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Abstract accurate knowledge about system workload, AQC can pro-

. o __vide robust QoS guarantees in unpredictable environments

This paper presents the Distributed End-to-end Utiization py adapting to workload variations based on online feedback.
CONirol (DEUCON) algorithm. DEUCON can dynamically - A key advantage of AQC is that it adopts a control-theoretic
enforce desired CPU utilizations on all processors in a dis- framework for systematically developing adaptation strate-
tributed real-time system despite uncertainties in the systengies based on formal control analysis. This rigorous design
workload. In contrast to earlier centralized control schemes, methodology is in sharp contrast to heuristic-based adap-
DEUCON is a distributed control algorithm that is system- tive solutions that rely on extensive empirical evaluation and
atically designed based on the Distributed Model Predictive manual tuning.
Control theory. We decompose the global multi-processor As a key step toward an AQC framework fdistributed
utilization control problem into a set of localized subprob- real-time embedded systems, we are deve|0ping adapﬁ.ve
lems, and design a peer-to-peer control structure where eacllization controlalgorithms. The goal of utilization control is
local controller only needs to coordinate with a small number to enforce desired CPU utilizations on all the processors in
of neighbor processors. DEUCON can provide utilization a distributed system despite significant uncertainties in sys-
guarantees similar to a centralized control algorithm, while tem workloads. Utilization control can be used to enforce
significantly reducing the per-controller run-time overhead appropriate schedulable utilization bounds on all processors
in terms of both computation and communication. Further-to guarantee end-to-end task deadlines. It can also enhance
more, it can tolerate considerable network delay and indi- system survivability by providing overload protection against
vidual processor failures. Consequently, DEUCON can pro-workload fluctuation.
vide scalable and robust utilization control services for Iarge DRE systems introduce many new research Cha”enges for
distributed real-time systems that operate in unpredictableAQC that have not been addressed in earlier work on single-

environments. processor systems. They requimallti-input-multi-output
(MIMO) control solutions to manage the system QoS on mul-
1 Introduction tiple processors. More importantly, the QoS of different pro-

cessors are oftetoupledwith each other due to complex in-

Recent years have seen rapid growth of Distributed Realteractions among distributed application components. In par-
time Embedded (DRE) applications executing unpre- ticular, many DRE systems employ the comnerd-to-end
dictableenvironments in which workloads are unknown and task modef14], where a task may be comprised of a chain of
vary significantly at run-time. Such systems include data-subtasks on different processors. In such systems, the CPU
driven and open systems whose execution is heavily influ-utilizations of different processors cannot be controlled inde-
enced by volatile environments. For example, task executiorpendently from others. For example, changing the rate of a
times in vision-based feedback control systems depend otask will affect the load on all the processors where its sub-
the content of live camera images of changing environmentdasks are located. Therefore, the coupling among processors
[10]. Likewise, the supervisory control and data acquisition must be modeled and addressed in the design of QoS control
(SCADA) systems for power grid control may experience algorithms.
dramatic load increase during a cascade power failure [6]. Our earlier work in this area produced EUCON (End-to-
Furthermore, as DRE systems become connected to the Irend Utilization CONTtrol) [17], the first control-theoretic uti-
ternet, they are exposed to load disturbances due to variablization control algorithm designed for DRE systems with
user requests and even cyber attacks [6]. end-to-end tasks. EUCON can maintain desired CPU uti-

As DRE systems executing in unpredictable environ-lizations on multiple processors despite uncertainties in task
ments become increasingly important to our society, a newexecution times and coupling among processors. It employs
paradigm of real-time computing based Buaptive QoS a centralizedMIMO model predictive controller to manage
Control (AQC)has received significant attention. In contrast and coordinate the adaptation of multiple processors in a
to traditional approaches to real-time systems that rely orDRE system. While it is a promising starting point and suit-



