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Abstract

This paper presents the Distributed End-to-end Utiization
CONtrol (DEUCON) algorithm. DEUCON can dynamically
enforce desired CPU utilizations on all processors in a dis-
tributed real-time system despite uncertainties in the system
workload. In contrast to earlier centralized control schemes,
DEUCON is a distributed control algorithm that is system-
atically designed based on the Distributed Model Predictive
Control theory. We decompose the global multi-processor
utilization control problem into a set of localized subprob-
lems, and design a peer-to-peer control structure where each
local controller only needs to coordinate with a small number
of neighbor processors. DEUCON can provide utilization
guarantees similar to a centralized control algorithm, while
significantly reducing the per-controller run-time overhead
in terms of both computation and communication. Further-
more, it can tolerate considerable network delay and indi-
vidual processor failures. Consequently, DEUCON can pro-
vide scalable and robust utilization control services for large
distributed real-time systems that operate in unpredictable
environments.

1 Introduction

Recent years have seen rapid growth of Distributed Real-
time Embedded (DRE) applications executing inunpre-
dictableenvironments in which workloads are unknown and
vary significantly at run-time. Such systems include data-
driven and open systems whose execution is heavily influ-
enced by volatile environments. For example, task execution
times in vision-based feedback control systems depend on
the content of live camera images of changing environments
[10]. Likewise, the supervisory control and data acquisition
(SCADA) systems for power grid control may experience
dramatic load increase during a cascade power failure [6].
Furthermore, as DRE systems become connected to the In-
ternet, they are exposed to load disturbances due to variable
user requests and even cyber attacks [6].

As DRE systems executing in unpredictable environ-
ments become increasingly important to our society, a new
paradigm of real-time computing based onAdaptive QoS
Control (AQC)has received significant attention. In contrast
to traditional approaches to real-time systems that rely on

accurate knowledge about system workload, AQC can pro-
vide robust QoS guarantees in unpredictable environments
by adapting to workload variations based on online feedback.
A key advantage of AQC is that it adopts a control-theoretic
framework for systematically developing adaptation strate-
gies based on formal control analysis. This rigorous design
methodology is in sharp contrast to heuristic-based adap-
tive solutions that rely on extensive empirical evaluation and
manual tuning.

As a key step toward an AQC framework fordistributed
real-time embedded systems, we are developing adaptiveuti-
lization controlalgorithms. The goal of utilization control is
to enforce desired CPU utilizations on all the processors in
a distributed system despite significant uncertainties in sys-
tem workloads. Utilization control can be used to enforce
appropriate schedulable utilization bounds on all processors
to guarantee end-to-end task deadlines. It can also enhance
system survivability by providing overload protection against
workload fluctuation.

DRE systems introduce many new research challenges for
AQC that have not been addressed in earlier work on single-
processor systems. They requiremulti-input-multi-output
(MIMO) control solutions to manage the system QoS on mul-
tiple processors. More importantly, the QoS of different pro-
cessors are oftencoupledwith each other due to complex in-
teractions among distributed application components. In par-
ticular, many DRE systems employ the commonend-to-end
task model[14], where a task may be comprised of a chain of
subtasks on different processors. In such systems, the CPU
utilizations of different processors cannot be controlled inde-
pendently from others. For example, changing the rate of a
task will affect the load on all the processors where its sub-
tasks are located. Therefore, the coupling among processors
must be modeled and addressed in the design of QoS control
algorithms.

Our earlier work in this area produced EUCON (End-to-
end Utilization CONtrol) [17], the first control-theoretic uti-
lization control algorithm designed for DRE systems with
end-to-end tasks. EUCON can maintain desired CPU uti-
lizations on multiple processors despite uncertainties in task
execution times and coupling among processors. It employs
a centralizedMIMO model predictive controller to manage
and coordinate the adaptation of multiple processors in a
DRE system. While it is a promising starting point and suit-
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able for small-scale DRE systems, this centralized control
scheme has several limitations. Since its communication and
computation overhead depends on the size of anentireDRE
system, it cannot handle large-scale systems (e.g. wide-area
power grid management and ubiquitous smart spaces). Fur-
thermore, the processor executing the controller is a single
point of failure since the entire system will lose the capabil-
ity of QoS adaptation if it fails.

In this paper, we present a newdistributed control al-
gorithm called Distributed End-to-end Utiization CONtrol
(DEUCON) that significantly enhance the scalability and re-
liability of utilization control for DRE systems. In sharp
contrast to the centralized control scheme adopted by EU-
CON, DEUCON features a novel peer-to-peer control struc-
ture where each processor has an efficientlocal controller
that only coordinates with a small number of neighbor con-
trollers. This feature allows DEUCON to scale well in large
distributed systems and tolerate individual processor failures.
To our best knowledge, DEUCON is the firstdistributedQoS
control algorithm designed for DRE systems with end-to-end
tasks. The primary contributions of this paper are three-fold.

• A new scheme for decomposing the global multi-
processor utilization control problem into a set of local-
ized subproblems to facilitate the design of distributed
control solutions.

• A novel peer-to-peer control structure and localized
utilization control algorithm designed based onDis-
tributed Model Predictive Control(DMPC) theory [5].

• Simulation results showing that DEUCON can pro-
vide robust utilization guarantees to multiple processors
through task rate adaptation, while introducing only a
fraction of computation and communication overhead
of a centralized solution.

The rest of this paper is organized as follows. Section 2
formulates the end-to-end utilization control problem. Sec-
tion 3 revisits the EUCON algorithm as a starting point for
this work. Section 4 presents the design and analysis of
DEUCON. Section 5 evaluates DEUCON with simulations.
Section 6 reviews related work. The paper concludes with
Section 7.

2 End-to-End Utilization Control

In this section we formulate the end-to-end utilization con-
trol problem for DRE systems.

