed in this paper.

3 Rapid Development Potential

EgoSpaces reduces programming context-aware mo-
bile applications to simple operations tailored to the
capabilities of novice programmers. The middleware
provides all network communication programming and
presents the programmer with a high-level agent co-
ordination interface. In this section, we show how
EgoSpaces’s programming abstractions ease program-
ming by simplifying the programming interfaces while
retaining the necessary power of coordination.

EgoSpaces uses the software agent as the unit of
modularity and mobility. To use the EgoSpaces ab-
stractions, an application extends the Agent class,
which allows the application access to the view speci-
fication mechanics and communication capabilities.

Agent Extension. Figure 1 shows the interface
for the abstract Agent class. An application’s agent
inherits three key fields: the unique AgentID, the
AgentProfile, and the AccessControlFunction. The
AgentID is not modifiable by the extending class, and
its initialization guarantees its uniqueness.

public abstract class Agent {
protected final AgentID aID;

protected AgentProfile profile;

protected AccessControlFunction acf;

public Agent();

public AgentProfile getProfile();

protected final void register();

protected final void out(ETuple tuple);

}

Figure 1. The API for the Agent class

An agent’s provision of a profile fosters more pow-
erful coordination by allowing other agents to include
or exclude the agent from coordination based on its
properties. Initially, the AgentProfile contains two

fields named “Agent ID” and “Host ID” that contain
the AgentID and the id of the agent’s host. EgoSpaces
represents profiles as tuples, so a field in a profile con-
sists of a name, type, and value. The field types can
be determined at runtime, therefore an agent need only
specify the field’s name and value. An agent can use
the three methods shown as part of the AgentProfile
interface in Figure 2 to modify its profile’s contents.

public class AgentProfile {
public void addProperty(String name,

Serializable value);

public void removeProperty(String name);

public void modifyProperty(String name,

Serializable newValue);

}

Figure 2. The API for the AgentProfile class

An application agent also inherits the Agent’s
AccessControlFunction. The default function grants
all access requests. Agents can personalize this func-
tion to exercise access control over their data by ex-
tending the AccessControlFunction and overriding
the evaluate method. This function evaluates incom-
ing access requests based on the credentials provided by
the reference agent, the view the request comes from,
and the particular tuple being accessed.

In extending the Agent base class, the application
agent receives two methods. The first method regis-
ters the Agent with the EgoManager, a component de-
scribed in more detail in Section 5. By registering with
the EgoManager, an application agent delegates respon-
sibility for data management and communication. This
also facilitates agent migration among hosts, which we
will discuss later.

The second Agent method allows agents to create
tuples by calling the out method on itself. When the
agent is registered with the EgoManager, these data
items are available for coordination. Agents generate
tuples without respect to their views or their current
location. As an agent moves to a new host, all its data
moves with it.

View Definition and Use. The view abstrac-
tion allows application agents to coordinate over an ad
hoc network. Once registered with the EgoManager,
an agent can define and operate over views. Figure 3
shows the public API of the View class.

We first examine the components of the View con-
structor. The Metric and Cost allow an applica-
tion to define an abstraction over the physical ad hoc
network. Both of these components are part of the
NetworkAbstractions interface. The Metric defines
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public class View {
public View(HostConstraints hc,

AgentConstraints ac,

DataConstraints dc,

Metric m, Cost bound,

Credentials cred);

public ETuple rd(ETemplate template);
public ETuple rdp(ETemplate template);
public ETuple rdsp(ETemplate template);
public ETuple[] rdg(ETemplate template);
public ETuple[] rdgp(ETemplate template);
public ETuple[] rdgsp(ETemplate template);
public ETuple in(ETemplate template);
public ETuple inp(ETemplate template);
public ETuple insp(ETemplate template);
public ETuple[] ing(ETemplate template);
public ETuple[] ingp(ETemplate template);
public ETuple[] ingsp(ETemplate template);

}

Figure 3. The API for the View class

the costs of paths in the network based on proper-
ties of hosts and links. Based on this Metric and the
Cost that defines a bound on the lengths of paths, the
NetworkAbstractions package builds a subnet that
contains exactly the hosts that satisfy the view’s net-
work constraints. EgoSpaces provides commonly used
Metric definitions, for example, a metric based on
hop count and another based on physical distance.
More sophisticated applications can build their own
Metric and Cost definitions by following the pro-
cedure outlined in [7]. The HostConstraints and
AgentConstraints provide restrictions that hosts and
agents must satisfy to contribute data to the view.
Because EgoSpaces represents profiles as tuples, both
types of constraints can be provided as patterns over
tuples. The DataConstraints in a View specification
are a pattern over data items that appear in the view.