able for small-scale DRE systems, this centralized contro{ P;|]1 < i < n}. TaskT; is composed of a chain of sub-
scheme has several limitations. Since its communication andasks{T;;|1 < j < n;} located on different processors. The
computation overhead depends on the size afraite DRE release of subtasks is subject to precedence constraints, i.e.,
system, it cannot handle large-scale systems (e.g. wide-aresubtaskl;; (1 < j < n;) cannot be released for execution
power grid management and ubiquitous smart spaces). Fuuntil its predecessor subta§k;_; is completed. If a non-
thermore, the processor executing the controller is a singlgreedy synchronization protocol (e.g., release guard [26]) is
point of failure since the entire system will lose the capabil- used to enforce the precedence constraints, all the subtasks
ity of QoS adaptation if it fails. of a periodic task share the same rate as the first subtask.
In this paper, we present a netistributed control al-  Therefore, the rate of a task (and all its subtasks) can be ad-
gorithm called Distributed End-to-end Utiization CONtrol justed by changing the rate of its first subtask. In this paper,
(DEUCON that significantly enhance the scalability and re- the processor hosting the first subtask of a task is called its
liability of utilization control for DRE systems. In sharp master processoOnly a task’s master processor can change
contrast to the centralized control scheme adopted by EU#s rate.
CON, DEUCON features a novel peer-to-peer control struc-  Qur task model has two important properties. First, while
ture where each processor has an efficlentl controller each subtasi;; has anestimatedexecution timer;; avail-
that only coordinates with a small number of neighbor con-able at design time, itactual execution time may be differ-
trollers. This feature allows DEUCON to scale well in large ent from its estimation and vary at run time. Modeling such
distributed systems and tolerate individual processor failuresuncertainty is important to DRE systems operating in unpre-
To our best knowledge, DEUCON is the fidistributedQoS  dictable environments. Second, the rate of a tBsinay be
control algorithm designed for DRE systems with end-to-enddynamically adjusted within a rand®,,.in i, Rmaz.i). This
tasks. The primary contributions of this paper are three-fold.assumption is based on the fact that the task rates in many
DRE applications (e.g., digital control [19][22], sensor up-
e A new scheme for decomposing the global multi- gate, and multimedia [3]) can be dynamically adjusted with-
processor utilization control problem into a set of local- oyt causing system failure.
ized subproplems to facilitate the design of distributed Each taskT} is subject to an end-to-end relative deadline
control solutions. related to its period. In an end-to-end scheduling approach
[26], the deadline of an end-to-end task is divided into sub-
deadlines of its subtasks [11][20]. Hence the problem of
meeting the deadline is transformed to the problem of meet-
ing the subdeadline of each subtask. A well known approach
e Simulation results showing that DEUCON can pro- for meeting the subdeadlines on a processor is to ensure its
vide robust utilization guarantees to mu|t|p|e processorsutilization remains below its schedulable utilization bound
through task rate adaptation, while introducing only a [12][13].
fraction of computation and communication overhead
of a centralized solution. 2.2 Problem Formulation

e A novel peer-to-peer control structure and localized
utilization control algorithm designed based Dis-
tributed Model Predictive ContrdDMPC) theory [5].

The rest of this paper is organized as follows. Section 2
formulates the end-to-end utilization control problem. Sec-

tion 3 revisits the EUCON algorithm as a starting point for }ations.TS, the sampling period, is selected so that multiple

this work.~ Section 4 presents the design and analysis Olhstances of each task may be released during a sampling pe-
DEUCON. Section 5 evaluates DEUCON with simulations. riod. u;(k) is the CPU utilization of processa, in the k"

ggg::gz ? reviews related work. The paper concludes WIthsampling period, i.e., the fraction of time th&t is not idle

during time interval(k — 1)T%, kTs]. B; is the desired uti-
e lization set point onP;. r;(k) is the invocation rate of task
2 End-to-End Utilization Control T; in the (k + 1) sampling period.

_ , L Given the utilization set point vectoB = [B; ... B,]T
In this section we formulate the end-to-end utilization con- and the rate constrainf®,min_j, Rmas.;] for each taskr},

trol problem for DRE systems. the control goal ak'" sampling point (timek7,) is to dy-
namically choose task rat¢s; (k)1 < j < m} to minimize
2.1 Task Model the difference betweeRB; andu; (k) for all processors:

Utilization control can be formulated as a dynamic con-
strained optimization problem. We first introduce several no-

We adopt an end-to-end task model [14] implemented by N
many DRE applications. A system is comprisednofpe- min Z(B' — ik + 1)) 1)

riodic tasks{T;|1 < i < m} executing onn processors {rj(R)[1<j<m}
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Figure 1. EUCON's MIMO feedback loop with a cen-
tralized controller

Following a control-theoretical methodology, the EUCON
controller is designed based on a set of difference equations
. . that model the dynamics of theholeDRE system. A DRE
subject to constraints system is described by the followimgobal system model:

Roninj <7j(k) < Riazy (1< j<m) u(k + 1) = u(k) + GFAr(k) )

The rate constraints ensure all tasks remain within their

table rate ran Th timization formulation maxi The vectorAr(k) represents the changes in task rates.
acceptable rate ranges. 1he op aton formuiation MaxXl~ry,q ¢ ntask allocation matrixF, is ann x m-order matrix,

mizes task rates by making the utilization of each processo\r/vherefij — ¢, if a subtaskr; of taskT; is allocated to pro-

as close to its set point as allowed by the constraints. The de:

