
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-10

2003-03-10

The Mercury System: Exploiting Truly Fast Hardware in Data The Mercury System: Exploiting Truly Fast Hardware in Data

Mining Mining

Roger D. Chamberlain, Ron K. Cytron, Mark A. Franklin, and Ronald S. Indeck

In many data mining applications, the size of the database is not only extremely large, it is also

growing rapidly. Even for relatively simple searches, the time required to move the data off

magnetic media, cross the system bus into main memory, copy into processor cache, and then

execute code to perform a search is prohibitive. We are building a system in which a significant

portion of the data mining task (i.e., the portion that examines the bulk of the raw data) is

implemented in fast hardware, close to the magnetic media on which it is stored. Furthermore,

this... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Chamberlain, Roger D.; Cytron, Ron K.; Franklin, Mark A.; and Indeck, Ronald S., "The Mercury System:
Exploiting Truly Fast Hardware in Data Mining" Report Number: WUCSE-2003-10 (2003). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1058

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1058?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1058

The Mercury System: Exploiting Truly Fast Hardware in Data Mining The Mercury System: Exploiting Truly Fast Hardware in Data Mining

Roger D. Chamberlain, Ron K. Cytron, Mark A. Franklin, and Ronald S. Indeck

Complete Abstract: Complete Abstract:

In many data mining applications, the size of the database is not only extremely large, it is also growing
rapidly. Even for relatively simple searches, the time required to move the data off magnetic media, cross
the system bus into main memory, copy into processor cache, and then execute code to perform a search
is prohibitive. We are building a system in which a significant portion of the data mining task (i.e., the
portion that examines the bulk of the raw data) is implemented in fast hardware, close to the magnetic
media on which it is stored. Furthermore, this hardware can be replicated allowing mining tasks to be
performed in parallel, thus providing further speedup for the overall mining application. In this paper, we
describe a general framework under which this can be accomplished and provide initial performance
results for a set of applications.

https://openscholarship.wustl.edu/cse_research/1058?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1058?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages

The Mercury System:
Exploiting Truly Fast Hardware
in Data Mining

Roger D. Chamberlain
Ron K. Cytron
Mark A. Franklin

Ronald S. Indeck

Roger D. Chamberlain, Ron K. Cytron, Mark A. Franklin, and Ronald S. Indeck,
“The Mercury System: Exploiting Truly Fast Hardware in Data Mining,” Technical
Report WUCSE-2003-10, Dept. of Computer Science and Engineering,
Washington University, St. Louis, MO, March 2003.

Department of Computer Science and Engineering
Washington University
Campus Box 1045
One Brookings Dr.
St. Louis, MO 63130-4899

The Mercury System: Exploiting Truly Fast Hardware in Data Mining

R. D. Chamberlain*, R. K. Cytron*, M. A. Franklin*, and R. S. Indeck†
*Department of Computer Science and Engineering

†Department of Electrical Engineering
Washington University, St. Louis, Missouri

roger@ccrc.wustl.edu, cytron@cse.wustl.edu, jbf@ccrc.wustl.edu, rsi@ee.wustl.edu

Abstract
In many data mining applications, the size of the database
is not only extremely large, it is also growing rapidly.
Even for relatively simple searches, the time required to
move the data off magnetic media, cross the system bus
into main memory, copy into processor cache, and then
execute code to perform a search is prohibitive. We are
building a system in which a significant portion of the
data mining task (i.e., the portion that examines the bulk
of the raw data) is implemented in fast hardware, close to
the magnetic media on which it is stored. Furthermore,
this hardware can be replicated allowing mining tasks to
be performed in parallel, thus providing further speedup
for the overall mining application. In this paper, we
describe a general framework under which this can be
accomplished and provide initial performance results for a
set of applications.

1. Introduction
Having inexpensive data storage has enabled the

amassing of vast amounts of information. These data are
rapidly accessible, motivating a significant interest in data
mining capabilities. At present, these data sets far exceed
the capacity of modern processors, so searching them has
become a serious challenge. In a recent invited talk [1] at
the High Performance Embedded Computing Workshop,
John Reynders of Celera Genomics commented that, “The
size of the databases we deal with is no longer measured
in terabytes, but in exabytes.”

In addition to being quite large, database sizes are
also growing at an unbelievable pace. The average
database size and associated software support systems are
growing at rates that are greater than the increase in
processor performance (i.e., doubling faster than every 18
months). This is due to a number of factors, including the
desire to store more detailed information, to store
information over longer periods, to merge databases from
disparate organizations, and to deal with the large new
databases that have arisen from emerging important
applications. For example, two emerging applications (in
the civilian domain) having large and rapidly growing
databases are those connected with the genetics revolution

and those associated with cataloging and accessing
information on the Internet. At the physical level this has
been made possible by the remarkable growth in disk
storage performance where magnetic storage density has
been doubling every year for the past several years.