The View’s Credentials identify the refer-
ence agent to remote agents. Remote agents’
AccessControlFunctions use the Credentials when
determining whether to allow the reference agent
access to tuples. The Credentials are a sub-
set of the AgentProfile and contain, at a min-
imum, the reference agent’s AgentID. If an ap-
plication represents agents’ Credentials as tuples,
AccessControlFunctions can be given via patterns.

Once a View is defined, the reference agent sees it as
the set of data items that satisfy the associated restric-
tions. The reference agent uses the operations shown
in Figure 3 to access data. Each operation takes a pat-
tern, or template, over a tuple, which provides a final
restriction that any returned tuple must satisfy.

4 Sample Applications

The best demonstration of the middleware’s ability
to ease context-aware application development is by
example. In this section, we present two applications
that take advantage of the view abstraction in networks
constructed over automobiles on roadways.

4.1 Emergency Vehicle Warning System

Application Description. Our first application
warns cars of emergency vehicles along their projected
path or appearing from other directions. When a driver
needs to clear the road for the emergency vehicle, a
light on the dashboard appears.

View Definition. Key to this application is being
able to notify the car in time for it to give way for the
emergency vehicle. The car’s view constraints are:

• Network constraint. The network is restricted
based on physical distance between hosts.

• Host constraint. Only emergency vehicles’ hosts
contribute to the view.

• Data constraint. Tuples in the view are restricted
to emergency warning tuples.

Agent Interaction. Only the emergency vehicle
generates tuples. An emergency vehicle’s host creates
a tuple when it turns its siren on, and it leaves the
tuple in its tuple space until it turns its siren off. The
access controls for the emergency vehicle prevent any
other agent from removing the warning tuple from the
tuple space (i.e., no in operations are allowed except
by the emergency vehicle’s application agent).

Given the view defined above, a car issues a rd oper-
ation on the view. This operation will match any warn-
ing tuple and blocks until a warning tuple appears in
the view, indicating an emergency vehicle’s presence.
At this time, the light on the dashboard warns the
driver. The application can probe the view (with pe-
riodic rdp operations) to wait for the disappearance
of the warning tuple. After the emergency vehicle has
passed, the application can reissue the rd operation
and the driver can continue. If multiple emergency
vehicles appear, this implementation ensures that the
driver remains pulled over until all emergency vehicles
have passed.

Lessons Learned. The key to successful imple-
mentation of this application lies in the definition of the
view. Because both the car and the emergency vehi-
cles speeds are variable, the scope of the view depends
on their velocities. Given a well-defined view, the ap-
plication agent’s minimal interaction with EgoSpaces
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involves only simple view operations. The car is guar-
anteed to be notified as soon as possible of the approach
of an emergency vehicle. Notification that the emer-
gency vehicle has departed is not guaranteed to be as
timely.

4.2 Subscription Music Service

Application Description. The second applica-
tion enables music sharing on a network of cars and
requires more sophisticated agent coordination. Users
subscribe to a music file sharing service which allows
them to manage their music and share music with other
subscribers they meet on the highway. The application
allows a user to manage his music files, search a region
of the highway for music, and download these files. If
a download only partially succeeds, the application re-
members the user’s desire for the song, and, when the
file is encountered again, the download completes. Fig-
ure 4 shows the user interface.

Figure 4. The subscription music service

View Definition. The dialog box in Figure 4 al-
lows the user to change his view’s constraints. The
constraints the user can manipulate are:

• Network constraint. The user can restrict the span
of the view by the number of network hops.

• Host constraint. Restricting the hosts in the view
to those traveling in the same direction provides
more stability in the contents of the view, making
successful downloads more likely.

• Data constraint. The user can limit data items
based on the file size of potential downloads.

As one example, Figure 5 shows the code to build
the data constraint based on the file size, where
LTConstraint requires data items to have values in
the size field less than maxSize.

