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Abstract 
In many data mining applications, the size of the database 
is not only extremely large, it is also growing rapidly.  
Even for relatively simple searches, the time required to 
move the data off magnetic media, cross the system bus 
into main memory, copy into processor cache, and then 
execute code to perform a search is prohibitive.  We are 
building a system in which a significant portion of the 
data mining task (i.e., the portion that examines the bulk 
of the raw data) is implemented in fast hardware, close to 
the magnetic media on which it is stored.  Furthermore, 
this hardware can be replicated allowing mining tasks to 
be performed in parallel, thus providing further speedup 
for the overall mining application.  In this paper, we 
describe a general framework under which this can be 
accomplished and provide initial performance results for a 
set of applications. 

 

1. Introduction 
Having inexpensive data storage has enabled the 

amassing of vast amounts of information.  These data are 
rapidly accessible, motivating a significant interest in data 
mining capabilities.  At present, these data sets far exceed 
the capacity of modern processors, so searching them has 
become a serious challenge.  In a recent invited talk [1] at 
the High Performance Embedded Computing Workshop, 
John Reynders of Celera Genomics commented that, “The 
size of the databases we deal with is no longer measured 
in terabytes, but in exabytes.” 

In addition to being quite large, database sizes are 
also growing at an unbelievable pace.  The average 
database size and associated software support systems are 
growing at rates that are greater than the increase in 
processor performance (i.e., doubling faster than every 18 
months).  This is due to a number of factors, including the 
desire to store more detailed information, to store 
information over longer periods, to merge databases from 
disparate organizations, and to deal with the large new 
databases that have arisen from emerging important 
applications.  For example, two emerging applications (in 
the civilian domain) having large and rapidly growing 
databases are those connected with the genetics revolution 

and those associated with cataloging and accessing 
information on the Internet.  At the physical level this has 
been made possible by the remarkable growth in disk 
storage performance where magnetic storage density has 
been doubling every year for the past several years. 

Estimates are that in excess of 1.5 million web pages 
are added to the Internet each day.  Companies that 
operate search engines have a difficult time keeping up 
with the torrent of information that requires indexing.  
Today, the performance bottleneck is the time taken to 
develop the required reverse index in reasonable time.  
Quoting from Domingos and Hulten [2]: 

 
In a single day WalMart records 20 million sales 
transactions, Google handles 70 million 
searches, and AT&T produces 275 million call 
records.  Current algorithms for mining complex 
models from data (e.g., decision trees, sets of 
rules) cannot mine even a fraction of this data in 
useful time.  Further, mining a day’s worth of 
data can take more than a day of CPU time, and 
so data accumulates faster than it can be mined. 

 
Further complicating the situation is the fact that 

many database mining operations require searching a 
large unstructured space for approximate matches, and 
unstructured data that is rapidly changing is ill suited to 
reverse indexing.  The two examples given above, 
genetics and the Internet, are illustrative of this.  These 
same factors are at the root of the problems associated 
with extracting useful intelligence from image data as 
well.  The problem here is indeed even more difficult 
since the data tends to be very unstructured and the keys 
used in indexing are continuously evolving over time. 

In this project, we are focusing on the specific 
problems associated with searches of unstructured, 
unindexed data.  Three specific applications include 
approximate matching of text (important for text searches 
of specific interest to homeland security where the 
original alphabet is different than the Latin alphabet and 
transliteration is involved), genomics and proteomics 
searches (important biological applications), and image 
searches (also of significant interest for homeland 
security).  The system can also be of benefit when mining 



   

structured, indexed data, for example, computing a data 
reduction that requires accessing all of the data records. 

Currently, data mining applications are implemented 
using traditional, off-the-shelf hardware platforms.  
Figure 1 illustrates the relevant features of virtually all of 
these systems.  A disk (actually many disks) is attached 
via a controller to the I/O bus of a computer system.   A 
path (labeled “bridge” in the figure) exists that enables 
data to flow from the I/O bus to the memory bus (and 
therefore to the system’s main memory).  When an 
algorithm is executed on the processor, references to the 
main memory cause the data to be loaded into cache, at 
which point the processor can efficiently access the data. 

disk
controller

bridge

I/O
 bus

disk

main
memory

cache

processor

memory bus

 
Figure 1.  Typical hardware platform for data mining 

applications. 