) : . cessotP;, andf;; = 0 if no subtask of tasK; is allocated to
sign goal is to ensure that all processors quickly converge t%rocessonP. F captures theouplingamong processors due
their utilization set points after a workload variation, when- i

to end-to-end task<s is ann x n diagonal matrix in which

ever it is feasible under the rate constraints. Therefore, to . . .
Larantee end-to-end deadlines. a user onlv needs to specifi represents the ratio between the change in the actual uti-
g ’ y PECIY ation and its estimation. The exact valuegpis unknown

the set p_omt_ of each processor to be avalue be_low its SChedlﬁue to the unpredictability in execution times. Note that
lable utilization bound. Utilization control algorithms can be

) : describes the effect of uncertainty in workload on the utiliza-
used to meet all the end-to-end deadlines by enforcing the S‘?fon of a DRE system. As an example, Figure 2 shows a DRE
points of all the processors in a DRE system. X '

system with five processors and four end-to-end tasks. It is
modeled by (2) with the following parameters:

3 EUCON Reuvisited s (k) G 0 0 0 0
. . . . . k 0 0O 0 O
In this section we briefly describe the EUCON algorithm . uz(k) _ 92
. . . . . ( ) = U3(k) ,G = 0 0 gs 0 0 y

developed in our earlier work [17], which provides a starting i 0 0 0 0

int and baseline for DEUCON (k) ga
poin - us (k) 0 0 0 0 gs
3.1 Feedback Control Loop 211 CO 8 8 Ary (k)

12 22

As shown in Figure 1, EUCON features a MIMO feedback F = 0 ¢ c31 O ,Ar(k) = 2@(/;)
control loop composed of a central controller and a utiliza- 0 0 «c32 cai Ar3 Ek;
tion monitor and rate modulator on each processor. EUCON 0 0 ¢33 ca2 "4

is invoked periodically at each sampling point The con-
trolled variables are the utilizations of all processank) =
[u1 (k)...u,(k)]T. The control inputs from the controller
are the change in task ratéer (k) = [Ary(k)...rm (k)]
whereAr; (k) =ri(k) —ri(k—=1) (1 <i<m).

The feedback control loop works as follows: (1) the uti- 3.3 Limitations
lization monitor on each processé} sends its utilization
u;(k) in the last sampling periof{x — 1)Ts, kTs) to the EUCON relies on a central controller to manage the adap-
central controller; (2) the controller collects the utilization tation of multiple processors in a DRE system. A central-
vector u(k) = [ui(k)...u,(k)]T including the utiliza- ized control scheme has several disadvantages. First, the
tions of all processors, computes a new rate change veaun-time overhead depends on the size of an entire DRE sys-
tor Ar(k) = [Ari(k)...Ar,(k)]T, and sends the new tem. Specifically, the worst-case computational complexity
task ratesr(k) = r(k — 1) + Ar(k) to the rate modula- of the central MPC controller is polynomial to the total num-
tors on master processors (i.e., processors that master at ledsdr of tasks and the total number of processors in the system.
one task); and (3) the rate modulators on master processofurthermore, since every processor in the system needs to
change the rates of tasks according (). communicate with the controller in every sampling period,

The EUCON controller was designed based on the above
global system model using thidlodel Predictive Control
(MPC) theory [18]. The detailed controller design is de-
scribed in [17].



=== Control signal for C;

the processor that runs the controller can become a commu- nK) T Erecedence constrat

nication bottleneck. Therefore, a centralized control scheme T :

cannot scale effectively in large DRE systems. Second, the S S &

control design of EUCON assumes that communication de- l

lays between the control processor and other processors are - e

negligible compared to the sampling period of the controller. b 5, P 5, .

This assumption may not hold in _networks with significant Figure 3. Data exchange between (' and its neigh-

delays such as the Internet and wireless sensor networks. lg,,g (other data exchanges are not shown)

addition, the processor executing the controller is a single

point of failure. The entire system will lose the capability to Definition ProcessoP; is P;'s indirect neighborif (1) P; is

adapt to the environment if it fails. the master processor of any Bf's concerned tasks and (2)
Centralized solutions are therefore more appropriate forP; is not P;'s direct neighbor oi?; itself.

small-scale DRE systems (e.g., control systems in a power

generation facility) than for large-scale DRE systems (e.g., The subproblem of a controller includes a set of utiliza-

wide-area power grid management). An important task is tations ascontrolled variablesand a set of task rates asa-

develop distributed control algorithms to improve the scal- nipulated variables In our decomposition scheme, the con-

ability and reliability of adaptive utilization control in DRE trolled variables of controlle€’; includew;(k), the host pro-

(k)