2.1 Task Model

We adopt an end-to-end task model [14] implemented by
many DRE applications. A system is comprised ofm pe-
riodic tasks{Ti|1 ≤ i ≤ m} executing onn processors

{Pi|1 ≤ i ≤ n}. TaskTi is composed of a chain of sub-
tasks{Tij |1 ≤ j ≤ ni} located on different processors. The
release of subtasks is subject to precedence constraints, i.e.,
subtaskTij(1 < j ≤ ni) cannot be released for execution
until its predecessor subtaskTij−1 is completed. If a non-
greedy synchronization protocol (e.g., release guard [26]) is
used to enforce the precedence constraints, all the subtasks
of a periodic task share the same rate as the first subtask.
Therefore, the rate of a task (and all its subtasks) can be ad-
justed by changing the rate of its first subtask. In this paper,
the processor hosting the first subtask of a task is called its
master processor. Only a task’s master processor can change
its rate.

Our task model has two important properties. First, while
each subtaskTij has anestimatedexecution timecij avail-
able at design time, itsactualexecution time may be differ-
ent from its estimation and vary at run time. Modeling such
uncertainty is important to DRE systems operating in unpre-
dictable environments. Second, the rate of a taskTi may be
dynamically adjusted within a range[Rmin,i, Rmax,i]. This
assumption is based on the fact that the task rates in many
DRE applications (e.g., digital control [19][22], sensor up-
date, and multimedia [3]) can be dynamically adjusted with-
out causing system failure.

Each taskTi is subject to an end-to-end relative deadline
related to its period. In an end-to-end scheduling approach
[26], the deadline of an end-to-end task is divided into sub-
deadlines of its subtasks [11][20]. Hence the problem of
meeting the deadline is transformed to the problem of meet-
ing the subdeadline of each subtask. A well known approach
for meeting the subdeadlines on a processor is to ensure its
utilization remains below its schedulable utilization bound
[12][13].

2.2 Problem Formulation

Utilization control can be formulated as a dynamic con-
strained optimization problem. We first introduce several no-
tations.Ts, the sampling period, is selected so that multiple
instances of each task may be released during a sampling pe-
riod. ui(k) is the CPU utilization of processorPi in thekth

sampling period, i.e., the fraction of time thatPi is not idle
during time interval[(k − 1)Ts, kTs]. Bi is the desired uti-
lization set point onPi. rj(k) is the invocation rate of task
Tj in the(k + 1)th sampling period.

Given the utilization set point vector,B = [B1 . . . Bn]T

and the rate constraints[Rmin,j , Rmax,j ] for each taskTj ,
the control goal atkth sampling point (timekTs) is to dy-
namically choose task rates{rj(k)|1 ≤ j ≤ m} to minimize
the difference betweenBi andui(k) for all processors:

min
{rj(k)|1≤j≤m}

n∑

i=1

(Bi − ui(k + 1))2 (1)
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Figure 1. EUCON’s MIMO feedback loop with a cen-
tralized controller

subject to constraints

Rmin,j ≤ rj(k) ≤ Rmax,j (1 ≤ j ≤ m)

The rate constraints ensure all tasks remain within their
acceptable rate ranges. The optimization formulation maxi-
mizes task rates by making the utilization of each processor
as close to its set point as allowed by the constraints. The de-
sign goal is to ensure that all processors quickly converge to
their utilization set points after a workload variation, when-
ever it is feasible under the rate constraints. Therefore, to
guarantee end-to-end deadlines, a user only needs to specify
the set point of each processor to be a value below its schedu-
lable utilization bound. Utilization control algorithms can be
used to meet all the end-to-end deadlines by enforcing the set
points of all the processors in a DRE system.

3 EUCON Revisited

In this section we briefly describe the EUCON algorithm
developed in our earlier work [17], which provides a starting
point and baseline for DEUCON.

3.1 Feedback Control Loop

As shown in Figure 1, EUCON features a MIMO feedback
control loop composed of a central controller and a utiliza-
tion monitor and rate modulator on each processor. EUCON
is invoked periodically at each sampling pointk. The con-
trolled variables are the utilizations of all processors,u(k) =
[u1(k)...un(k)]T . The control inputs from the controller
are the change in task rates∆r(k) = [∆r1(k) . . . rm(k)]T ,
where∆ri(k) = ri(k)− ri(k − 1) (1 ≤ i ≤ m).

The feedback control loop works as follows: (1) the uti-
lization monitor on each processorPi sends its utilization
ui(k) in the last sampling period[(k − 1)Ts, kTs) to the
central controller; (2) the controller collects the utilization
vector u(k) = [u1(k) . . . un(k)]T including the utiliza-
tions of all processors, computes a new rate change vec-
tor ∆r(k) = [∆r1(k) . . .∆rm(k)]T , and sends the new
task ratesr(k) = r(k− 1) + ∆r(k) to the rate modula-
tors on master processors (i.e., processors that master at least
one task); and (3) the rate modulators on master processors
change the rates of tasks according tor(k).