Add the operating system overhead to the above data 
movement requirements, and it is clear that there are 
significant data movement inefficiencies in current 
systems.  Yet this is the system environment associated 
with development and deployment of virtually all of 
today’s data mining applications.  The result is that even 
though individual components in the system are quite fast 
(e.g., modern processors have clock speeds exceeding 
2 GHz), the overall performance suffers because these fast 
components are used inefficiently. 

Our system dramatically increases the speed with 
which large volumes of data can be mined by eliminating 
the above inefficiencies and mining data much closer to 
where it resides, on the disk, and by performing low-level 
mining operations directly in reconfigurable hardware.  
Additionally, by replicating this hardware on a per disk 
surface or per disk subsystem level, we can exploit the 
parallelism inherent in most search algorithms to provide 
speedups that scale linearly with the reconfigurable 
hardware deployed.  The result is a system that is truly 
fast, since the individual components are efficiently used. 

In this paper, we describe a general framework under 
which this can be accomplished and provide initial 
performance results on a set of applications.  Section 2 
describes the system architecture, including how it 

performs basic mining operations without the overhead of 
data movement across the I/O bus and memory bus and 
into the processor.  Section 3 discusses several application 
domains that could see significant benefit from this type 
of system.  Section 4 describes scaling and performance 
issues, and Section 5 provides a summary and 
conclusions. 
 
2. Overall System Architecture 
 

The system architecture is illustrated in Figure 2.  
Associated directly with a disk head is a Data Shift 
Register (DSR) that receives data streaming off the head 
at disk rotational speeds.  The data in the DSR is made 
available (in parallel form) to reconfigurable logic that 
performs low-level mining operations on the data that has 
been retrieved off the disk.  The specific function 
performed by the reconfigurable logic will be tailored to 
the particular data mining application of interest.  
Example functions for a set of applications are described 
below. 

Also present in the system is a microprocessor that is 
used both for control duties (e.g., replicating the function 
of the disk controller in Figure 1 and managing the 
function of the reconfigurable logic) and higher-level data 
mining operations.  The remainder of the system reflects 
traditional designs, with an I/O bus, a bridge to the 
memory bus, and a classic memory hierarchy.  The host 
processor is still responsible for managing the file system 
and maintaining the general functionality of the database, 
the new hardware is used primarily for high-volume 
mining operations. 

In the illustration of Figure 2, only one copy of the 
DSR and reconfigurable logic is shown; however, the 
intent is to replicate both for each head in the disk, 
providing significant additional parallelism over what is 
typically available when accessing the disk head via 
standard interfaces (e.g., ATA, SCSI, or FC).  The result 
is a system that can perform relatively complex data 
mining operations across a high volume of data directly at 
hardware speeds, eliminating the overheads associated 
with the I/O bus, the memory bus, and the operating 
system. 

In the description that follows, we assume (for 
discussion purposes) that the data is unstructured text and 
we are performing string matching queries.  Realistic 
queries are generally compound in nature. In this case the 
search involves both matching the query strings to 
documents on the disk, and determining if the 
relationships exist when matches occur (or don’t occur).  
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Figure 2.  System architecture.

 

For example, a query might contain the strings “Iraq”, 
“Iran”, “Israel” and “France”, and want to identify 
documents where either “Iraq” and “Israel”, or “Iran” and 
“France” are present. This form of compound inquiry may 
result in a number of document matches, and the objective 
is to perform these matches at disk speeds.  In general, 
such queries can be represented as a tree structure where 
the leaves of the tree correspond to the byte strings being 
sought (e.g., Iraq, Israel, etc.), and the nodes correspond 
to the logical operations required of the query.  One way 
of viewing the processing of a compound query is in 
terms of two components: 
• processing of the leaves associated with the bottom of 

the tree (i.e., taking the leaf words and performing a 
match with data on the disk), and  

• performing the logic operations associated with the 
combining nodes in the query tree structure.  