T,,@® T, @

systems. This is the focus of this paper. cessorP;’s utilization, andU D; (k), the set of utilizations of
P;'s direct neighbors.U D;(k) are considered’;’s neigh-
4 Design of DEUCON bor variables because they are affected by the rates of tasks

mastered byP;. Since each concerned task contributes to

In this section, we present the design of DEUCON. In con-the utilizations of ; and/or its direct neighbor<;;'s ma-
trast to the centralized control scheme adopted by EUCONnRipulated variables include the rates of allRfs concerned
DEUCON employs a peer-to-peer control structure with atasks. Note that a concerned task may be masteret; by
separate local controllef; on each master processéy. itself, its direct neighbor, or its indirect neighbor.
Each controller only coordinates with a small number of pro-  Figure 3 shows the same system as in Figure 2. We con-
cessors called its (logicafjeighbors As a result, the com-  sider controllelC; as an exampleP; has one direct neighbor
putation and communication overhead of each controller is &) due to taskl; mastered byP;. Its concerned tasks in-
function of the size of the processor’s neighborhood insteactludeT’; andT; (which has a subtask on direct neightia).

of the entire system. HencePs, the master processor %, is P;’s indirect neigh-
N bor. Therefore(”; has two controlled variables, (k) and
4.1 Problem Decomposition uz(k), and two manipulated variables(k) andrs (k).

i o Let setN R; (k) includes the rates of all d;’s concerned
A key step in our control design is to decompose the globak,cks and seNU;(k) = {u:(k)} UUD;(k), the subprob-

utilization control problem into a set of localized subprob- |em of ¢, then becomes the following localized constrained
lems. From a controllef’;’s perspective, the goal of de- optimization problem within its neighborhood:
composition is to partition the set of system variables into

three .subsets, |.nclud|nl5pc€:1l vapableson host processor min Z (B — w(k +1))? 3)

P;, neighbor variable®n P;'s neighbors, and all other vari- NR;(k)

ables in the system(;’s subproblem only includes its lo-

cal and neighbor variables. A key feature of our decomposi-subject to

tion scheme is that it balances two conflicting goals. On one

hand, the number of neighbor variables should be minimized R,,;,, ; <7;(k) < Rpaz,; (rj(k) € NR;(k))

to improve system scalability. On the other hand, the neigh-

bor variables must capture the coupling among processors In contrast to the global model (2) used in EUCON, each

so that local controllers can achieve global system stabilitycontroller in DEUCON has a localized model which only in-

through coordination in their neighborhoods. cludes its local and neighbor variables. This local model of
We first give several definitions before presenting our de-C; is described as:

composition scheme.

u (k)ENU, (k)

nu;(k + 1) = nu;(k) + GiF;Anr; (k) 4)
Definition ProcessolP; is P;'s direct neighborif P; has a
subtask belonging to an end-to-end task masterefl; by wherenu; (k) andnr;(k) are vectors comprised of all ele-
ments inNU, (k) and N R;(k), respectively.G; andF; are
Definition The concerned tasksf P; are the tasks which defined in the same way & andF in (2), but regarding
have subtasks located é# or P;’s direct neighbors. only the processors iVU; (k) and the task rates iN R; (k).



For example, the controll&r; shown in Figure 3 is mod- U D/ (k) is predicted based dii D, (k — 1) as a substitute for

eled with the following parameters. UD,;(k) to be transmitted over the network during interval
nuy (k) = uy (k) G |9 O [(k — 1)T§, kTs]. Each element;(k) € UDj(k) is calcu-
1 ug(k) |70t 0 g2 |’ lated using the following reference trajectory from measured
Foo| 0 Anry (k) = Ary(k) utilizationw;(k — 1) to its set pointB; over the followingP
L O B Arg (k) sampling periods.

) H Ts
From (4),C’s local model is ref; (k-1 = Bj—e_WI(Bj—uj(k—l)) (1<i<P)

ul(k; + 1) = U (k‘) + 91011AT1U€) . . B (5)
us(k+1) = ua(k) + ga(ciaAry (k) + caaAra(k)) whereT,.; is the t|rr_1e constant that .sp_ecn‘|es_the speed of
system responseP is called theprediction horizon The
Compared to the global model (2) which includes 5 pro-value ofref;(k + 1|k) is assigned ta/;(k). SinceU Dj(k)
cessors and 4 taskS; s local model only involves 2 proces- can take the whole last sampling period to transmit, DEU-
sors and 2 tasks. This indicates that a localized subproblenTON relaxes the requirement of instant utilization transmis-
has lower complexity than the global one. sion which is essential for EUCON.