P
3


T
21


Precedence constraint

Subtask


T
11
 T
12


P
1
 P
2


T
22


P
4
 P
5


T
31


T
41


T
33


T
42


T
32


P
3


T
21


Precedence constraint

Subtask


T
11
 T
12


P
1
 P
2


T
22


P
4
 P
5


T
31


T
41


T
33


T
42


T
32


Figure 2. An example DRE system
3.2 Global System Model

Following a control-theoretical methodology, the EUCON
controller is designed based on a set of difference equations
that model the dynamics of thewholeDRE system. A DRE
system is described by the followingglobalsystem model:

u(k + 1) = u(k) + GF∆r(k) (2)

The vector∆r(k) represents the changes in task rates.
Thesubtask allocation matrix, F, is ann×m-order matrix,
wherefij = cjl if a subtaskTjl of taskTj is allocated to pro-
cessorPi, andfij = 0 if no subtask of taskTj is allocated to
processorPi. F captures thecouplingamong processors due
to end-to-end tasks.G is ann× n diagonal matrix in which
gii represents the ratio between the change in the actual uti-
lization and its estimation. The exact value ofgi is unknown
due to the unpredictability in execution times. Note thatG
describes the effect of uncertainty in workload on the utiliza-
tion of a DRE system. As an example, Figure 2 shows a DRE
system with five processors and four end-to-end tasks. It is
modeled by (2) with the following parameters:

u(k) =




u1(k)
u2(k)
u3(k)
u4(k)
u5(k)



,G =




g1 0 0 0 0
0 g2 0 0 0
0 0 g3 0 0
0 0 0 g4 0
0 0 0 0 g5



,

F =




c11 0 0 0
c12 c22 0 0
0 c21 c31 0
0 0 c32 c41

0 0 c33 c42



,∆r(k) =




∆r1(k)
∆r2(k)
∆r3(k)
∆r4(k)




The EUCON controller was designed based on the above
global system model using theModel Predictive Control
(MPC) theory [18]. The detailed controller design is de-
scribed in [17].

3.3 Limitations

EUCON relies on a central controller to manage the adap-
tation of multiple processors in a DRE system. A central-
ized control scheme has several disadvantages. First, the
run-time overhead depends on the size of an entire DRE sys-
tem. Specifically, the worst-case computational complexity
of the central MPC controller is polynomial to the total num-
ber of tasks and the total number of processors in the system.
Furthermore, since every processor in the system needs to
communicate with the controller in every sampling period,
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the processor that runs the controller can become a commu-
nication bottleneck. Therefore, a centralized control scheme
cannot scale effectively in large DRE systems. Second, the
control design of EUCON assumes that communication de-
lays between the control processor and other processors are
negligible compared to the sampling period of the controller.
This assumption may not hold in networks with significant
delays such as the Internet and wireless sensor networks. In
addition, the processor executing the controller is a single
point of failure. The entire system will lose the capability to
adapt to the environment if it fails.

Centralized solutions are therefore more appropriate for
small-scale DRE systems (e.g., control systems in a power
generation facility) than for large-scale DRE systems (e.g.,
wide-area power grid management). An important task is to
develop distributed control algorithms to improve the scal-
ability and reliability of adaptive utilization control in DRE
systems. This is the focus of this paper.

4 Design of DEUCON

In this section, we present the design of DEUCON. In con-
trast to the centralized control scheme adopted by EUCON,
DEUCON employs a peer-to-peer control structure with a
separate local controllerCi on each master processorPi.
Each controller only coordinates with a small number of pro-
cessors called its (logical)neighbors. As a result, the com-
putation and communication overhead of each controller is a
function of the size of the processor’s neighborhood instead
of the entire system.

4.1 Problem Decomposition

A key step in our control design is to decompose the global
utilization control problem into a set of localized subprob-
lems. From a controllerCi’s perspective, the goal of de-
composition is to partition the set of system variables into
three subsets, includinglocal variableson host processor
Pi, neighbor variablesonPi’s neighbors, and all other vari-
ables in the system.Ci’s subproblem only includes its lo-
cal and neighbor variables. A key feature of our decomposi-
tion scheme is that it balances two conflicting goals. On one
hand, the number of neighbor variables should be minimized
to improve system scalability. On the other hand, the neigh-
bor variables must capture the coupling among processors
so that local controllers can achieve global system stability
through coordination in their neighborhoods.

We first give several definitions before presenting our de-
composition scheme.

Definition ProcessorPj is Pi’s direct neighborif Pj has a
subtask belonging to an end-to-end task mastered byPi.

Definition The concerned tasksof Pi are the tasks which
have subtasks located onPi or Pi’s direct neighbors.
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Figure 3. Data exchange between C1 and its neigh-
bors (other data exchanges are not shown)

Definition ProcessorPj isPi’s indirect neighborif (1) Pj is
the master processor of any ofPi’s concerned tasks and (2)
Pj is notPi’s direct neighbor orPi itself.

The subproblem of a controller includes a set of utiliza-
tions ascontrolled variables, and a set of task rates asma-
nipulated variables. In our decomposition scheme, the con-
trolled variables of controllerCi includeui(k), the host pro-
cessorPi’s utilization, andUDi(k), the set of utilizations of
Pi’s direct neighbors.UDi(k) are consideredCi’s neigh-
bor variables because they are affected by the rates of tasks
mastered byPi. Since each concerned task contributes to
the utilizations ofPi and/or its direct neighbors,Ci’s ma-
nipulated variables include the rates of all ofPi’s concerned
tasks. Note that a concerned task may be mastered byPi
itself, its direct neighbor, or its indirect neighbor.

Figure 3 shows the same system as in Figure 2. We con-
sider controllerC1 as an example.P1 has one direct neighbor
(P2) due to taskT1 mastered byP1. Its concerned tasks in-
cludeT1 andT2 (which has a subtask on direct neighborP2).
HenceP3, the master processor ofT2, isP1’s indirect neigh-
bor. Therefore,C1 has two controlled variables,u1(k) and
u2(k), and two manipulated variablesr1(k) andr2(k).