Estimates are that in excess of 1.5 million web pages
are added to the Internet each day. Companies that
operate search engines have a difficult time keeping up
with the torrent of information that requires indexing.
Today, the performance bottleneck is the time taken to
develop the required reverse index in reasonable time.
Quoting from Domingos and Hulten [2]:

In a single day WalMart records 20 million sales
transactions, Google handles 70 million
searches, and AT&T produces 275 million call
records. Current algorithms for mining complex
models from data (e.g., decision trees, sets of
rules) cannot mine even a fraction of this data in
useful time. Further, mining a day’s worth of
data can take more than a day of CPU time, and
so data accumulates faster than it can be mined.

Further complicating the situation is the fact that

many database mining operations require searching a
large unstructured space for approximate matches, and
unstructured data that is rapidly changing is ill suited to
reverse indexing. The two examples given above,
genetics and the Internet, are illustrative of this. These
same factors are at the root of the problems associated
with extracting useful intelligence from image data as
well. The problem here is indeed even more difficult
since the data tends to be very unstructured and the keys
used in indexing are continuously evolving over time.

In this project, we are focusing on the specific
problems associated with searches of unstructured,
unindexed data. Three specific applications include
approximate matching of text (important for text searches
of specific interest to homeland security where the
original alphabet is different than the Latin alphabet and
transliteration is involved), genomics and proteomics
searches (important biological applications), and image
searches (also of significant interest for homeland
security). The system can also be of benefit when mining

structured, indexed data, for example, computing a data
reduction that requires accessing all of the data records.

Currently, data mining applications are implemented
using traditional, off-the-shelf hardware platforms.
Figure 1 illustrates the relevant features of virtually all of
these systems. A disk (actually many disks) is attached
via a controller to the I/O bus of a computer system. A
path (labeled “bridge” in the figure) exists that enables
data to flow from the I/O bus to the memory bus (and
therefore to the system’s main memory). When an
algorithm is executed on the processor, references to the
main memory cause the data to be loaded into cache, at
which point the processor can efficiently access the data.

disk
controller

bridge

I/O
 bus

disk

main
memory

cache

processor

memory bus

Figure 1. Typical hardware platform for data mining

applications.

Add the operating system overhead to the above data
movement requirements, and it is clear that there are
significant data movement inefficiencies in current
systems. Yet this is the system environment associated
with development and deployment of virtually all of
today’s data mining applications. The result is that even
though individual components in the system are quite fast
(e.g., modern processors have clock speeds exceeding
2 GHz), the overall performance suffers because these fast
components are used inefficiently.

Our system dramatically increases the speed with
which large volumes of data can be mined by eliminating
the above inefficiencies and mining data much closer to
where it resides, on the disk, and by performing low-level
mining operations directly in reconfigurable hardware.
Additionally, by replicating this hardware on a per disk
surface or per disk subsystem level, we can exploit the
parallelism inherent in most search algorithms to provide
speedups that scale linearly with the reconfigurable
hardware deployed. The result is a system that is truly
fast, since the individual components are efficiently used.

In this paper, we describe a general framework under
which this can be accomplished and provide initial
performance results on a set of applications. Section 2
describes the system architecture, including how it

performs basic mining operations without the overhead of
data movement across the I/O bus and memory bus and
into the processor. Section 3 discusses several application
domains that could see significant benefit from this type
of system. Section 4 describes scaling and performance
issues, and Section 5 provides a summary and
conclusions.

2. Overall System Architecture

The system architecture is illustrated in Figure 2.
Associated directly with a disk head is a Data Shift
Register (DSR) that receives data streaming off the head
at disk rotational speeds. The data in the DSR is made
available (in parallel form) to reconfigurable logic that
performs low-level mining operations on the data that has
been retrieved off the disk. The specific function
performed by the reconfigurable logic will be tailored to
the particular data mining application of interest.
Example functions for a set of applications are described
below.

Also present in the system is a microprocessor that is
used both for control duties (e.g., replicating the function
of the disk controller in Figure 1 and managing the
function of the reconfigurable logic) and higher-level data
mining operations. The remainder of the system reflects
traditional designs, with an I/O bus, a bridge to the
memory bus, and a classic memory hierarchy. The host
processor is still responsible for managing the file system
and maintaining the general functionality of the database,
the new hardware is used primarily for high-volume
mining operations.