In this architecture, leaf processing (word matching) is 
done in the reconfigurable hardware (at disk speeds) and 
the results are sent to the dedicated control 
microprocessor that acts to execute the logic associated 
with the nodes of the query tree.  The result of this logic 
execution is a set of results that are sent to the host 
processor that initiated system activity by sending the 
original query. 

In this system, performance gains come from 
• Disk and System Parallelism: The system can search 

in parallel across disks or disk surfaces leaving the 
main processor and interconnect available to perform 
other tasks. 

• Reduced data movement overhead: Data does not 
move over system bus, memory bus, to cache, etc.  
Bus bandwidth is significantly reduced, maybe orders 
of magnitude depending on data and search criteria. 

• Hardware logic for searching: Searching, matching 
and query operations are performed on streaming 
data in hardware rather than in software. 

• Specialized hardware logic tailored to queries: 
Reconfigurable logic permits matching the matching 
hardware to the query requirements and preserves 
flexibility.  

 

3. Example Applications 
 

To illustrate the use of the system, a number of 
example applications are described: unstructured text 
searches, biological sequence matching, data reductions, 
and image searches.  All of these applications are 
currently heavily used, and all tax the capabilities of 
current systems to deliver the throughput desired. 

Unstructured text searching: As described above, a 
compound query posed in a text search context can be 
decomposed into the individual word searches (to be 
executed in the reconfigurable logic) and the composition 
of the word search results (executed on the 
microprocessor).  Here, we describe a simple mechanism 
whereby the individual word searches can return positive 
results for approximate matches. 

An example configuration for the reconfigurable 
hardware is illustrated in Figure 3.  At the top of the 
figure is a section of the DSR that contains raw data 
streaming off the disk head.  Immediately below the DSR 
is a Compare Register (CR) that contains pattern data.  
Next is Fine-Grained Comparison Logic (FCL) that 
performs element by element comparisons between 
elements of the DSR and the CR.  The FCL can be 
configured to be either case sensitive or case insensitive.  
Also notice the alternate routing of DSR elements to 
individual FCL cells on the right-hand side of the figure.  
An FCL cell that can match more than one position in the 
DSR enables a single 6 element CR to match both the 
commonly used spelling of “Baghdad” as well as the 
alternate “Bagdad” in shared hardware.  Below the FCL 
cells is Word-Level Comparison Logic (WCL) that is 
responsible for determining whether or not a word match 
occurs.  The actual configuration will vary with query 
type.  The Word-Level Match Signals are delivered to the 
control microprocessor for evaluation of the compound 
query.  A match to the entire query is reported to the host 
processor.  Our VHDL design of this example, configured 
for exact matching, synthesizes to a FPGA-based gate-
level equivalent model that is estimated to execute at over 
220 MHz, for an aggregate data throughput of almost 
2 Gb/s [3].  This is in contrast to measured throughput 



   

data for the Unix grep utility (executing the software-
level equivalent function) of approximately 280 Mb/s [4]. 
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Figure 3.  Reconfigurable hardware for text search 

application. 

Exact matching, however, is only a small fraction of 
what the system is intended to do.  Flexible string matches 
can be supported through the use of regular expressions.  
Directly synthesized finite-state machine recognizers have 
been developed [5] for firewall applications and are 
directly applicable here. 

As an alternative to either exact string matches or 
regular expressions, it is sometimes convenient to express 
the desired search in terms of an acceptable number of 
mismatches (e.g., insertions, deletions, and substitutions).  
Algorithms for this type of search (incorporated into the 
Unix command agrep) are described in [6] and [7].  Our 
systolic array implementation of this algorithm is 
described in [3], which executes at a clock rate of 100 
MHz, accepting one character each clock, for an 
aggregate data rate of 800 Mb/s. 

One more alternative, which provides significant 
benefits when a significant number of strings are being 
searched, is the use of Bloom filters.  A Bloom filter is a 
data structure to store a set of signatures succinctly by 
computing multiple hash functions on each member of the 
set [8].  With this technique, a database is then queried for 
membership of a particular string in the set.  The answer 
to this query can be false positive but never false negative.  
Furthermore, the false positive rate can be managed and is 
predictable.  We have implementations of Bloom filters in 
reconfigurable hardware that have been demonstrated for 
use in Internet firewalls [9] and designs appropriate for 
the longest prefix matching problem prevalent in routers 
[10].  The adaptation of these designs for database 
searching is straightforward. 