Let setNRi(k) includes the rates of all ofPi’s concerned
tasks, and setNUi(k) = {ui(k)} ∪ UDi(k), the subprob-
lem ofCi then becomes the following localized constrained
optimization problem within its neighborhood:

min
NRi(k)

∑

ul(k)∈NUi(k)

(Bl − ul(k + 1))2 (3)

subject to

Rmin,j ≤ rj(k) ≤ Rmax,j (rj(k) ∈ NRi(k))

In contrast to the global model (2) used in EUCON, each
controller in DEUCON has a localized model which only in-
cludes its local and neighbor variables. This local model of
Ci is described as:

nui(k + 1) = nui(k) + GiFi∆nri(k) (4)

wherenui(k) andnri(k) are vectors comprised of all ele-
ments inNUi(k) andNRi(k), respectively.Gi andFi are
defined in the same way asG andF in (2), but regarding
only the processors inNUi(k) and the task rates inNRi(k).
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For example, the controllerC1 shown in Figure 3 is mod-
eled with the following parameters.

nu1(k) =
[
u1(k)
u2(k)

]
,G1 =

[
g1 0
0 g2

]
,

F1 =
[
c11 0
c12 c22

]
,∆nr1(k) =

[
∆r1(k)
∆r2(k)

]

From (4),C1’s local model is

u1(k + 1) = u1(k) + g1c11∆r1(k)
u2(k + 1) = u2(k) + g2(c12∆r1(k) + c22∆r2(k))

Compared to the global model (2) which includes 5 pro-
cessors and 4 tasks,C1’s local model only involves 2 proces-
sors and 2 tasks. This indicates that a localized subproblem
has lower complexity than the global one.

4.2 Localized Feedback Control Loop

We now present DEUCON’s localized feedback control
loop based on our decomposition scheme. The execution of
a controllerCi at each sampling pointk (timekTs) includes
three steps:

1. Local control computation:Ci executes a MPC algo-
rithm to solve its local subproblem. The feedback input
to the control algorithm includes (1)ui(k) from the lo-
cal utilization monitor, (2) a set ofpredicted utilizations
UD′i(k) of its direct neighbors, and (3) the rates of con-
cerned tasks,NRi(k − 1) in the last sampling period.
The output from the controllerCi includes the new rates
for concerned tasks,NRi(k). The details of the control
algorithm are presented in Section 4.3.

2. Local actuation: The local rate modulator onPi
changes the rates of the set of tasks mastered byPi ac-
cording to the control input fromCi. The other task
rates in the control input will be ignored because they
are not mastered byPi.

3. Data exchange among neighbors:Ci sends itspredicted
utilizationat the next sampling point,u′i(k+1), to other
controllers of which it serves as a direct neighbor.Ci
also sends the rates of tasks mastered byPi to those
controllers which have these tasks as their concerned
tasks. In addition,Ci receives new predicted utiliza-
tions from its direct neighbors, and the actual rates of
the concerned tasks which are not mastered by itself,
from its direct and indirect neighbors. They will be used
for the local control computation at the next sampling
point (k + 1).

An important feature of our control design is that it can
tolerate considerable network delays among neighbors. Note
that in step 1, thepredictedutilizationsUD′i(k) (instead of
UDi(k)) are provided byCi’s direct neighbors in the previ-
ous sampling period. This is becauseUDi(k) is not instan-
taneously available toCi at timekTs due to network delays.

UD′i(k) is predicted based onUDi(k− 1) as a substitute for
UDi(k) to be transmitted over the network during interval
[(k − 1)Ts, kTs]. Each elementu′j(k) ∈ UD′i(k) is calcu-
lated using the following reference trajectory from measured
utilizationuj(k− 1) to its set pointBj over the followingP
sampling periods.

refj(k+l|k) = Bj−e−
Ts
Tref

l
(Bj−uj(k−1)) (1 ≤ l ≤ P )

(5)
whereTref is the time constant that specifies the speed of
system response.P is called theprediction horizon. The
value ofrefj(k + 1|k) is assigned tou′j(k). SinceUD′i(k)
can take the whole last sampling period to transmit, DEU-
CON relaxes the requirement of instant utilization transmis-
sion which is essential for EUCON.

4.3 Controller Design

In contrast to EUCON which has onlyone global con-
troller, everymasterprocessor in DEUCON has a controller.
Non-master processors do not need controllers because they
can not change the rate of any task. For example, in Figure 3,
processorsP1, P3 andP4 each have a controller, whileP2

andP5 do not have a controller because they are not master
processors for any tasks. This feature reduces the overhead
of DEUCON.

Based on the local system model (4), we apply the DMPC
theory [5] to design a local controllerCi. The goal of the
controller is to optimize a cost function (7) overP sam-
pling periods, which is the prediction horizon. The objec-
tive of optimization is to select an input trajectory that mini-
mizes the predicted cost while satisfying the constraints. The
cost is predicted based on an approximated system model
(6). The input trajectory includes the control inputs in the
following M sampling periods, e.g.,∆NRi(k),∆NRi(k +
1|k), . . .∆NRi(k +M − 1|k)1, whereM is called thecon-
trol horizon. Once the input trajectory is computed, only the
first element∆NRi(k) is applied as the input signal to the
system. At next sampling point, the prediction horizon slides
one sampling period and the input is computed again as a
solution to a constrained optimization problem based on the
feedbacksNU ′i(k + 1) from its direct neighbors and itself,
whereNU ′i(k + 1) = UD′i(k + 1) ∪ {ui(k + 1)}.

The controller includes a least square solver, a cost func-
tion, a reference trajectory, and an approximate local system
model used to predict the cost in the prediction horizon. The
approximate model used by our controller is as the following.

nui(k + 1) = nu′i(k) + Fi∆nri(k) (6)

The above model has two differences from the actual sys-
tem model (4). First, the utilizations of direct neighbors are
approximated by their predicted utilizationsnu′i(k), where

1The notationx(k + l|k) means that the value of variablex at time
(k + l)Ts depends on the conditions at timekTs.
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nu′i(k) is a vector comprised of all elements inNU ′i(k). As
discussed in Section 4.2, this approximation allows DEU-
CON to tolerate network delays. Second, because the real
system gainsGi in system model (4) are unknown in unpre-
dicted environments, our controller assumesGi = [1 . . . 1]T ,
i.e., the controller assumes that the estimated execution times
are accurate. Although this approximate model is not an ex-
act characterization of the real system, the closed loop sys-
tem under our controller can still maintain stability and guar-
antee desired utilization set points as long asGi are within
a certain range (see results in Section 5.3). This is due to
the coordination scheme and online feedbacks used in our
distributed model predictive control algorithm.