In the illustration of Figure 2, only one copy of the
DSR and reconfigurable logic is shown; however, the
intent is to replicate both for each head in the disk,
providing significant additional parallelism over what is
typically available when accessing the disk head via
standard interfaces (e.g., ATA, SCSI, or FC). The result
is a system that can perform relatively complex data
mining operations across a high volume of data directly at
hardware speeds, eliminating the overheads associated
with the I/O bus, the memory bus, and the operating
system.

In the description that follows, we assume (for
discussion purposes) that the data is unstructured text and
we are performing string matching queries. Realistic
queries are generally compound in nature. In this case the
search involves both matching the query strings to
documents on the disk, and determining if the
relationships exist when matches occur (or don’t occur).

Data Shift Register (DSR)

Reconfigurable
Logic uP

disk
drive

data
cylinders

receives data
streaming from disk

performs high-level matching
functions and control duties

performs low-level
matching functions

bridge

I/O
 bus

main
memory

cache

processor

memory bus

Figure 2. System architecture.

For example, a query might contain the strings “Iraq”,
“Iran”, “Israel” and “France”, and want to identify
documents where either “Iraq” and “Israel”, or “Iran” and
“France” are present. This form of compound inquiry may
result in a number of document matches, and the objective
is to perform these matches at disk speeds. In general,
such queries can be represented as a tree structure where
the leaves of the tree correspond to the byte strings being
sought (e.g., Iraq, Israel, etc.), and the nodes correspond
to the logical operations required of the query. One way
of viewing the processing of a compound query is in
terms of two components:
• processing of the leaves associated with the bottom of

the tree (i.e., taking the leaf words and performing a
match with data on the disk), and

• performing the logic operations associated with the
combining nodes in the query tree structure.

In this architecture, leaf processing (word matching) is
done in the reconfigurable hardware (at disk speeds) and
the results are sent to the dedicated control
microprocessor that acts to execute the logic associated
with the nodes of the query tree. The result of this logic
execution is a set of results that are sent to the host
processor that initiated system activity by sending the
original query.

In this system, performance gains come from
• Disk and System Parallelism: The system can search

in parallel across disks or disk surfaces leaving the
main processor and interconnect available to perform
other tasks.

• Reduced data movement overhead: Data does not
move over system bus, memory bus, to cache, etc.
Bus bandwidth is significantly reduced, maybe orders
of magnitude depending on data and search criteria.

• Hardware logic for searching: Searching, matching
and query operations are performed on streaming
data in hardware rather than in software.

• Specialized hardware logic tailored to queries:
Reconfigurable logic permits matching the matching
hardware to the query requirements and preserves
flexibility.

3. Example Applications

To illustrate the use of the system, a number of
example applications are described: unstructured text
searches, biological sequence matching, data reductions,
and image searches. All of these applications are
currently heavily used, and all tax the capabilities of
current systems to deliver the throughput desired.

Unstructured text searching: As described above, a
compound query posed in a text search context can be
decomposed into the individual word searches (to be
executed in the reconfigurable logic) and the composition
of the word search results (executed on the
microprocessor). Here, we describe a simple mechanism
whereby the individual word searches can return positive
results for approximate matches.

An example configuration for the reconfigurable
hardware is illustrated in Figure 3. At the top of the
figure is a section of the DSR that contains raw data
streaming off the disk head. Immediately below the DSR
is a Compare Register (CR) that contains pattern data.
Next is Fine-Grained Comparison Logic (FCL) that
performs element by element comparisons between
elements of the DSR and the CR. The FCL can be
configured to be either case sensitive or case insensitive.
Also notice the alternate routing of DSR elements to
individual FCL cells on the right-hand side of the figure.
An FCL cell that can match more than one position in the
DSR enables a single 6 element CR to match both the
commonly used spelling of “Baghdad” as well as the
alternate “Bagdad” in shared hardware. Below the FCL
cells is Word-Level Comparison Logic (WCL) that is
responsible for determining whether or not a word match
occurs. The actual configuration will vary with query
type. The Word-Level Match Signals are delivered to the
control microprocessor for evaluation of the compound
query. A match to the entire query is reported to the host
processor. Our VHDL design of this example, configured
for exact matching, synthesizes to a FPGA-based gate-
level equivalent model that is estimated to execute at over
220 MHz, for an aggregate data throughput of almost
2 Gb/s [3]. This is in contrast to measured throughput

data for the Unix grep utility (executing the software-
level equivalent function) of approximately 280 Mb/s [4].