4.2 Localized Feedback Control Loop 4.3 Controller Design

We now present DEUCON's localized feedback control |4 contrast to EUCON which has onlyne global con-
loop based on our decomposition scheme. The execution ofo|ler, everymasterprocessor in DEUCON has a controller.
a controllerC’; at each sampling poirit (time £7%) includes  Non-master processors do not need controllers because they
three steps: can not change the rate of any task. For example, in Figure 3,
1. Local control computation:C; executes a MPC algo- Processors’y, P3 and P, each have a controller, while,
rithm to solve its local subproblem. The feedback input and P; do not have a controller because they are not master
to the control algorithm includes (1 (k) from the lo-  Processors for any tasks. This feature reduces the overhead
cal utilization monitor, (2) a set gfredicted utilizations ~ Of DEUCON.
UD!(k) of its direct neighbors, and (3) the rates of con-  Based on the local system model (4), we apply the DMPC
cerned tasksN R;(k — 1) in the last sampling period. theory [5] .to de3|g|j a local controll@?. The goal of the
The output from the controlle?; includes the new rates  controller is to optimize a cost function (7) ovét sam-

for concerned tasksy R; (k). The details of the control ~ Pling periods, which is the prediction horizon. The objec-
algorithm are presented in Section 4.3. tive of optimization is to select an input trajectory that mini-

mizes the predicted cost while satisfying the constraints. The

2. Local actuation: The local rate modulator on’;  cost is predicted based on an approximated system model

changes the rates of the set of tasks masteref; - (). The input trajectory includes the control inputs in the

cording to the control input front”;. The other task following M sampling periods, e.gAN R;(k), AN R; (k +

rates in the control input will be ignored because they 1| .. ANR;(k + M — 1]k)!, whereM is called thecon-

are not mastered b¥;. trol horizon Once the input trajectory is computed, only the
first elementAN R; (k) is applied as the input signal to the
system. At next sampling point, the prediction horizon slides
one sampling period and the input is computed again as a
also sends the rates of tasks masteredPbyo those solution to a c/onstrained optimi;ation problem baseq on the
controllers which have these tasks as their concerneéeedbaCksf\[Ui(lC +1) fro/m its direct neighbors and itself,
tasks. In additionC; receives new predicted utiliza- WHereNU;(k +1) = UDi(k +1) U {ui(k + 1)}.
tions from its direct neighbors, and the actual rates of . The controller mc_ludes a least square splver, a cost func-
the concerned tasks which are not mastered by itselfio: @ reference trajectory, and an approximate local system
from its direct and indirect neighbors. They will be used model ysed to predict the cost in the pred|_ct|on horizon. The
for the local control computation at the next sampling approximate model used by our controller is as the following.

point (£ +1). nu;(k + 1) = nui(k) + F;Anr;(k) (6)
An important feature of our control design is that it can )
tolerate considerable network delays among neighbors. Note 1he above model has two differences from the actual sys-
that in step 1, theredictedutilizations U D! (k) (instead of tem quel (4). First, .the ut|_I|zat|0n_s.of Q|rect neighbors are
UD;(k)) are provided by’;'s direct neighbors in the previ- approximated by their predicted utilizationsi!(k), where
ous sampling period. This is becausé®); (k) is not instan- 1The notationz(k + I|k) means that the value of variableat time
taneously available t¢’; at timekT, due to network delays. (k + )T depends on the conditions at tirh@.

3. Data exchange among neighbors; sends itpredicted
utilizationat the next sampling point.,(k+1), to other
controllers of which it serves as a direct neighb6t.




nu; (k) is a vector comprised of all elementsNU/ (k). As  the predicted utilizations from its direct neighbors and the ac-
discussed in Section 4.2, this approximation allows DEU-tual rates of a subset of its concerned tasks from its direct and
CON to tolerate network delays. Second, because the reahdirect neighbors. Hence, similar to computation, the com-
system gaingx; in system model (4) are unknown in unpre- munication overhead of EUCON is proportional to the entire
dicted environments, our controller assungs= [1...1]7, system while DEUCON depends only on its neighborhood
i.e., the controller assumes that the estimated execution timesize.
are accurate. Although this approximate model is not an ex- We note that the size of a controller’s neighborhood is usu-
act characterization of the real system, the closed loop sysally much smaller than the entire DRE system, especially in
tem under our controller can still maintain stability and guar- large systems where scalability is most needed. Even in a
antee desired utilization set points as longGsare within -~ DRE system comprised of many processors, an end-to-end
a certain range (see results in Section 5.3). This is due t@ask is typically comprised of only a small number of sub-
the coordination scheme and online feedbacks used in outasks. In practice, very few real-time tasks have control flows
distributed model predictive control algorithm. over hundreds of nodes. Therefore, distributed control algo-
At every sampling point, the controller computes the con-rithms based on our decomposition scheme can scale effec-
trol input Anr;(k) that minimizes the following cost func- tively in many large DRE systems.
tion under the rate constraints.

