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Abstract

This paper attempts four things. It demonstrates the possibility of
accounting for Russell-style and Clark-style analogical reasening in an
existing framework for statistical reasoning. It critically reviews the pro-
posals made by Clark for defeasible analogical reasoning and shows how
they can be understood better simply as defeasible reasoning. It argues
that generalization from the single case is not as desirable as projection
from the single case; the difference has to do with the defeasibility of the
inference. Finally, it muses about the prospects for an appropriate control
strategy for statistical reasoning limited to a small number of cases.

1 Introduction.

1.1 The Logical Problem of Analogy.

Analogy has been studied in a variety of activities by AI authors, notably in
problem solving, in learning, and in common-sense reasoning (consider, for in-
stance, [Winston80], [Kedar-Cabelli86}, and [Gentner83]). An excellent recent
review of this work can be found in Stuart Russell’s thesis [Russell87].

*I have had useful discussions with Stuart Russell, Ben Grosof, Guillermo Simari, Josh
Tenenberg, Henry Kyburg, John Pollock, Mike Wellman, Fahiem Bacchus, and Dana Nau on
this subject in that temporal order. Thanks to Michael Anderson for leaving Stuart’s thesis
on the coffee table.



Most of the hopes to use analogy are as ampliative, unsound inference, but
inference we are nevertheless willing to perform because of epistemological con-
straints — we don’t know enough to do full induction. In the present treatment
of analogy, I am equally concerned with situations in which our willingness to
perform analogical reasoning derives from computational constraints. We may
not want to include in our inductive reasoning as many cases as we are capable
of recalling and considering. In the extreme case, we may even want to reason
from a single case. It is appropriate to consider such reasoning from a single
case to be analogy.

Among the many problems that seem to involve analogy, Russell distin-
guished the logical problem of analogy. This is the aspect of analogy of most
interest here. How is analogical reasoning justified? Presumably, it is some form
of induction, in the presence of added assumptions. A property is transferred
from source case to target case in virtue of some shared properties. Apparently,
there is inductive support for the possession of that property given the similar-
ity. The interesting challenge is to render those assumptions in some underlying
reasoning framework in such a way that the single source case contributes in
the inference: it cannot be just that the probability of the transferred property
given the shared properties is known to be high, because that makes the source
case redundant.

Russell’s approach was to justify analogical inference in a deductive frame-
work. My approach will be fo cast analogy as a special case of a logically
sophisticated kind of statistical reasoning. Russell had examined as candidates
for the explication of analogy less expressive frameworks for induction than the
one considered here. Part of this exercise is to relieve his pessimism about the
prospects of an inductive explication of analogy. We should welcome this relief
because we all continue to think of analogy as inductive. Analogical reasoning
so closely resembles inductive reasoning that it is a travesty to suggest that
there can be no meaningful reduction. This paper hopes to correct any misap-
prehensions about the relation between inductive (or statistical) reagoning and
analogical reascning.

More importantly, basing analogy on statistical inference allows the capture
of a wider class of common-sense reasoning. The study of reasoning from a small
number of cases is the natural extension of analogy with a single case. Philoso-
phers of induction may not see the point of reasoning from a small number of
cases, just as they have often turned their noses to the special case of analogy.
They might think just to run the induction mill on the cases available, whether
they be one, three, or a thousand. But here’s the point: we are sometimes
unwilling to complete this computation. Our control strategy for arriving at
interesting partial computations must be informed by what we know about the
legitirnacy of inferences from a small number of cases,

A, different example of common-sense reasoning that extends analogical rea-
soning is studied by Peter Clark [Clark88]. Here, the problem is not with the
multiplicity of cases, but with the multiplicity of shared properties, Clark’s infer-



ences are interesting for a variety of reasons, one of which is that it uses analogy
to amplify defeasible reasoning. It is Clark’s ambitions that most clearly point
out the need fo base analogy in an appropriate statistical framework. What
seems to be a complex use of analogy turns out to be simply the use of speci-
ficity in defeasible statistical reasoning; what seems to be an unquestionably
sound maxim for transferring from source to target turns out to be improper in
the most disturbing and unexpected statistical way.

1.2 Russell and Clark on Analogical Inference.

Russell’s deductive account [Russell87] of analogical reasoning is at once au-
thoritative and demonstrating exemplary clarity. Peter Clark’s recent attempt
to generalize the analogical reasoning paradigm to arbitrate among conflicting
defeasible arguments is refreshing and exciting {Clark88]. These two papers
represent two of the most formal accounts of analogical reasoning.