LTConstraint lt =

new LTConstraint(new Integer(maxSize));

EConstraint ec =

new EConstraint(‘‘Size’’,

Integer.class, lt)

dc.addConstraint(ec);

Figure 5. Building a data constraint

Agent Interaction. The application represents
each song in multiple tuples. One tuple holds infor-
mation about the song, and multiple additional tuples
hold the song data. The data is divided into multi-
ple tuples to facilitate the ability of the application to
continue interrupted downloads. Figure 6 shows the
application code used to generate an information tu-
ple. This code is part of the FileShareAgent, which
extends the Agent base class.

ETuple songTuple = new ETuple();

songTuple.addField(new EField("Filename", file));

songTuple.addField(new EField("Title", title));

songTuple.addField(new EField("Artist", artist));

songTuple.addField(new EField("Album", album));

songTuple.addField(new EField("Size", size));

songTuple.addField(new EField("Length", length));

out(songTuple);

Figure 6. Generating information tuples

When the user performs a search, the “Search Re-
sults” tab displays the results. The user can choose to
download an available file, and the progress is displayed
in the “Downloads” tab. The “Library” tab allows the
user to manage his music files. When a song is selected
in one of these three lists, information about the file is
displayed in the “Information” section.

To perform searches, the user enters restrictions in
the search panel, which the application constructs into
a template. The user can select a file based on its
title, artist, or album. Because a music subscription
service does not require atomicity guarantees, we use
scattered probing operations. Figure 7 shows the code
for querying the view.

Lessons Learned. The simplified programming in-
terface in EgoSpaces reduces applications’ interactions
to high-level coordination constructs, and the subscrip-
tion music service takes full advantage of these novel
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ETemplate template = new ETemplate();

template.addConstraint(titleConstraint);

template.addConstraint(artistConstraint);

template.addConstraint(albumConstraint);

ETuple[] results = searchView.rdgp(template);

Figure 7. Accessing the view

constructs. Using the view abstraction and coordina-
tion constructs EgoSpaces allows the programmer to
focus on how the music subscription application uses
the information collected from the environment instead
of having to explicitly discover and communicate with
other agents in the network.

5 Infrastructure Design and
Implementation

The programming abstractions presented in Sec-
tion 2 facilitate rapid program development of appli-
cations that operate on data distributed across ad hoc
networks. In this section, we demonstrate the feasibil-
ity of providing an infrastructure to facilitate rapid de-
velopment of context-aware mobile applications. Fig-
ure 8 shows he high-level system architecture of the
EgoSpaces middleware. The gray boxes represent com-
ponents we assume to exist (message passing and the ad
hoc physical network) or components the programmer
provides (the application). The white boxes represent
components we provide.

Figure 8. The system architecture

5.1 Supporting Packages

In building EgoSpaces, we designed and imple-
mented three support packages (a network discovery
package, a monitor package, and a network abstrac-
tions package) that provide lightweight implementa-
tions of services necessary for building the view ab-
straction. The eLights package provides the tuple
matching mechanism described in Section 3.

Discovering Network Neighbors. In ad hoc net-
works, no wired infrastructure with dedicated routing
nodes exists. Instead, all hosts serve as routers. To dis-
tribute messages, a host must maintain knowledge of
its current set of neighbors, and, as movement causes
this set to change, the host must be notified. Our sys-
tem utilizes a discovery service that uses a periodic
beaconing mechanism parameterized with policies for
neighbor addition and removal.

Monitoring Environmental Conditions. Es-
sential to adapting to context information is the abil-
ity to sense environmental changes. The Context
Toolkit [11] uses context widgets to abstract context
sensing and provide context information to applica-
tions. It allows applications to gather context informa-
tion from both local and remote sensors about which
the application has a priori knowledge. Our purposes
require a more lightweight mechanism in which both lo-
cal and neighboring environmental sensors are accessed
in a context-sensitive manner. This sensor information
is used to calculate the network scope restriction dis-
cussed next. EgoSpaces applications may also access
monitors directly. Our monitor service provides con-
text information by maintaining a registry of monitors
available on the local host and neighboring hosts. An
application tailors the monitor package to its needed
capabilities. As an example, to add a location mon-
itor, the application may provide code that interacts
with a GPS monitor. New monitors must adhere to a
standard monitor interface.