Data Shift Register (DSR)
from
disk
head

Compare
Register

(CR)

Fine-Grained
Comparison
Logic (FCL)

Word-Level
Comparison
Logic (WCL)

Word-Level
Match Signal

… …

B A G D A D

B A G H D A D

Figure 3. Reconfigurable hardware for text search

application.

Exact matching, however, is only a small fraction of
what the system is intended to do. Flexible string matches
can be supported through the use of regular expressions.
Directly synthesized finite-state machine recognizers have
been developed [5] for firewall applications and are
directly applicable here.

As an alternative to either exact string matches or
regular expressions, it is sometimes convenient to express
the desired search in terms of an acceptable number of
mismatches (e.g., insertions, deletions, and substitutions).
Algorithms for this type of search (incorporated into the
Unix command agrep) are described in [6] and [7]. Our
systolic array implementation of this algorithm is
described in [3], which executes at a clock rate of 100
MHz, accepting one character each clock, for an
aggregate data rate of 800 Mb/s.

One more alternative, which provides significant
benefits when a significant number of strings are being
searched, is the use of Bloom filters. A Bloom filter is a
data structure to store a set of signatures succinctly by
computing multiple hash functions on each member of the
set [8]. With this technique, a database is then queried for
membership of a particular string in the set. The answer
to this query can be false positive but never false negative.
Furthermore, the false positive rate can be managed and is
predictable. We have implementations of Bloom filters in
reconfigurable hardware that have been demonstrated for
use in Internet firewalls [9] and designs appropriate for
the longest prefix matching problem prevalent in routers
[10]. The adaptation of these designs for database
searching is straightforward.

Sequence matching: The basic set of operations in
sequence matching corresponds to a dynamic
programming problem when executed on a conventional
system [11,12]. This can be described using Figure 4.
Here, p1p2p3p4 represent 4 symbols from a pattern p,
t1t2t3…t9 represent symbols from a target t, and di,j
represents the edit distance at position i in the pattern and
position j in the target. In normal usage the pattern is

short relative to the target. Typical sizes might have p on
the order of 1000-2000 characters and t many billions of
characters.

The dynamic programming problem is as follows.
There is a set of known (constant) values for an additional
row (d0,j) and column (di,0) not shown in the figure.
Additionally, there are two “scoring functions” provided,
A and Bi,j , where A is a constant and Bi,j is a function of
pi and tj (i.e., Bi,j = f(pi, tj)).

The values for di,j are computed using the fact that di,j
is only a function of the following set

{pi tj di-1,j-1 di-1,j di,j-1}.

This is illustrated in the figure by showing the
dependency of d3,6 on the values of d2,5 and d2,6 and d3,5 as
well as p3 and t6 (through A and B). The form of the
function can be quite arbitrary, but is usually constructed
in the following form:

di,j = max[di,j-1 + A; di-1,j + A; di-1,j-1 + Bi,j].

A match is declared when a value in the table exceeds a
predetermined threshold. The match is then examined via
a traceback operation within the table. In the proposed
architecture, the reconfigurable logic computes the entries
in the table (di,j) and checks for the threshold. The control
microprocessor is responsible for the traceback.

Figure 5 shows the block diagram of a systolic array
architecture for computing the values in the table. The
characters of the pattern are stored in the column of
registers on the right of the figure (labeled p1, p2, p3, and
p4). The characters in the target flow from left to right in
the shift registers at the top of the figure (labeled t5
through t8, illustrating positions 5 through 8 in the target).
The systolic cells are in the interior of the figure (labeled
di,j). In the first (combinatorial) part of a clock cycle, the
four underlined values are computed. For example, the
new value d3,6 is shown to depend upon the same five
values illustrated earlier in Figure 4. In the second (latch)
part of the clock cycle, all the characters in t and d are
shifted one position to the right. In an initial VHDL
design of the systolic array (targeting a Xilinx FPGA
implementation) we have achieved a throughput of 800
Mb/s for the target data [4,13]. This represents a
performance improvement of more than two orders of
magnitude over the software solution.

As presented above, the dynamic programming
problem determines the best match that is referenced
locally in the database and globally in the pattern. This
problem is equivalent to the edit distance problem
between a string and a database, also of interest in the text
search application.

p1

p2

p3

p4

t1 t2 t3 t4 t5 t6 t7 t8 t9

d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9

d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8 d2,9

d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8 d3,9

d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8 d4,9

Figure 4. Dynamic programming example.

d3,6

d2,6

d3,5

d2,7 d2,5

t7 t6 t5

p1

p2

p3

p4

t8

d1,8 d1,7 d1,6

d3,4

d4,5 d4,4
Figure 5. Systolic array for sequence matching.