Sequence matching: The basic set of operations in 
sequence matching corresponds to a dynamic 
programming problem when executed on a conventional 
system [11,12].  This can be described using Figure 4. 
Here, p1p2p3p4 represent 4 symbols from a pattern p, 
t1t2t3…t9 represent symbols from a target t, and di,j 
represents the edit distance at position i in the pattern and 
position j in the target.  In normal usage the pattern is 

short relative to the target.  Typical sizes might have p on 
the order of 1000-2000 characters and t many billions of 
characters. 

The dynamic programming problem is as follows.  
There is a set of known (constant) values for an additional 
row (d0,j) and column (di,0) not shown in the figure.  
Additionally, there are two “scoring functions” provided, 
A and Bi,j , where A is a constant and Bi,j   is a function of 
pi and tj (i.e., Bi,j = f(pi, tj) ). 

The values for di,j are computed using the fact that di,j 
is only a function of the following set 
 

{pi   tj   di-1,j-1   di-1,j   di,j-1}. 
 
This is illustrated in the figure by showing the 
dependency of d3,6 on the values of d2,5 and d2,6 and d3,5 as 
well as p3 and t6 (through A and B).  The form of the 
function can be quite arbitrary, but is usually constructed 
in the following form: 
 

di,j  = max[di,j-1 + A; di-1,j + A; di-1,j-1 + Bi,j]. 
 
A match is declared when a value in the table exceeds a 
predetermined threshold.  The match is then examined via 
a traceback operation within the table.  In the proposed 
architecture, the reconfigurable logic computes the entries 
in the table (di,j) and checks for the threshold.  The control 
microprocessor is responsible for the traceback. 

Figure 5 shows the block diagram of a systolic array 
architecture for computing the values in the table.  The 
characters of the pattern are stored in the column of 
registers on the right of the figure (labeled p1, p2, p3, and 
p4).  The characters in the target flow from left to right in 
the shift registers at the top of the figure (labeled t5 
through t8, illustrating positions 5 through 8 in the target).  
The systolic cells are in the interior of the figure (labeled 
di,j).  In the first (combinatorial) part of a clock cycle, the 
four underlined values are computed.  For example, the 
new value d3,6 is shown to depend upon the same five 
values illustrated earlier in Figure 4.  In the second (latch) 
part of the clock cycle, all the characters in t and d are 
shifted one position to the right.  In an initial VHDL 
design of the systolic array (targeting a Xilinx FPGA 
implementation) we have achieved a throughput of 800 
Mb/s for the target data [4,13].  This represents a 
performance improvement of more than two orders of 
magnitude over the software solution. 

As presented above, the dynamic programming 
problem determines the best match that is referenced 
locally in the database and globally in the pattern.  This 
problem is equivalent to the edit distance problem 
between a string and a database, also of interest in the text 
search application. 



   

 
p1 

p2 

p3 

p4 

t1 t2 t3 t4 t5 t6 t7 t8 t9

d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9

d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8 d2,9

d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9

d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8 d4,9  
 

Figure 4.  Dynamic programming example. 
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Figure 5.  Systolic array for sequence matching. 

Data reduction: In some cases, we are not interested 
in finding a single item in a large database, but rather 
summarizing the data in some aggregate form.  Examples 
of this in financial data might include the minimum, 
maximum, and latest price of a stock (or other financial 
vehicle). 

The reconfigurable logic to compute aggregate data 
reductions is illustrated in Figure 6.  Here, the shift 
register at the top is configured to store transactions.  As 
each transaction flows through the system, it is fed into 
the decision logic below it to compute the data reductions 
themselves.  In this example, three data reductions are 
shown, calculating the minimum price, the maximum 
price, and the latest price. 
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Figure 6.  Data reduction. 
 

Note that in this example, the fact that the database is 
structured and possibly indexed does not eliminate the 
need to scan the entire data set. 