Defining Metrics on the Network. To pro-
vide network constraints, we use the network ab-
stractions protocol to construct a subnet of the ad
hoc network based on properties of hosts and links.
NetworkAbstractions uses sensor information from
monitors and the view’s metric and bound to build a
tree over the subnet of the ad hoc network that con-
tains exactly the hosts in the network that satisfy the
network constraints. The protocol also maintains the
tree as the hosts in the network move and the path
costs change. The network abstractions protocol pro-
vides EgoSpaces the ability to send messages to exactly
the hosts in the context. EgoSpaces can also use the
network abstraction interface to register operations on
the context hosts. As new hosts move into the sub-
net defined by the network abstraction, they receive
notification of any registered operations, and as hosts
move out of the context, registered operations are re-
moved. For detailed information on this protocol and
its implementation, see [7].
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5.2 EgoSpaces Implementation

Figure 9 depicts the middleware’s details. The pre-
vious sections explained how the application agent in-
teracts with the upper portions in this figure. In this
section, we detail how the underlying components sup-
port the view abstraction while being attentive to the
need for a lightweight and efficient system realization.

Figure 9. Internal class diagram of EgoSpaces

Agent Registration and Migration. When an
agent is created, a data structure within the agent
holds the tuples the agent owns. EgoSpaces hides this
data structure from the extending class. However, if
the agent generates tuples via out operations before it
registers with the EgoManager, the tuples are placed
in this local storage. These tuples are not available for
access by other agents; essentially the agent owning the
tuples does not exist in the system. When the agent
calls the register method, the EgoSpaces system reg-
isters the agent with the EgoManager.

Upon registration, the contents of the agent’s local
tuple storage are placed in a host-level tuple space.
During the transfer from the agent’s local storage to
the host-level tuple space, each tuple is annotated with
the owning agent’s id. We use a single host-level tu-
ple space instead of maintaining the agent level tuple
spaces to reduce the overhead of remote operations.
This justification will become more apparent in the dis-
cussion of operation processing.

With the registration mechanism described above,
facilitating agent migration is reduced to a few simple
steps. Upon migrating, an agent is first deregistered
from the current EgoManager. This moves the agent’s

tuples from the host-level tuple space to the agent’s
local storage. This extraction is simplified by the fact
that every tuple is labeled with the owning agent’s id.
After being deregistered from the current host, the ap-
plication agent’s code and state is moved to the des-
tination host, where the agent is registered with the
local EgoManager.

View Creation and Maintenance. Any regis-
tered agent can define views over the data available
in the network. For each view, the EgoManager uses
NetworkAbstractions to construct the subnet of hosts
that define the network over which the view’s oper-
ations will be issued. This construction is performed
on-demand; the EgoManager only builds and maintains
views when operations are issued to avoid unnecessary
communication overhead.

View Operation and Agent Interaction. When
the reference agent issues an operation on a View, the
operation and view constraint information are passed
to the EgoManager. The EgoManager creates a ded-
icated operation thread for the request. From this
point, the steps necessary to implement each operation
depend on the operation’s semantics.

Atomic Blocking Operations. Figure 10 shows a se-
quence diagram describing an in operation. The calling
thread blocks until the operation thread finds a tuple
matching the operation’s template.

Figure 10. Sequence diagram of an in

The operation thread uses NetworkAbstractions to
distribute a persistent query to every host in the con-
text, and the query remains registered on those hosts
until the operation thread deregisters it. If new hosts
move into the context while the query remains active,
they receive the query. Similarly, as hosts move out of
the context, the query is removed from them.
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Two things can happen when the operation is regis-
tered on a host. First, a tuple in the host tuple space
may immediately match. If so, the context host notifies
the operation thread. If not, the context host stores
the registration and checks every tuple generated to
see if it matches. When a tuple matches the request,
the context host reserves the matching tuple for the
requesting agent until either the operation thread re-
quests it be removed and returned or the operation’s
query is deregistered (indicated as the blackened active
period in Figure 10).

When the operation thread receives notification of
a matching tuple, it sends a message to the owning
host to remove the tuple. It is possible that the op-
eration thread will receive multiple matches for an in
operation from multiple context hosts; it chooses one
non-deterministically. Once the operation is ready to
return, the persistent operation query is deregistered
from the context hosts.