Vi(k) =7 | [ (k + 1k) — ref;(k + 1[k)]|2 Tolerance to Network Delay An advantage of DEUCON is
M—1 ) that it allows relatively long network delays among neigh-
+ 2= [lAnri(k +1[k) — Anri(k +1-1k)[* (7)  pors. since a controller does not need to wait for the cur-
whereP is the prediction horizon, anti/ is the control hori-  rent utilization from neighbors for its control computation,
zon. The first term in the cost function representstthek-  the control performance is not sensitive to communication
ing error, i.e., the difference between the utilization vector delays as long as they are upper-bounded by the controller’s
nu; (k + 1/k), which is predicted based on (6), and a refer- sampling period. This is in contrast to EUCON which re-
ence trajectoryref; (k + 1/k) defined in (5). The controller duires the network delay to be much shorter than the sam-
is designed to track an exponential reference trajectory thaPling period. This feature also enables DEUCON to tolerate
converges to the set points so that the closed-loop system bglock drift among neighbors as long as their differences are
haves like a desired linear system. By minimizing the track-Small compared to the sampling period.
ing error, the closed-loop system will also converge to the uti-
lization set point. The second term in the cost function rep-Stability analysis DEUCON is a feedback control algo-
resents theontrol penalty The control penalty term causes rithm that at every time step selects the task rates based on the
the controller to minimize the changes in the control input. current processor utilizations. Stability analysis is important
This constrained optimization problem can be transformedn order to derive conditions that guarantee that the utiliza-
to a standard constrained least square problem. Contégller tions will converge to the desired set points. Our previous
can then use a standard least-sqaure solver to solve this prolrork has successfully applied MPC stability analysis to EU-
lem on-line. The detailed transformation is not shown due toCON [17]. This is a direct approach based on the eigenvalues
space limit. The worst-case computation complexity of theof the closed-loop system. The approach can be extended for
solver is polynomial to the numbers of tasks and processor® EUCON by using the localized system model (4) in place

in the localized model (6). of the global system model (2). Through our analysis, we can
. . derive the range of deviations of execution times from their
4.4 Algorithm Analysis estimations under which the system remain stable. However,

ue to the coupling among controllers, our current analysis
ecomes very complex as the number of tasks, controllers,
and prediction and control horizons increase. Stability anal-
Scalability The controller overhead includes computation ysis of DMPC is an active research area. Although there is
overhead and communication overhead. Since a model praio general solution, results have been derived for specific
dictive controller's worst-case computation complexity is classes of systems [5][8]. We observe that the MIMO system
polynomial to the number of processors and the number ofnodel in DEUCON has a special structure since there is cou-
tasks, EUCON'’s computation complexity increases as syspling in the control inputs, i.e., a change in a task rate (con-
tem scale increases. In contast, the local model (4) indicatesol input) will affect the utilization in all direct neighbors,
that the computation overhead in DEUCON is only a func- but there is no coupling between the states, i.e., utilization
tion of the neighborhood size. With regard to communicationof a processor does not depend on the utilization of the other
overhead, EUCON needs to receive the utilizations from andorocessors. A more efficient method for stability analysis of
send the rate changes to all processors in every sampling psuch models is under investigation and out of the scope of
riod. In the case of DEUCON, each controllers only receivesthis paper.

We now analyze some theoretical and practical issues OE
the DEUCON algorithm.
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5 Experimentation the actual execution times) may be kept constant or changed
dynamically in a run.
5.1 Experimental Setup We compare DEUCON against EUCON because EUCON

) ) ) ) is the only available utilization control algorithm for DRE
Our simulation environment is composed of an event-gystems with end-to-end tasks. Our previous results also
driven simulator implemented in C++ and a set of controllersgp, swed that EUCON significantly outperformed a common
implemented in MATLAB (R12). The simulator implements o6 160p approach that assigns fixed task rates based on es-
the utilization monitors, the rate modulators and the dis-imateq execution times [17]. In the following we present
tributed real-time system with interface to the controllers. . sets of simulations. Experiment | examines DEUCON's

The subtasks on each processor are scheduled by the RaiGerhead. Experiment Il evaluates DEUCON's performance
Monotonic Scheduling (RMS) algorithm [13]. The prece- nqer various types of unpredictable workloads.
dence constraints among subtasks are enforced by the release

guard protocol [26]. The controllers are based onldugin 5.2 Experiment |: Overhead
least square solver in MATLAB. The simulator opens a MAT-
LAB process and initializes all the controllers at start time.  As discussed in Section 3, a major limitation of central-
In the end of each sampling period, the simulator collects theéized controllers is that the run-time overhead is related to the
local utilization, the predicted neighborhood utilizations and size of the entire system. In contrast, the overhead of each
the concerned task rates for each controller, and then calls thigcal controller in DEUCON is just a function of its neigh-
controller in MATLAB. The controllers compute the control borhood size. Figure 5 compares the size of the entire system
input, Ar(k), and return it to the simulator. The simulator with the neighborhood size of each processor for the medium
then calls the rate modulators on each processor to adjust thsize workload. The centralized EUCON controller needs to
rates of its mastered tasks. model all the 10 processors and the 21 tasks in the system