Image searching: Many matching applications 
operate on data that represent a two-dimensional entity, 
such as an image.  For example, one approach to the 
object recognition problem is to repeatedly compare the 
field of interest in an image to templates that store a 
representation of the objects to be recognized [14].  For 
imaging applications, the structure of the reconfigurable 
logic from Figure 2 must take into account the fact that 
the logical structure of the data is two-dimensional.  In 
addition, the matching operations themselves are often 
significantly different on two-dimensional data, and this 
must also be supported by the reconfigurable logic. 

Figure 7 illustrates a systolic array designed to enable 
matches on two-dimensional data.  The individual cells 
each hold one pixel of the pattern image and one pixel of 
the target image (or, more realistically, a block of pixels 
from the pattern and the target).  For images of 
sufficiently large size, it is likely they will not all fit into 
one reconfigurable logic chip.  A candidate partitioning of 
cells to chips is shown with the dashed lines, placing a 
rectangular subarray of cells in each chip.  If this subarray 
is square (i.e., same number of cells in the vertical and 
horizontal dimension), that minimizes the number of chip-
to-chip connections required. 

Loading of the target images is as follows.  Individual 
rows of the target image flow off the disk into the Data 
Shift Register (see Figure 2).  When the entire row is 
loaded, the row is shifted down to the next row, using the 
vertical links shown in each column.  Once the entire 
image is loaded into the array, a comparison operation is 
performed, which might require arbitrary communication 
between neighboring cells.  This is supported by both the 
horizontal and vertical bi-directional links shown in 
Figure 7. 

 

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6

c4,1 c4,2 c4,3 c4,4 c4,5 c4,6

c5,1 c5,2 c5,3 c5,4 c5,5 c5,6

c6,1 c6,2 c6,3 c6,4 c6,5 c6,6
 

 

Figure 7.  Two-dimensional data array. 



   

One design for the individual cells is illustrated in 
Figure 8.  Here, the pixel registers LOADTi,j contain the 
target pixels currently being loaded into the array,  The 
registers CMPTi,j contain a copy of LOADTi,j made once 
a complete image has been loaded.  This enables the last 
image loaded to be compared in parallel with the next 
image being loaded, essentially establishing a pipelined 
sequence of load, compare, load, compare, etc.  The 
registers CMPPi,j contain the pixels of the pattern image 
to be used for comparison purposes, and the Compare 
Logic performs the matching operation on CMPTi,j and 
CMPPi,j.  Note that for complex matching functions, the 
Compare Logic can communicate with the neighboring 
cells to the left, right, up, and down. 

 

Compare
Logic

CMPTi,j

LOADTi,j

CMPPi,j

ci,j

      
Figure 8.  Initial cell design. 

 
An alternative design for each cell is illustrated in 

Figure 9.  Here, the design of Figure 8 has been 
augmented to support simultaneous loading of the pattern 
image and the target image.  The new registers LOADPi,j 
are used to load the pattern, and are operated in the same 
manner as LOADTi,j.  With this system, if one disk read 
head is positioned above the pattern image, and a second 
read head is positioned above the target image, they can 
both flow off the disk in parallel and be concurrently 
loaded into the array.  
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Figure 9.  Alternate cell design. 

 
There are a number of important issues associated 

with the effective use of our system in an image 
environment.  One such issue is the registration of the 
pattern and target images.  In the object recognition 
problem, this is typically handled prior to the recognition 
step, and rather than full images, sub-images or chips are 
stored in the template database.  In other applications it is 
necessary to incorporate some final (pixel-level) 
registration operations as part of the comparison operation 
itself.  The horizontal and vertical data paths shown in 
Figure 7 can be used to facilitate such operations. 

As an example of the type of image search problem 
that can be accelerated with the proposed system, we have 
previously investigated the automatic recognition of 
objects within synthetic radar (SAR) imagery [14,15,16].  
Here, SAR images are compared with templates in an 
object database using a conditionally Gaussian data 
model.  In this system, the registration requirements are 
such that the image and template need only be aligned to 
approximately 5 pixels in each direction.  Greater 
misalignment would require use of the horizontal and 
vertical communication paths in Figure 7 to perform a 
local search. 