At every sampling point, the controller computes the con-
trol input ∆nri(k) that minimizes the following cost func-
tion under the rate constraints.

Vi(k) =
∑P
l=1 ‖nui(k + l|k)− refi(k + l|k)‖2

+
∑M−1
l=0 ‖∆nri(k + l|k)−∆nri(k + l− 1|k)‖2 (7)

whereP is the prediction horizon, andM is the control hori-
zon. The first term in the cost function represents thetrack-
ing error, i.e., the difference between the utilization vector
nui(k + l|k), which is predicted based on (6), and a refer-
ence trajectoryrefi(k + l|k) defined in (5). The controller
is designed to track an exponential reference trajectory that
converges to the set points so that the closed-loop system be-
haves like a desired linear system. By minimizing the track-
ing error, the closed-loop system will also converge to the uti-
lization set point. The second term in the cost function rep-
resents thecontrol penalty. The control penalty term causes
the controller to minimize the changes in the control input.

This constrained optimization problem can be transformed
to a standard constrained least square problem. ControllerCi
can then use a standard least-sqaure solver to solve this prob-
lem on-line. The detailed transformation is not shown due to
space limit. The worst-case computation complexity of the
solver is polynomial to the numbers of tasks and processors
in the localized model (6).

4.4 Algorithm Analysis

We now analyze some theoretical and practical issues of
the DEUCON algorithm.

Scalability The controller overhead includes computation
overhead and communication overhead. Since a model pre-
dictive controller’s worst-case computation complexity is
polynomial to the number of processors and the number of
tasks, EUCON’s computation complexity increases as sys-
tem scale increases. In contast, the local model (4) indicates
that the computation overhead in DEUCON is only a func-
tion of the neighborhood size. With regard to communication
overhead, EUCON needs to receive the utilizations from and
send the rate changes to all processors in every sampling pe-
riod. In the case of DEUCON, each controllers only receives

the predicted utilizations from its direct neighbors and the ac-
tual rates of a subset of its concerned tasks from its direct and
indirect neighbors. Hence, similar to computation, the com-
munication overhead of EUCON is proportional to the entire
system while DEUCON depends only on its neighborhood
size.

We note that the size of a controller’s neighborhood is usu-
ally much smaller than the entire DRE system, especially in
large systems where scalability is most needed. Even in a
DRE system comprised of many processors, an end-to-end
task is typically comprised of only a small number of sub-
tasks. In practice, very few real-time tasks have control flows
over hundreds of nodes. Therefore, distributed control algo-
rithms based on our decomposition scheme can scale effec-
tively in many large DRE systems.

Tolerance to Network Delay An advantage of DEUCON is
that it allows relatively long network delays among neigh-
bors. Since a controller does not need to wait for the cur-
rent utilization from neighbors for its control computation,
the control performance is not sensitive to communication
delays as long as they are upper-bounded by the controller’s
sampling period. This is in contrast to EUCON which re-
quires the network delay to be much shorter than the sam-
pling period. This feature also enables DEUCON to tolerate
clock drift among neighbors as long as their differences are
small compared to the sampling period.

Stability analysis DEUCON is a feedback control algo-
rithm that at every time step selects the task rates based on the
current processor utilizations. Stability analysis is important
in order to derive conditions that guarantee that the utiliza-
tions will converge to the desired set points. Our previous
work has successfully applied MPC stability analysis to EU-
CON [17]. This is a direct approach based on the eigenvalues
of the closed-loop system. The approach can be extended for
DEUCON by using the localized system model (4) in place
of the global system model (2). Through our analysis, we can
derive the range of deviations of execution times from their
estimations under which the system remain stable. However,
due to the coupling among controllers, our current analysis
becomes very complex as the number of tasks, controllers,
and prediction and control horizons increase. Stability anal-
ysis of DMPC is an active research area. Although there is
no general solution, results have been derived for specific
classes of systems [5][8]. We observe that the MIMO system
model in DEUCON has a special structure since there is cou-
pling in the control inputs, i.e., a change in a task rate (con-
trol input) will affect the utilization in all direct neighbors,
but there is no coupling between the states, i.e., utilization
of a processor does not depend on the utilization of the other
processors. A more efficient method for stability analysis of
such models is under investigation and out of the scope of
this paper.
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Figure 4. A medium size workload

5 Experimentation

5.1 Experimental Setup

Our simulation environment is composed of an event-
driven simulator implemented in C++ and a set of controllers
implemented in MATLAB (R12). The simulator implements
the utilization monitors, the rate modulators and the dis-
tributed real-time system with interface to the controllers.
The subtasks on each processor are scheduled by the Rate
Monotonic Scheduling (RMS) algorithm [13]. The prece-
dence constraints among subtasks are enforced by the release
guard protocol [26]. The controllers are based on thelsqlin
least square solver in MATLAB. The simulator opens a MAT-
LAB process and initializes all the controllers at start time.
In the end of each sampling period, the simulator collects the
local utilization, the predicted neighborhood utilizations and
the concerned task rates for each controller, and then calls the
controller in MATLAB. The controllers compute the control
input, ∆r(k), and return it to the simulator. The simulator
then calls the rate modulators on each processor to adjust the
rates of its mastered tasks.