Data reduction: In some cases, we are not interested
in finding a single item in a large database, but rather
summarizing the data in some aggregate form. Examples
of this in financial data might include the minimum,
maximum, and latest price of a stock (or other financial
vehicle).

The reconfigurable logic to compute aggregate data
reductions is illustrated in Figure 6. Here, the shift
register at the top is configured to store transactions. As
each transaction flows through the system, it is fed into
the decision logic below it to compute the data reductions
themselves. In this example, three data reductions are
shown, calculating the minimum price, the maximum
price, and the latest price.

t

A B A B A B
min(A,B) max(A,B) A>B

time

t.t
im

e

t.p
ric

e

t.p
ric

e

t.p
ric

e

min
price

max
price

latest
price

Figure 6. Data reduction.

Note that in this example, the fact that the database is
structured and possibly indexed does not eliminate the
need to scan the entire data set.

Image searching: Many matching applications
operate on data that represent a two-dimensional entity,
such as an image. For example, one approach to the
object recognition problem is to repeatedly compare the
field of interest in an image to templates that store a
representation of the objects to be recognized [14]. For
imaging applications, the structure of the reconfigurable
logic from Figure 2 must take into account the fact that
the logical structure of the data is two-dimensional. In
addition, the matching operations themselves are often
significantly different on two-dimensional data, and this
must also be supported by the reconfigurable logic.

Figure 7 illustrates a systolic array designed to enable
matches on two-dimensional data. The individual cells
each hold one pixel of the pattern image and one pixel of
the target image (or, more realistically, a block of pixels
from the pattern and the target). For images of
sufficiently large size, it is likely they will not all fit into
one reconfigurable logic chip. A candidate partitioning of
cells to chips is shown with the dashed lines, placing a
rectangular subarray of cells in each chip. If this subarray
is square (i.e., same number of cells in the vertical and
horizontal dimension), that minimizes the number of chip-
to-chip connections required.

Loading of the target images is as follows. Individual
rows of the target image flow off the disk into the Data
Shift Register (see Figure 2). When the entire row is
loaded, the row is shifted down to the next row, using the
vertical links shown in each column. Once the entire
image is loaded into the array, a comparison operation is
performed, which might require arbitrary communication
between neighboring cells. This is supported by both the
horizontal and vertical bi-directional links shown in
Figure 7.

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6

c4,1 c4,2 c4,3 c4,4 c4,5 c4,6

c5,1 c5,2 c5,3 c5,4 c5,5 c5,6

c6,1 c6,2 c6,3 c6,4 c6,5 c6,6

Figure 7. Two-dimensional data array.

One design for the individual cells is illustrated in
Figure 8. Here, the pixel registers LOADTi,j contain the
target pixels currently being loaded into the array, The
registers CMPTi,j contain a copy of LOADTi,j made once
a complete image has been loaded. This enables the last
image loaded to be compared in parallel with the next
image being loaded, essentially establishing a pipelined
sequence of load, compare, load, compare, etc. The
registers CMPPi,j contain the pixels of the pattern image
to be used for comparison purposes, and the Compare
Logic performs the matching operation on CMPTi,j and
CMPPi,j. Note that for complex matching functions, the
Compare Logic can communicate with the neighboring
cells to the left, right, up, and down.

Compare
Logic

CMPTi,j

LOADTi,j

CMPPi,j

ci,j

Figure 8. Initial cell design.

An alternative design for each cell is illustrated in

Figure 9. Here, the design of Figure 8 has been
augmented to support simultaneous loading of the pattern
image and the target image. The new registers LOADPi,j
are used to load the pattern, and are operated in the same
manner as LOADTi,j. With this system, if one disk read
head is positioned above the pattern image, and a second
read head is positioned above the target image, they can
both flow off the disk in parallel and be concurrently
loaded into the array.

Compare
Logic

CMPTi,j

LOADTi,j

CMPPi,j

ci,j

LOADPi,j

Figure 9. Alternate cell design.

There are a number of important issues associated

with the effective use of our system in an image
environment. One such issue is the registration of the
pattern and target images. In the object recognition
problem, this is typically handled prior to the recognition
step, and rather than full images, sub-images or chips are
stored in the template database. In other applications it is
necessary to incorporate some final (pixel-level)
registration operations as part of the comparison operation
itself. The horizontal and vertical data paths shown in
Figure 7 can be used to facilitate such operations.