Another potential use of the image search system is 
object recognition in millimeter wave imagery of people 
entering a restricted area, such as an airport concourse.  In 
these images, non-metallic sharp objects are readily 
detected, yet there are serious privacy concerns associated 
with human scanning, since the modality effectively 
“sees” through clothing.  An automated recognition 
system that does not present images to operators has the 
potential to be effective at the security task while 
mitigating (even though not eliminating) the privacy 
issue. 

Other applications:  The above section has 
described the reconfigurable hardware structure and 
operation for a few specific applications.  Other data 
mining applications will have distinct low-level 
operations that need to be performed.  One strength of this 
system is the fact that the reconfigurable logic is flexible 
enough to support not only the example applications 
already described, but a large variety of additional 
structures, even those not yet envisioned when the system 
was designed. 

 
4. Scaling and Performance 
 

A general pattern that can be extrapolated from the 
example designs given above is that the reconfigurable 
hardware is well suited to fast, simple operations.  It 
basically acts as a first-level data filter, examining a large 
volume of data quickly, and informing the higher-level 
system what subset of the data is worthy of further 
consideration.   
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Figure 10.  Transformation of queries for data mining.
 
In essence, the hardware is very good at low-level 

matching operations.  Database mining, however, is less 
about low-level matching operations and more about 
high-level functionality.  As more and more sophisticated 
data models are employed, we ask more and more 
complex questions of the data.  This high-level 
functionality is not particularly well suited to direct 
hardware implementation.  The above observation points 
to a hierarchical approach to the use of the system.  The 
reconfigurable logic is used to perform low-level 
operations, pre-filtering the data at high throughput rates, 
and software is used to perform high-level operations, 
implementing sophisticated data models and answering 
complex queries.  In the most general case, an arbitrary 
query will go through the transformation process 
illustrated in Figure 10. We assume that the database 
system that executes on the host processor generates a 
query (representing some data mining operation).  This 
query proceeds through a compiler (second block), also 
located on the host processor, which is responsible for 
query analysis. There are two main results from the query 
analysis: 
 

• determining the structure of the reconfigurable 
logic required to perform low-level operations on 
the data streaming off the disk, and 

• determining the high-level operations that must 
be implemented in the control microprocessor. 

 
Although the path represented by Figure 10 is quite 
general, and will therefore be able to handle a wide range 
of potential queries, it has the drawback that the latency 
introduced into the search process might be too long.  If 
the compilation process is too long, it might become the 
performance bottleneck rather than the search itself.  This 
issue can be addressed for a wide range of likely queries 
by maintaining a set of precompiled hardware templates 
that handle the most common cases.   

The performance of the system is discussed below 
with respect to two significant performance-impacting 
factors: the organization of the file system and the impact 
of scaling and parallelism. 

File System Organization: If the above described 
hardware system is to be effectively utilized, the file 
system must be organized in such a way that data can 

continually stream off the disk head and into the data shift 
register.  This requires a different set of data placement 
techniques than are currently used.  In addition, the data 
placement algorithms must have access to true physical 
CHS (cylinder, head, sector) information.  It is current 
practice to address a disk drive with logical CHS 
information, which is then mapped internally by the drive 
controller to an arbitrary (typically unreported) physical 
CHS.  To support true streaming data, minimizing seek 
time and inter-block gaps, we must have access to the 
logical to physical CHS mapping.  Recent work in Object 
Based Disks (see Section 5 below) supports this type of 
information being available. 

In our current prototype, we have been experimenting 
with an off-the-shelf Ultra ATA 100 drive (Seagate 
#ST320414A) formatted with the ext2 file system.  With 
careful placement of data on the drive, we have been able 
to sustain transfer rates of 320 Mb/s off the drive, a rate 
that represents two-thirds of the maximum internal data 
rate (from the read head) [3,4].  This access rate will 
clearly improve with higher-performance drives, yet it 
points out the clear need to ensure that seek time does not 
dominate the overall data transfer process. 

Scaling and Parallelism: One of the important 
benefits of positioning the reconfigurable hardware in the 
proximity of the read head is the ability to exploit 
parallelism not available outside the drive.  Modern drives 
have between 2 and 16 read heads continually flying over 
the disk surface, and current access mechanisms only 
allow the data from one such head to be available at a 
time.  By associating reconfigurable hardware with each 
head, performance gains up to the number of read heads 
can potentially be achieved. 