Each task’s end-to-end deadlinedi = ni/ri(k), whereni
is the number of subtasks in taskTi. Each end-to-end dead-
line is evenly divided into subdeadlines for its subtasks. The
resultant subdeadline of each subtaskTij equals its period,
1/ri(k). Hence the schedulable utilization bound of RMS
[13],Bi = mi(21/mi − 1) is used as the utilization set point
on each processor, wheremi is the number of subtasks on
Pi. All (sub)tasks meet their (sub)deadlines if the utilization
set point on every processor is enforced.

A medium size workload (as shown in Figure 4) has been
used in our experiments. It includes 21 tasks (with a total of
40 subtasks) executing on 10 processors. There are 14 end-
to-end tasks running on multiple processors and 7 local tasks.
The controller parameters used for this workload include the
prediction horizon as 2 and the control horizon as 1. The
control periodTs = 1000 time units. The time constantTref
used in (5) is set as 4. Specific parameters of tasks are not
shown due to space limit.

To evaluate the robustness of DEUCON when execution
times deviate from the estimation, the execution time of each
subtaskTij can be changed by tuning a parameter called the
execution-time factor,etfij(k) = cij/aij(k), whereaij is
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Figure 5. Entire system size vs. neighborhood size
the actual execution time ofTij . The execution time fac-
tor (etf) represents how much the actual execution time of a
subtask deviates from the estimated one. Theetf (and hence
the actual execution times) may be kept constant or changed
dynamically in a run.

We compare DEUCON against EUCON because EUCON
is the only available utilization control algorithm for DRE
systems with end-to-end tasks. Our previous results also
showed that EUCON significantly outperformed a common
open-loop approach that assigns fixed task rates based on es-
timated execution times [17]. In the following we present
two sets of simulations. Experiment I examines DEUCON’s
overhead. Experiment II evaluates DEUCON’s performance
under various types of unpredictable workloads.

5.2 Experiment I: Overhead

As discussed in Section 3, a major limitation of central-
ized controllers is that the run-time overhead is related to the
size of the entire system. In contrast, the overhead of each
local controller in DEUCON is just a function of its neigh-
borhood size. Figure 5 compares the size of the entire system
with the neighborhood size of each processor for the medium
size workload. The centralized EUCON controller needs to
model all the 10 processors and the 21 tasks in the system
while the average for DEUCON controllers is only 2.6 pro-
cessors and 7.1 tasks, corresponding to a reduction by 74%
and 66%, respectively.

To estimate theaveragecomputation overhead of the con-
trollers, we measure the execution time of the least square
solver which dominates the computation cost on a 2GHz
Pentium 4 PC with 256MB RAM. In order to minimize the
time delay caused by the IPC communication between the
simulator and the MATLAB process in each remote com-
mand call, we use a single MATLAB command to run this
least square solver for 1000 times as a subroutine. The
data shown in Figure 6 is the average of those 1000 runs.
The average exection time of all controllers in DEUCON
is only 62% of EUCON’s central controller. We note that
the speedup in execution times is not strictly polynomial to
the numbers of neighbors and concerned tasks as one would
expect from the theoretical complexity of MPC algorithms.
This is attributed to difference between theaverageexecution
time of MATLAB’s lsqlin solver and theworst-casecompu-
tational complexity in the analysis. In addition, the initializa-
tion cost in the optimization calculations is not negligible for
relatively small scale problems in our workload.
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Figure 6. Controller exeuction time in MATLAB
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Figure 7. Estimated communication overhead
We now investigate DEUCON’s communication overhead.

As mentioned in Section 4, a controller’s communication
overhead is a function of the number of processors com-
municating with it. To estimate communication overhead
due to utilizations exchange, we count the number of pro-
cessors from which a controller receives the predicted uti-
lizations. This is equal to the number of direct neighbors of
the controller. To estimate communication overhead due to
task rates exchange, we count the processors from which a
controller receives the actual rate changes for one or more
of its concerned tasks. The set of total processors commu-
nicating with a controller is the union of these two processor
sets. From Figure 7 we can see that DEUCON’s average esti-
mated per-controller communication overhead is 33% of the
EUCON controller’s communication overhead.

The overhead experiments demonstrate that for this
medium workload, DEUCON’s per-controller overhead is
only 33% (communication) to 62% (computation) of EU-
CON’s centralized controller. As discussed in Section 4.4,
when system scale becomes larger, we can expect a bigger
difference between DEUCON and EUCON. Although the
total overhead of all the controllers in DEUCON is higher
than EUCON’s centralized controller, DEUCON improves
the system scalability by distributing the overhead to differ-
ent master processors in the system. Overhead evaluation of
DEUCON in a real middleware environment for large scale
system is part of our future work.

5.3 Experiment II: System Peformance

In this subsection we present two sets of simulation ex-
periments. The first one evaluates DEUCON’s system per-
formance when task execution times deviate from the esti-
mation. The second experiment tests DEUCON’s ability to
provide robust performance guarantees when task execution
times vary dynamically at run-time.

5.3.1 Steady Execution Times

In this experiment, all subtasks share a fixed execution-time
factor (etf) in each run. Figure 8(a) and (b) show the utiliza-
tions of processorsP1 to P5 when execution times of tasks
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Figure 8. CPU utilization of P1 to P5 (etf=8)
areeight timestheir estimations. In this case, we can observe
a noticable difference in the transient state between DEU-
CON and EUCON. While the utilizations of EUCON follow
the same trajectory, utilizations of DEUCON diverge in the
middle of the run and then converge to their set points in the
end. The reason for this divergence is that each controller
in DEUCON only utilizes local information and makes local
decision. Despite this slight difference in transient state, all
utilizations converge to their set points within similar settling
times. Both DEUCON and EUCON achieve desired utiliza-
tion guarantees in steady states.