As an example of the type of image search problem
that can be accelerated with the proposed system, we have
previously investigated the automatic recognition of
objects within synthetic radar (SAR) imagery [14,15,16].
Here, SAR images are compared with templates in an
object database using a conditionally Gaussian data
model. In this system, the registration requirements are
such that the image and template need only be aligned to
approximately 5 pixels in each direction. Greater
misalignment would require use of the horizontal and
vertical communication paths in Figure 7 to perform a
local search.

Another potential use of the image search system is
object recognition in millimeter wave imagery of people
entering a restricted area, such as an airport concourse. In
these images, non-metallic sharp objects are readily
detected, yet there are serious privacy concerns associated
with human scanning, since the modality effectively
“sees” through clothing. An automated recognition
system that does not present images to operators has the
potential to be effective at the security task while
mitigating (even though not eliminating) the privacy
issue.

Other applications: The above section has
described the reconfigurable hardware structure and
operation for a few specific applications. Other data
mining applications will have distinct low-level
operations that need to be performed. One strength of this
system is the fact that the reconfigurable logic is flexible
enough to support not only the example applications
already described, but a large variety of additional
structures, even those not yet envisioned when the system
was designed.

4. Scaling and Performance

A general pattern that can be extrapolated from the
example designs given above is that the reconfigurable
hardware is well suited to fast, simple operations. It
basically acts as a first-level data filter, examining a large
volume of data quickly, and informing the higher-level
system what subset of the data is worthy of further
consideration.

Synthesizeable

Hardware Description
Language (e.g., VHDL)

Query
Compiler

Compound
Query

High-Level
Language (e.g., C/C++)

Logic
Synthesis

Toolset

Language
Compiler

Reconfigurable
Hardware

Control
uP

Figure 10. Transformation of queries for data mining.

In essence, the hardware is very good at low-level

matching operations. Database mining, however, is less
about low-level matching operations and more about
high-level functionality. As more and more sophisticated
data models are employed, we ask more and more
complex questions of the data. This high-level
functionality is not particularly well suited to direct
hardware implementation. The above observation points
to a hierarchical approach to the use of the system. The
reconfigurable logic is used to perform low-level
operations, pre-filtering the data at high throughput rates,
and software is used to perform high-level operations,
implementing sophisticated data models and answering
complex queries. In the most general case, an arbitrary
query will go through the transformation process
illustrated in Figure 10. We assume that the database
system that executes on the host processor generates a
query (representing some data mining operation). This
query proceeds through a compiler (second block), also
located on the host processor, which is responsible for
query analysis. There are two main results from the query
analysis:

• determining the structure of the reconfigurable
logic required to perform low-level operations on
the data streaming off the disk, and

• determining the high-level operations that must
be implemented in the control microprocessor.

Although the path represented by Figure 10 is quite
general, and will therefore be able to handle a wide range
of potential queries, it has the drawback that the latency
introduced into the search process might be too long. If
the compilation process is too long, it might become the
performance bottleneck rather than the search itself. This
issue can be addressed for a wide range of likely queries
by maintaining a set of precompiled hardware templates
that handle the most common cases.

The performance of the system is discussed below
with respect to two significant performance-impacting
factors: the organization of the file system and the impact
of scaling and parallelism.

File System Organization: If the above described
hardware system is to be effectively utilized, the file
system must be organized in such a way that data can

continually stream off the disk head and into the data shift
register. This requires a different set of data placement
techniques than are currently used. In addition, the data
placement algorithms must have access to true physical
CHS (cylinder, head, sector) information. It is current
practice to address a disk drive with logical CHS
information, which is then mapped internally by the drive
controller to an arbitrary (typically unreported) physical
CHS. To support true streaming data, minimizing seek
time and inter-block gaps, we must have access to the
logical to physical CHS mapping. Recent work in Object
Based Disks (see Section 5 below) supports this type of
information being available.

In our current prototype, we have been experimenting
with an off-the-shelf Ultra ATA 100 drive (Seagate
#ST320414A) formatted with the ext2 file system. With
careful placement of data on the drive, we have been able
to sustain transfer rates of 320 Mb/s off the drive, a rate
that represents two-thirds of the maximum internal data
rate (from the read head) [3,4]. This access rate will
clearly improve with higher-performance drives, yet it
points out the clear need to ensure that seek time does not
dominate the overall data transfer process.

Scaling and Parallelism: One of the important
benefits of positioning the reconfigurable hardware in the
proximity of the read head is the ability to exploit
parallelism not available outside the drive. Modern drives
have between 2 and 16 read heads continually flying over
the disk surface, and current access mechanisms only
allow the data from one such head to be available at a
time. By associating reconfigurable hardware with each
head, performance gains up to the number of read heads
can potentially be achieved.