The other blocking operations have a similar form.
When a context host finds a match to a rd operation,
it simply returns the match and waits for the operation
thread to deregister the query. Aggregate operations
perform the same steps as their counterparts, but to
ensure they return all matching tuples, when the op-
eration finds a match, the operation thread issues an
aggregate atomic probing operation, described next.

Atomic Probing Operations. The sequence diagram
in Figure 11 shows a rdp operation. Again, when the
reference agent issues its operation, the EgoManager
spawns a dedicated operation thread; the reference
agent remains active, waiting for a response. If, af-
ter checking each host in turn, the operation thread
finds no matching tuple, it will return a null value.

The operation thread first collects the ids of hosts
within the view by sending a query to the hosts defined
by the view’s network constraints. Every host within
the context responds with its host’s id and the host
ids of its children in the tree. The EgoManager on the
reference agent’s host uses this information to ensure
that it hears from every member of the context before
continuing. At this point, the set of hosts on which the
operation will be performed is fixed. If new hosts move
within the constraints of the view, their addition to the
context is delayed until this operation completes.

When the operation thread has gathered the ids of
all context hosts, it locks them in order of increasing id.
The ordered locking prevents deadlock because every
operation thread locks hosts in the same order. Lock-
ing a tuple space prevents other threads from modify-
ing the tuple space’s contents. When a context host
receives a locking request, it waits until its tuple space
is not locked by another other thread, then returns pos-

Figure 11. Sequence diagram of a rdp

itively. The operation thread waits to hear from each
context host before locking the next host.

The need for locking is not immediately obvious.
Consider, however, the case shown in Figure 12, which

Figure 12. Locking example

shows four host tuple spaces that contain tuples in the
reference agent’s view. The ellipse inside each host
tuple space contains the tuples that satisfy the view
constraint. The black tuples also satisfy the opera-
tion’s template. In this figure, the operation queries
the host tuple spaces for matching tuples in order; the
outlined rectangle indicates the host tuple space be-
ing queried. In Figure 12(a), the operation thread first
queries Host 1. Being unsuccessful, in part (b), the
operation thread then queries Host 2. At the same
time, a different operation thread removes tuple x from

9



Host 3’s tuple space to Host 1’s tuple space. This is al-
lowed because the tuple spaces are not locked. In part
(c), because the operation thread did not find a match-
ing tuple, it queries Host 3, while the tuple y is moved
to Host 2. The operation thread finds no match at
Hosts 3 or 4. This violates the semantics of the atomic
probing operation because a matching tuple existed in
the view the entire time the operation was processed.

After locking every host in the context, the opera-
tion thread requests a matching tuple from every host
in order. For the rdp operation, as soon as the oper-
ation thread finds a single match, it returns the tuple.
For an inp operation, the operation thread also returns
the first match, but the matching tuple is removed from
the owning agent’s host tuple space. For aggregate op-
erations, the actions performed are the same, except
that the operation thread must query every host tuple
space instead of halting once it finds a match.

Scattered Probing Operations. These operations pro-
vide weaker semantics than the previous two in that
the operations are allowed to miss matching tuples in
the view. That is, the case shown in Figure 12 is ac-
ceptable. The weakened semantics of these operations
allows more efficient implementations that do not re-
quire locking. The sequence of events in executing a
scattered probing operation follows those of an atomic
probing operation, without the need to lock the con-
text hosts. Thus, context hosts are active only while
responding directly to the operation thread.

6 Conclusions

EgoSpaces is one of the very first attempts to de-
velop a coordination model providing comprehensive
support for the development of context-aware applica-
tions in ad hoc networks. Software engineering con-
siderations played an important role in the formula-
tion of the model. EgoSpaces introduces the notion of
asymmetric coordination, which proves essential in ex-
pansive networks entailing large amounts of data. The
selection and definition of key constructs such as the
view were explicitly determined by the desire to sim-
plify programming and by our earlier experiences with
developing other coordination models and applications
in ad hoc settings. This paper demonstrates the feasi-
bility of providing asymmetric interactions among com-
ponents in ad hoc network environments. We also re-
port encouraging results obtained from the deployment
of several initial applications which demonstrate that
using EgoSpaces to develop context-aware mobile ap-
plications ease the development task.
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