To examine DEUCON’s perfromance under different ex-
ecution time factors, we plot the mean and standard devia-
tion of utilization onP1 during each run in Figure 9. Every
data point is based on the measured utilizationu(k) from
time 200Ts to 300Ts to exclude the transient response in the
beginning of each run. The system performance is satisfac-
tory if the average utilization is close to the utilization set
point, and the standard deviation is small. Both EUCON and
DEUCON provide good utilization guarantees for all tested
execution-time factors within theetf range[0.5, 10]. In this
range, the average utilizations under EUCON and DEUCON
remain within±0.012 of the utilization set points and the
standard deviations remain below 0.025. However, when
etf = 8, DEUCON’s performance is slightly worse than that
of EUCON, as its average utilization is 0.012 lower than its
set point. In addition, EUCON has a high deviation when
etf = 9, becauseP1 has a longer settling time under EU-
CON. As a result, the system is still in its transient state for
part of the interval[200Ts, 300Ts]. We also observe that both
DEUCON and EUCON suffer a deviation of±0.025 when
etf = 0.5. In general, as discussed in [17], MPC/DMPC al-
gorithms cause oscillation when the execution times are un-
derestimated (etf < 1). However, as a key benefit, both
DEUCON and EUCON can achieve desired utilizations even
when execution times are severely overestimated.

To further investigate the CPU utilizations on other pro-
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Figure 10. Average CPU utilization (etf=5)

cessors, Figure 10 plots the average utilizations for all pro-
cessors whenetf is 5. The deviations of all utilizations are
less than 0.008. We observe that onP2 to P7, the difference
between the utilizations and the set points for DEUCON are
slightly larger than that of EUCON. However, all the differ-
ences are within the±0.009 range. In practice, such small
steady-state errors can be handled by setting the set points to
slightly lower than the schedulable utilization bounds.

In summary, the simulation results demonstrate that DEU-
CON can achieve almost the same performance as EUCON,
for a wide range ofetf ([0.5, 10] in our experiments).

5.3.2 Varying Execution Times

In this experiment, execution times varydynamicallyat run-
time. To investigate the robustness of DEUCON we tested
two scenarios of workload fluctuation. In the first set of runs,
the average execution times on all processors change uni-
formly. In the second set of runs, only the execution times
onP10 change dynamically, while those on the other proces-
sors remain unchanged. The first scenario representsglobal
load fluctuation, while the second scenario representslocal
fluctuation on a part of the system.

Figure 11(a) shows a typical run with global workload
fluctuation. Theetf is initially 1.0. At time 100Ts, it is de-
creased to 0.56, which corresponds to an 80% increase in the
execution times of all subtasks such that all processors are
suddenly overloaded. DEUCON responds to the overload
by decreasing task rates which causes the utilizations on all
processors to re-converge to their set points within 20Ts. At
time 200Ts, theetf is increased to 1.67 corresponding to a
67% decrease in execution times. The utilizations on all pro-
cessors drop sharply, causing DEUCON to dramatically in-
crease task rates until the utilizations re-converge to their set
points. The system maintains stability and avoids any signif-
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Figure 11. CPU utilization of P6 to P10 when execu-
tion times fluctuate at run-time
icant oscillation throughout the run, despite the variations in
execution times.

In each run with local workload fluctuation, theetf onP10

follows the same variation as the global fluctuation, while all
the other processors have a fixedetf of 1.0. As shown in
Figure 11(b), the utilization ofP10 converges to its set point
after the significant variation of execution times at 120Ts and
250Ts, respectively. We also observe that the other proces-
sors experience only slight utilization fluctuation after the
execution times change onP10. This result demonstrates
that DEUCON effectively handles the coupling among pro-
cessors during rate adaptation. The performance results of
DEUCON in this experiment are very close to the results re-
ported in EUCON [17].

6 Related Work

Traditional approaches for handling end-to-end tasks are
based on open-loop approaches such as end-to-end schedul-
ing [26] or distributed priority ceiling [21]. These ap-
proaches rely on schedulability analysis, which requiresa
priori knowledge about worst-case execution times. When
task execution times are highly unpredictable, such open-
loop approaches may severely under-utilize the system. An
approach for dealing with unpredictable task execution times
is resource reclaiming [4][23]. A drawback of existing re-
source reclaiming techniques is that they often require mod-
ifications to specific scheduling algorithms in operating sys-
tems. In contrast, the feedback control approach adopted in
this paper can be easily implemented at the middleware layer
on top of COTS platforms [16].

Control theoretic approaches have been applied to a num-
ber of computing and networking systems. A survey of
feedback performance control in computing systems is pre-
sented in [1]. Recent research that applied control theory
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to real-time scheduling and utilization control is directly re-
lated to this paper. For example, Steere et al. and Goel et
al., developed feedback schedulers [9] [25] that guarantee
desired progress rates for real-time applications. Abeni et
al., presented control analysis of a reservation-based feed-
back scheduler [2]. Our earlier work has also resulted in
a set of feedback control real-time scheduling algorithms
[15]. These algorithms have been implemented as a mid-
dleware service (FCS/nORB) [16]. Other related work on
feedback scheduling includes [7] [27]. All the aforemen-
tioned projects focused on controlling the performance of a
singleprocessor. Their control designs are based on single-
input-single-output linear control techniques, which cannot
be easily extended to end-to-end utilization control due to
the coupling among multiple processors in DRE systems.

In addition to EUCON, DFCS is another feedback con-
trol real-time scheduling algorithm designed for distributed
systems [24]. However, DFCS assumes, in contrast with the
work presented in this paper, that tasks on different proces-
sors are independent from each other. The coupling among
processors due to end-to-end tasks has not been modeled or
addressed by DFCS.