In order to realize the potential for parallel
performance, we must ensure that the end effects (i.e.,
track-to-track effects) do not significantly impact the
overall processing rate. In our system, the strategy for
addressing this issue is based on the observation that the
volume of data available on a track is fairly significant
(on the order of 1 MByte), which enables the
reconfigurable hardware to handle the vast majority of the
data in a truly streaming mode (i.e., not limited by end
effects). By forwarding the data at the beginning and end
of each track to the associated microprocessor, a parallel
search (in software) can easily find matches that cross

track boundaries. For example, if a match could
potentially require 2 KB of data (most queries are
nowhere near this size), the software can afford to execute
500 times (1 MB/2 KB) slower than the hardware and still
keep up.

Performance: While the overall system is still under
development, a sufficient number of component pieces
exist to report on their performance. Three reconfigurable
hardware search kernels have undergone detailed design
(i.e., VHDL-level design), and two are operational. The
exact text search engine design operates at 220 MHz as
reported by the synthesis tools (one character per clock, or
1.8 Gb/s) [3]; the approximate text search engine
(agrep) has been tested to 100 MHz (one character per
clock, 800 Mb/s) [3]; and the biosequence search engine
has been tested to 25 MHz (four characters per clock, 800
Mb/s) [4,13].

Software implementations of these three kernels have
been measured on a 933 MHz PC as follows: 280 Mb/s
for exact text searches, 26 Mb/s for approximate text
searches (allowing up to 8 errors), and 6.4 Mb/s for the
biosequence search. Table 1 shows the speedup
achievable under two conditions, one is the measured
performance as limited by our current ATA drive and the
other under the conditions were a faster drive is available
and the reconfigurable logic kernel is the performance
limit.

Table 1. Application speedups.

Application Disk-limited
speedup

Logic-limited
speedup

Exact text search 1.1 6.4
Approx. text search 12 31
Biosequence search 50 125

5. Related Work

Recent research into new types of database machines,
referred to as “Active Disks,” has provided a number of
ideas for off-loading a variety of operations to commodity
processors that interact directly with the data storage
drive. Work in this area includes [17,18,19,20,21] among
others. Unfortunately, these efforts retain the major
limitations inherent in performing basic operations:
moving data from the disk to processor memory, moving
data from memory to processor cache, and (probably most
important) executing a program to perform the desired
operation.

An important piece of complementary work that is
currently ongoing is the current interest in Object Based
Disks (OBDs). This work forms some of the
underpinnings of the Lustre file system [22], soon to be
installed on the largest clusters. The fundamental idea
behind OBDs is that rather than viewing the disk drive
interface as block-based, the interaction between the
system and the disk is at a higher semantic level. Initially,

this is envisioned to be at the file level, with responsibility
for allocating file components left to the discretion of the
drive system rather than being controlled by the OS.
Additionally, the OBD interface architecture supports the
extension of the command set to allow the invocation of
search operations, moving the interaction to an even
higher level.

6. Summary and Conclusions

This paper presents the basic design of a data-mining
system that has the potential for truly fast operation,
unhindered by the overheads imposed by the I/O bus,
main memory bus, cache, operating system, etc. An
important requirement for the ultimate success of this
system is the decomposition of data mining operations
into low-level operations that can execute on the
reconfigurable hardware and high-level operations that
execute in software.

The system achieves performance gains via four
mechanisms: reduced data movement overhead, searches
operating at hardware speeds, specialization of the
hardware logic to the particular query, and parallelism at
both the disk and system levels.

We currently have initial prototype implementations
of the reconfigurable hardware for several of the
applications described above, and are working to further
improve their performance. Those designs are described
in more detail in [3,4,13]. We are also developing
performance models that help assess the performance
gains that can be achieved using the proposed system.

[1] John Reynders, “Computing Biology,” invited talk at

5th High Performance Embedded Computing
Workshop, November 2001.

[2] Pedro Domingos and Geoff Hulten, “Catching Up
with the Data: Research Issues in Mining Data
Streams,” in Workshop on Research Issues in Data
Mining and Knowledge Discovery, May 2001.

[3] Qiong Zhang, Roger D. Chamberlain, Ronald S.
Indeck, Benjamin M. West, “Reconfigurable
Hardware Assisted Database Searching: Approximate
String Matching,” submitted to IEEE 14th
International Conference on Application-Specific
Systems, Architectures, and Processors, June 2003.

[4] Benjamin M. West, “An FPGA-Based, High-Speed
Search Engine for Off-the-Shelf Hard Drives,”
Master’s Thesis, Washington University, May 2003.