Each task’s end-to-end deadlidg= n;/r;(k), wheren; while the average for DEUCON controllers is only 2.6 pro-
is the number of subtasks in tak Each end-to-end dead- cessors and 7.1 tasks, corresponding to a reduction by 74%
line is evenly divided into subdeadlines for its subtasks. Theand 66%, respectively.
resultant subdeadline of each subtdk equals its period, To estimate thaveragecomputation overhead of the con-
1/ri(k). Hence the schedulable utilization bound of RMS trollers, we measure the execution time of the least square
[13], B; = m;(2Y/™ — 1) is used as the utilization set point solver which dominates the computation cost on a 2GHz
on each processor, where; is the number of subtasks on Pentium 4 PC with 256MB RAM. In order to minimize the
P;. All (sub)tasks meet their (sub)deadlines if the utilization time delay caused by the IPC communication between the
set point on every processor is enforced. simulator and the MATLAB process in each remote com-

A medium size workload (as shown in Figure 4) has beenmand call, we use a single MATLAB command to run this
used in our experiments. It includes 21 tasks (with a total ofleast square solver for 1000 times as a subroutine. The
40 subtasks) executing on 10 processors. There are 14 endata shown in Figure 6 is the average of those 1000 runs.
to-end tasks running on multiple processors and 7 local tasksThe average exection time of all controllers in DEUCON
The controller parameters used for this workload include theis only 62% of EUCON's central controller. We note that
prediction horizon as 2 and the control horizon as 1. Thethe speedup in execution times is not strictly polynomial to
control periodl’; = 1000 time units. The time constaft.. s the numbers of neighbors and concerned tasks as one would
used in (5) is set as 4. Specific parameters of tasks are naixpect from the theoretical complexity of MPC algorithms.
shown due to space limit. This is attributed to difference between tngerageexecution

To evaluate the robustness of DEUCON when executiontime of MATLAB'’s Isglin solver and thevorst-casecompu-
times deviate from the estimation, the execution time of eachational complexity in the analysis. In addition, the initializa-
subtaskr;; can be changed by tuning a parameter called thetion cost in the optimization calculations is not negligible for
execution-time factoret f;; (k) = c;j/a:;(k), wherea;; is relatively small scale problems in our workload.
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We now investigate DEUCON’s communication overhead. ° 0 w0 10 200 20 300
As mentioned in Section 4, a controller's communication Time (sampling period)
overhead is a function of the number of processors com- (b) EUCON
municating with it. To estimate communication overhead Figure 8. CPU utilization of P, to P (etf=8)

due to utilizations exchange, we count the number of pro-greeight timegheir estimations. In this case, we can observe
cessors from which a controller receives the predicted uti-3 noticable difference in the transient state between DEU-
lizations. This is equal to the number of direct neighbors of coON and EUCON. While the utilizations of EUCON follow
the controller. To estimate communication overhead due tqhe same trajectory, utilizations of DEUCON diverge in the
task rates exchange, we count the processors from which gjddle of the run and then converge to their set points in the
controller receives the actual rate changes for one or morgnd. The reason for this divergence is that each controller
of its concerned tasks. The set of total processors commun DEUCON only utilizes local information and makes local
nicating with a controller is the union of these two processorgecision. Despite this slight difference in transient state, all
sets. From Figure 7 we can see that DEUCON's average estitjjizations converge to their set points within similar settling
mated per-controller communication overhead is 33% of thetjmes. Both DEUCON and EUCON achieve desired utiliza-
EUCON controller’s communication overhead. tion guarantees in steady states.

The overhead experiments demonstrate that for this T4 examine DEUCON’s perfromance under different ex-
medium workload, DEUCON's per-controller overhead is gcytion time factors, we plot the mean and standard devia-
only 33% (communication) to 62% (computation) of EU- tjon of utilization onP; during each run in Figure 9. Every
CON's centralized controller. As discussed in Section 4.4,4ata point is based on the measured utilizatigk) from
when system scale becomes larger, we can expect a bigggme 2007, to 3007, to exclude the transient response in the
difference between DEUCON and EUCON. Although the peginning of each run. The system performance is satisfac-
total overhead of all the controllers in DEUCON s higher tory if the average utilization is close to the utilization set
than EUCON'’s centralized controller, DEUCON improves point, and the standard deviation is small. Both EUCON and
the system scalability by distributing the overhead to differ- pEycON provide good utilization guarantees for all tested
ent master processors in the system. Overhead evaluation @kecution-time factors within thet f range[0.5, 10]. In this
DEUCON in a real middleware environment for large scale range, the average utilizations under EUCON and DEUCON
system is part of our future work. remain within+0.012 of the utilization set points and the
standard deviations remain below 0.025. However, when
etf = 8, DEUCON's performance is slightly worse than that
In this subsection we present two sets of simulation eX_Of EUCON, as its average utilization is 0.012 lower than its