7 Conclusions

DEUCON has been designed to control the utilization of
distributed systems in unpredictable environments. Com-
pared to centralized control algorithms, DEUCON features
a peer-to-peer control stucture to handle the coupling among
multiple processors and constraints. Our simulation results
demonstrate that DEUCON can significantly improve the
system scalability by distributing the controller computa-
tion and communication from one central processor to the
whole system. Furthermore, DEUCON can tolerate consid-
erable network delay which is crucial for many distributed
systems. In addition, DEUCON achieves almost the same
utilization control performance as the centralized control al-
gorithm, even when task execution times deviate from the
estimation or changes dynamically at run-time.

References

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.
Feedback performance control in sofware services.IEEE
Control Systems, 23(3), June 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of
a reservation-based feedback scheduler. InIEEE RTSS, Dec.
2002.

[3] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A dynamic
quality of service middleware agent for mediating application
resource usage. InIEEE RTSS, Dec. 1998.

[4] M. Caccamo, G. Buttazzo, and L. Sha. Handling execution
overruns in hard real-time control systems.IEEE Trans. Com-
put., 51(7):835–849, 2002.

[5] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar. Dis-
tributed model predictive control.Control Systems Magazine,
22(1):44–52, Feb. 2002.

[6] R. Carlson. Sandia SCADA program high-security SCADA
LDRD final report.SANDIA Report SAND2002-0729, 2002.

[7] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen.
Feedback-feedforward scheduling of control tasks.Real-Time
Systems, 23(1):25–53, July 2002.

[8] W. B. Dunbar and R. M. Murray. Distributed receding horizon
control with applications to multi-vehicle formation stabiliza-
tion. Technical Report CIT-CDS 04-003, Jan. 2004.

[9] A. Goel, J. Walpole, and M. Shor. Real-rate scheduling. In
IEEE RTAS, 2004.

[10] D. Henriksson and T. Olsson. Maximizing the use of compu-
tational resources in multi-camera feedback control. InIEEE
RTAS, May 2004.

[11] B. Kao and H. Garcia-Molina. Deadline assignment in a dis-
tributed soft real-time system.IEEE Transactions on Parallel
and Distributed Systems, 8(12):1268–1274, 1997.

[12] J. P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadline. InIEEE RTSS, 1990.

[13] C. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment.Journal of
ACM, Vol. 20, No.1, pp. 46-61, Jan. 1973.

[14] J. W. S. Liu.Real-Time Systems. Prentice Hall, 2000.
[15] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback Con-

trol Real-Time Scheduling: Framework, Modeling, and Al-
gorithms.Real-Time Systems, 23(1/2):85–126, July 2002.

[16] C. Lu, X. Wang, and C. Gill. Feedback Control Real-Time
Scheduling in ORB Middleware. InIEEE RTAS03, Washing-
ton, DC, May 2003.

[17] C. Lu, X. Wang, and X. Koutsoukos. End-to-end utiliza-
tion control in distributed real-time systems. InICDCS 2004,
Tokyo, Japan, Mar. 2004.

[18] J. Maciejowski.Predictive Control with Constraints. Prentice
Hall, 2002.

[19] P. Marti, G. Fohler, P. Fuertes, and K. Ramamritham. Im-
proving quality-of-control using flexible timing constraints:
metric and scheduling. InIEEE RTSS, 2002.

[20] M. D. Natale and J. Stankovic. Dynamic end-to-end guaran-
tees in distributed real-time systems. InIEEE RTSS, 1994.

[21] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-Time Synchro-
nization Protocols for Multiprocessors. InIEEE RTAS, Dec.
1988.

[22] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task
schedulability in real-time control system. InIEEE RTSS,
Dec. 1996.

[23] C. Shen, K. Ramamritham, and J. A. Stankovic. Resource
reclaiming in multiprocessor real-time systems.IEEE Trans.
Parallel Distrib. Syst., 4(4):382–397, 1993.

[24] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao,
S. Son, and C. Lu. Feedback control scheduling in distributed
real-time systems. InIEEE RTSS, 2001.

[25] D. Steere and et al. A feedback-driven proportion allocator
for real-rate scheduling. InOperating Systems Design and
Implementation, pages 145–158, 1999.

[26] J. Sun and J. W.-S. Liu. Synchronization protocols in dis-
tributed real-time systems. InICDCS, 1996.

[27] Y. Zhu and F. Mueller. Feedback edf scheduling exploiting
dynamic voltage scaling. InIEEE RTAS, 2004.

10


	DEUCON: Distributed End-to-End Utilization Control for Real-Time Systems
	Recommended Citation
	DEUCON: Distributed End-to-End Utilization Control for Real-Time Systems

	tmp.1470340445.pdf.LaZm7

	Abstract: Abstract: This paper presents the Distributed End-to-end Utiization CONtrol (DEUCON) algorithm. DEUCON can dynamically enforce desired CPU utilizations on all processors in a distributed real-time system despite uncertainties in the system workload. In contrast to earlier centralized control schemes, DEUCON is a distributed control algorithm that is systematically designed based on the Distributed Model Predictive Control theory. We decompose the global multi-processor utilization control problem into a set of localized subproblems, and design a peer-to-peer control structure where each local controller only needs to coordinate with a small number of neighbor processors. DEUCON can provide utilization guarantees similar to a centralized control algorithm, while significantly reducing the per-controller run-time overhead in terms of both computation and communication. Furthermore, it can tolerate considerable network delay and individual processor failures. Consequently, DEUCON can provide scalable and robust utilization  control services for large distributed real-time systems that operate in unpredictable environments.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: October 5, 2004
	Author: Authors: Wang, Xiaorui; Lu, Chenyang; Koutsoukos, Xenofon
	Title: DEUCON: Distributed End-to-End Utilization Control for Real-Time Systems
	ReportNumber: 2004-57
	DepartmentName: Department of Computer Science & Engineering