[5] John Lockwood, Chris Zuver, Chris Neely, James
Moscola, Sarang Dharmapurikar, “An Extensible
System-On-Chip Internet Firewall,” submitted to
Design Automation Conf., June 2003.

[6] R. Baeza-Yates and G.H. Gonnet, “A new approach
to text searching,” Communications of the ACM,
35(10):74-82, October 1992.

[7] S. Wu and U. Manber, “Fast text searching allowing

errors,” Communications of the ACM, 35(10): 83-91,
October 1992.

[8] B.H. Bloom, “Space/Time Trade-offs in Hash Coding
with Allowable Errors,” Communications of the
ACM, 13(7):422-426, July 1970.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood, “Rapid Signature Detection Using
Hardware Bloom Filters,” submitted to Usenix, 2003.

[10] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor,
“Longest Prefix Matching using Bloom Filters,”
submitted to SIGCOMM, 2003.

[11] Dan Gusfield, Algorithms on Strings, Trees, and
Sequences, Cambridge University Press, 1997.

[12] S.F. Altschul, W. Gish, W. Miller, E.W Myers, and
D.J. Lipman, “Basic Local Alignment Search Tool,”
J. Mol. Biol., 215:403-410.

[13] B.M. West, R.D. Chamberlain, R.S. Indeck, and Q.
Zhang, “An FPGA-based Search Engine for
Unstructured Databases,” submitted to VLDB,
September 2003.

[14] J.A. O'Sullivan, M.D. DeVore, V. Kedia, and M.I.
Miller, “SAR ATR performance using a conditionally
Gaussian model,” IEEE Transactions on Aerospace
and Electronic Systems, 37(1):91-108, January 2001.

[15] Michael D. DeVore, Joseph A. O'Sullivan, Roger D.
Chamberlain, and Mark A. Franklin, “Relationships
Between Computational System Performance and
Recognition System Performance,” in Proc. of SPIE
15th Annual International Symposium on
Aerospace/Defense Sensing, Simulation and Controls
(Automatic Target Recognition XI), April 2001.

[16] Michael D. DeVore, Roger D. Chamberlain, George
L. Engel, Joseph A. O'Sullivan, and Mark A.
Franklin, “Tradeoffs Between Quality of Results and
Resource Consumption in a Recognition System,” in
Proc. of IEEE Int’l Conf. on Application-Specific
Systems, Architectures and Processors, pp. 391-402,
July 2002.

[17] Erik Riedel, “Active Disks – Remote Execution for
Network-Attached Storage,” PhD Thesis, Carnegie-
Mellon University, 1999.

[18] Erik Riedel, Garth Gibson, and Christos Faloutsos,
“Active Storage For Large-Scale Data Mining and
Multimedia,” in Proceedings of the 24th
International Conference on Very Large Databases,
pp. 62-73, August 1998.

[19] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and
David Nagle, “Active Disks for Large-Scale Data
Processing,” IEEE Computer, 34(6):68-74, June
2001.

[20] Kimberly Keeton, David A. Patterson, and Joseph M.
Hellerstein, “A Case for Intelligent Disks (IDISKs),”
SIGMOD Record, 24(7): 42-52, September 1998.

[21] A. Acharya, M. Uysal, and J. Saltz, “Active Disks,”
in Proc. of Conf. on Architectural Support for

Programming Languages and Operating Systems, pp.
81-91, October 1998.

[22] Cluster File Systems, “Lustre: A Scalable High-
Performance File System,” White Paper, 2002.

	The Mercury System: Exploiting Truly Fast Hardware in Data Mining
	Recommended Citation
	The Mercury System: Exploiting Truly Fast Hardware in Data Mining

	Roger D. Chamberlain

	Abstract: Abstract: In many data mining applications, the size of the database is not only extremely large, it is also growing rapidly. Even for relatively simple searches, the time required to move the data off magnetic media, cross the system bus into main memory, copy into processor cache, and then execute code to perform a search is prohibitive. We are building a system in which a significant portion of the data mining task (i.e., the portion that examines the bulk of the raw data) is implemented in fast hardware, close to the magnetic media on which it is stored. Furthermore, this hardware can be replicated allowing mining tasks to be performed in parallel, thus providing further speedup for the overall mining application. In this paper, we describe a general framework under which this can be accomplished and provide initial performance results for a set of applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: March 10, 2003
	Author: Authors: Chamberlain, Roger D.; Cytron, Ron K.; Franklin, Mark A.; Indeck, Ronald S.
	Title: The Mercury System: Exploiting Truly Fast Hardware in Data Mining
	ReportNumber: 2003-10
	DepartmentName: Department of Computer Science & Engineering