Raussell is interested in inferences such as

Nationality oerermines Language
Language(Louis, French)

Nationality(Louis, France)
Nationality{ Antoinetie, France)

thus,
Language( Antoineite, French)

by the analogy of the target, Anfoinette, to the source, Louis. Louis’s language,
namely French, determines Antoinette’s language to be French, in virtue of their
important similarity. Russell justified this reasoning by taking the determination
relation to mean, roughly,

(w)(y)(2)-
(N ationality(w, y) A Language(w, z)) —+
(=).Nationality(z,y) — Language(z, z).

This makes the inference valid in a first order system.
Peter Clark is interested in inferences such as

Over-Block(z) mpicares ~Sand-At(zx)
Sand-Nearby(e) woioarss Sand-At(z)



Late-Fault(z) mproarss Sand-At(z)
Un f avorable- Environment(z) moicarss ~Sand-4t{z)

Over-Block{well,)
Sand-Nearby{well;)

Late- Fault(well;)
Unfavorable-Environment(well;)
Sand-At{well;)

Over-Block(welly)
Sand-Nearby(welly)
Late-Fault(welly)

Un favorable- Environment(welly)
thus,

Sand—At(welly)

by the analogy of the target, welly, to the source, welly.

The resolution of the conflicting arguments in the case of well; determines
the resolution of the conflicting arguments in the case of welly. I will say that
Sand-Nearby and Late-Fault are factors that indicate the ultimate conclusion.
Over-Block and Unfavorable-Environment are factors that counter-indicate
the ultimate conclusion. Note that in Russell’s notation, we might have said that
Ouer-Block(z,true) determines Sand-At(z, false), if Over-Block had been the
lone indicating factor. The easiest way to translate between Russell and Clark
is to consider the case wherein Russell’s relations are bivalent in the second
argument (and determinations apply only when values are true).

Clark is interested in an additional behavior that I will call “monctonicity
of conflict resolution.” He thinks that the above inference should be supported
even if

Over-Block(welly)
were omitted as a premise about the target, and even if
Sand-Nearby(well,)

were omitted as a premise about the source. If the target case contains more
indicators of the conclusion and fewer counter-indicators than the source case,
thinks Clark, then the conclusion should be preserved. Clark formalized this
reasoning, but did not attempt to justify it, deductively or inductively.



1.3 The Reference Class

The account of statistical reasoning I have in mind is due to Kyburg [Ky-
burg61,74,82], though there may be similar reconstructions with Pollock’s com-
peting theory [83,84]. What is crucial about these theories is that they provide
alogic for determining what is called “the reference class.” The account of anal-
ogy I am considering could not be given in theories of enumerative induction,
such as considered by Russell. Nor could it be given in a Bayesian theory of
statistical inference in which determination of the reference class plays no role.

The problem of determining the reference class begins with explicit acknowl-
edgement of multiple statistical sources. Essentially, choosing the reference class
amounts to choosing the right statistical source on which to base inductive judge-
ment. If we think of Neyman-Pearson statistics, the closest kin to the problem
of choosing the reference class is the problem of testing for significant difference
in two populations. But the statistician’s logic is incomplete; most often, a
single, homogeneous sampling population is assumed.

When there is information from multiple populations, or multiple classes,
choice of the reference class depends on how relevant each class is, and how
precise the statistical information. If all statistical information is sufficiently
precise, then we try to use information about the most relevant class for which
there is statistical information. The Bayesians part company here. Bayesians
assume that there is precise statistical information about all classes; choice is
a matter of maximum relevance. In Kyburg and Pollock, there may be no
statistical information about the class of maximum relevance; of those about
which there is information, there may be multiple classes of maximal relevance.

It may puzzle why we are interested in choosing among multiple statistcial
sources when analogy reasons from a single source. Simply, analogy proceeds
with a single source of imperfect match when there may be alternative sources
and alternative matches. ”Why this analogy?” may be closely related to »Why
this class as reference class?”

The following table should help sort out the various approaches and the
respects in which they should be compared.

Kyburg with | Clark Russell
1-Projectibility

ar fow &1 one cazs auggesis one cass produces genoraliza- cone cato producer genoralisa-
mais bohavior tion tiem

defaasibly indefoasibly indefoasibly

muliiple classen muliiple determinations multipte detarminations
more specific claster age no differentisl relevanca detorminations have idesl
more relevant relevance
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2 Constructions.

2.1 Kyburg’s Logical Foundations of Statistical Inference.

Kyburg’s account is widely acknowledged among philosophers of science, but is
quite complex; I assure the reader that this paper contains no more than the
parts of theory required to follow the later discussion.

Kyburg formalizes reasoning about probabilities given statements about rel-
ative frequencies among classes.