In order to realize the potential for parallel 
performance, we must ensure that the end effects (i.e., 
track-to-track effects) do not significantly impact the 
overall processing rate.  In our system, the strategy for 
addressing this issue is based on the observation that the 
volume of data available on a track is fairly significant 
(on the order of 1 MByte), which enables the 
reconfigurable hardware to handle the vast majority of the 
data in a truly streaming mode (i.e., not limited by end 
effects).  By forwarding the data at the beginning and end 
of each track to the associated microprocessor, a parallel 
search (in software) can easily find matches that cross 



   

track boundaries.  For example, if a match could 
potentially require 2 KB of data (most queries are 
nowhere near this size), the software can afford to execute 
500 times (1 MB/2 KB) slower than the hardware and still 
keep up. 

Performance: While the overall system is still under 
development, a sufficient number of component pieces 
exist to report on their performance.  Three reconfigurable 
hardware search kernels have undergone detailed design 
(i.e., VHDL-level design), and two are operational.  The 
exact text search engine design operates at 220 MHz as 
reported by the synthesis tools (one character per clock, or 
1.8 Gb/s) [3]; the approximate text search engine 
(agrep) has been tested to 100 MHz (one character per 
clock, 800 Mb/s) [3]; and the biosequence search engine 
has been tested to 25 MHz (four characters per clock, 800 
Mb/s) [4,13]. 

Software implementations of these three kernels have 
been measured on a 933 MHz PC as follows:  280 Mb/s 
for exact text searches, 26 Mb/s for approximate text 
searches (allowing up to 8 errors), and 6.4 Mb/s for the 
biosequence search.  Table 1 shows the speedup 
achievable under two conditions, one is the measured 
performance as limited by our current ATA drive and the 
other under the conditions were a faster drive is available 
and the reconfigurable logic kernel is the performance 
limit. 

 
Table 1.  Application speedups. 

Application Disk-limited 
speedup 

Logic-limited 
speedup 

Exact text search 1.1 6.4 
Approx. text search 12 31 
Biosequence search 50 125 

 
5. Related Work 
 

Recent research into new types of database machines, 
referred to as “Active Disks,” has provided a number of 
ideas for off-loading a variety of operations to commodity 
processors that interact directly with the data storage 
drive.  Work in this area includes [17,18,19,20,21] among 
others.  Unfortunately, these efforts retain the major 
limitations inherent in performing basic operations: 
moving data from the disk to processor memory, moving 
data from memory to processor cache, and (probably most 
important) executing a program to perform the desired 
operation. 

An important piece of complementary work that is 
currently ongoing is the current interest in Object Based 
Disks (OBDs).  This work forms some of the 
underpinnings of the Lustre file system [22], soon to be 
installed on the largest clusters.  The fundamental idea 
behind OBDs is that rather than viewing the disk drive 
interface as block-based, the interaction between the 
system and the disk is at a higher semantic level.  Initially, 

this is envisioned to be at the file level, with responsibility 
for allocating file components left to the discretion of the 
drive system rather than being controlled by the OS.  
Additionally, the OBD interface architecture supports the 
extension of the command set to allow the invocation of 
search operations, moving the interaction to an even 
higher level. 

 
6. Summary and Conclusions 
 

This paper presents the basic design of a data-mining 
system that has the potential for truly fast operation, 
unhindered by the overheads imposed by the I/O bus, 
main memory bus, cache, operating system, etc.  An 
important requirement for the ultimate success of this 
system is the decomposition of data mining operations 
into low-level operations that can execute on the 
reconfigurable hardware and high-level operations that 
execute in software. 

The system achieves performance gains via four 
mechanisms: reduced data movement overhead, searches 
operating at hardware speeds, specialization of the 
hardware logic to the particular query, and parallelism at 
both the disk and system levels. 

We currently have initial prototype implementations 
of the reconfigurable hardware for several of the 
applications described above, and are working to further 
improve their performance.  Those designs are described 
in more detail in [3,4,13].  We are also developing 
performance models that help assess the performance 
gains that can be achieved using the proposed system. 
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