periments. The first one evaluates DEUCON’s system perSet point. In addition, EUCON has a high deviation when
formance when task execution times deviate from the estietf = 9, because; has a longer settling time under EU-
mation. The second experiment tests DEUCON's ab|||ty to CON. As a result, the system is still in its transient state for

provide robust performance guarantees when task executiopart of the interval2007, 3007]. We also observe that both
times vary dynamica”y at run-time. DEUCON and EUCON suffer a deviation &f0.025 when

etf = 0.5. In general, as discussed in [17], MPC/DMPC al-
gorithms cause oscillation when the execution times are un-
derestimatedef f < 1). However, as a key benefit, both
In this experiment, all subtasks share a fixed execution-timédEUCON and EUCON can achieve desired utilizations even
factor (tf) in each run. Figure 8(a) and (b) show the utiliza- when execution times are severely overestimated.

tions of processor®; to P; when execution times of tasks ~ To further investigate the CPU utilizations on other pro-

5.3 Experiment II: System Peformance

5.3.1 Steady Execution Times
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cessors, Figure 10 plots the average utilizations for all pro/cant o;cillgtion throughout the run, despite the variations in
cessors wheetf is 5. The deviations of all utilizations are €Xecution times.
less than 0.008. We observe thatBnto P;, the difference In each run with local workload fluctuation, tie¢f on Py
between the utilizations and the set points for DEUCON arefollows the same variation as the global fluctuation, while all
slightly larger than that of EUCON. However, all the differ- the other processors have a fixed of 1.0. As shown in
ences are within the-0.009 range. In practice, such small Figure 11(b), the utilization oP,o converges to its set point
steady-state errors can be handled by setting the set points &fter the significant variation of execution times at T2&nd
slightly lower than the schedulable utilization bounds. 2507, respectively. We also observe that the other proces-
In summary, the simulation results demonstrate that DEU-SOrS experience only slight utilization fluctuation after the

CON can achieve almost the same performance as EUCONEXecution times change afo. This result demonstrates
for a wide range oétf (0.5, 10] in our experiments). that DEUCON effectively handles the coupling among pro-
cessors during rate adaptation. The performance results of

DEUCON in this experiment are very close to the results re-
5.3.2 Varying Execution Times ported in EUCON [17].

In this experiment, execution times vattynamicallyat run-
time. To investigate the robustness of DEUCON we tested® Related Work
two scenarios of workload fluctuation. In the first set of runs,
the average execution times on all processors change uni- Traditional approaches for handling end-to-end tasks are
formly. In the second set of runs, only the execution timesbased on open-loop approaches such as end-to-end schedul-
on Py change dynamically, while those on the other proces-ing [26] or distributed priority ceiling [21]. These ap-
sors remain unchanged. The first scenario repreggoitsl proaches rely on schedulability analysis, which requaes
load fluctuation, while the second scenario represkemisl priori knowledge about worst-case execution times. When
fluctuation on a part of the system. task execution times are highly unpredictable, such open-
Figure 11(a) shows a typical run with global workload loop approaches may severely under-utilize the system. An
fluctuation. Theetf is initially 1.0. At time 10, it is de- approach for dealing with unpredictable task execution times
creased to 0.56, which corresponds to an 80% increase in this resource reclaiming [4][23]. A drawback of existing re-
execution times of all subtasks such that all processors argource reclaiming techniques is that they often require mod-
suddenly overloaded. DEUCON responds to the overloadfications to specific scheduling algorithms in operating sys-
by decreasing task rates which causes the utilizations on aliems. In contrast, the feedback control approach adopted in
processors to re-converge to their set points withiif,2G\t this paper can be easily implemented at the middleware layer
time 2007, theetf is increased to 1.67 corresponding to a on top of COTS platforms [16].
67% decrease in execution times. The utilizations on all pro- Control theoretic approaches have been applied to a num-
cessors drop sharply, causing DEUCON to dramatically in-ber of computing and networking systems. A survey of
crease task rates until the utilizations re-converge to their sefeedback performance control in computing systems is pre-
points. The system maintains stability and avoids any signif-sented in [1]. Recent research that applied control theory
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. . [7] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen.
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