Let me write

{l4]] for {z : A(=)}.
That means [|A A B|] stands for {z : A(z) A B(z)}. Also, let

%(ll4l), 11811

be the per cent of [|A[]’s among [|B[]’s.
Consider an example with three statistical sources of varying precision and
relevance:

%( [|Mets-Gamel], [|Mets-Win]} ) = [.6, .7]

%( [|Mets-Game A Night-Gamel], [|[Mets-Win|] ) = [.5, .65
%( [|(Az).(z = T'uesday’s-Game)|], [[Mets-Win|] } = [0, 1]
Tuesday’s-Game € [|Mets-Gamel]

Tuesday’s-Game € [|Night-Gamel|]

Tuesday’s-Game € [|(Az).(¢ = Tuesday’s-Game)|]




apparently,
rros ( Tuesday’s-Game € [|Mets-Win|| ) = [.5, .65]

The reference class is [[Mets-GameA Night-Gamef], the most specific class
about which adequate statistics are known.

In the example, there are three candidates for the reference class (or candi-
date reference classes), for the query

rros ( Tuesday’s-Game € [[Mets-Win|] ) = ?

That is, there are three sets that satisfy the syntactic requirements required for
projecting a Mets-Win, These sets are

[IMets-Gamel|]
[[Night-Game|]
[{Az).(z = Tuesday’s-Game)|lie, {z : = = Tuesday’s-Game} .

The last is the most specific class, but the relevant frequency is not well
known among this class. Of the other two frequencies reported, there is conflict:
i.e. [.6, .7] and [.5, .65] do not stand in the sub-interval relation, and the interval
[.5, .65] is associated with the more specific class.

Formally, Kyburg takes an “inference structure” for sros(z € V) to be the
collection:

<z, AV [pd >

(Note I am suppressing Quinean quotes, but note that (z) is the uni-
versal quantifier in the object language, and the universal quantifier
in the meta-language is spelled out, for all «; similarly, — is the
material conditional in the object language, and “if ...then ..." is

the material conditional in the meta-langnage).

when it is known that

z €A
%(A, V) = [p.q]

A mav.proszer V),



where the last requirement is that 4 is a candidate reference class for V, i.e. 4
may project V.,

(Also note that the first two sentences should be properly rendered
fz €Al € KBASE
1%(A,V) = [p,q]' € KBASE

to make them metalinguistic assertions, like the third sentence;
TAl mav-rromer (V1

I will resist this much propriety).

I will call V' the target property and z the target individual. There are lots of
classes that will not be candidate reference classes for V. For instance,

Vu{z}

is clearly not a candidate reference class in general. This restriction is motivated
by the same intuitions that lead to restrictions on what similarities may support
analogy. We might not want [|Bob-H ope-did-not-atiend|] to be a candidate
reference class for [|Mets-Win|]. Similarly, we might not take Russell’s P, the
property that a and & share in virtue of which an analogy is made, to be the
property of not being identical to Bob Hope.

It is an axiom of Kyburg's system that

forall A,B: if (A mav-prossor V)
and
(B MAY-PROJIBGT V)
then (A.I'] B) mav.rromor V.

Given a collection of inference structures, {IS1, ISa2, ...}, there will be
relations of “domination” arnong them. In the example above,

DOMINATES (
< Tuesday’s-Game,
[| M ets-Game A Night-Game]],
(| M ets-Win|],
[.5, .65] >,
< Tuesday’ s-Game,



[|M ets-Game]],
(1M ets-Win|],
[6,.7] >

Let

INP-STRUOTSg |/

be the set of inference structures for rros (z € V'); there will be one inference
structure per (relevant) statistical source. Also, let

REFGLAS%,V

be the reference class for pros (z € V). When z and V are understood, we drop
the indexes.
It is a theoremn that

exists p,q 5.t
< &, rerPOLASS, V, [p, g]> € wmr-sTruoTs,
and
not |
exists IS s.1.
IS8 € mr.srRUcTS
and
DOMINATRS (IS', < &, RBFCLASS, V, [p, q]>) );

in other words, the inference structure that lists the reference class is undomi-
nated in the set of inference structures. Call the inference structure that lists
the reference class the “reference inference structure.” Say that two inference
structures disagree when their intervals don’t nest, that is,

DKSAGRBBS(
< x,A,T/, [qu] >|
< 2!’,./1’, VI, [,p.f,ql] >
)
iff



_‘(l-l": Q] - {P’, qr])

and

=(lr',¢'] C [p,q]) .

Let rnmronass(S) be the reference inference structure for a particular set of
inference structures, S, which may not be the same as wr-srrucrs. Note that
I-nnFcLAss(mp-s'rnUo'rs) 18 rerorass.

The following two theorems for Kyburg’s system establish how much of
Clark’s monotonicity of conflict resolution we will believe. The first says that if
we remove a statistical source that disagrees with our ultimate conclusion, then
the ultimate conclusion remains the same. The second says that if we add a sta-
tistical source that does not disagree with our ultimate conclusion, then either
the conclusion is unchanged, or the new source becomes the new conclusion.

if
(IS;_ c mr-s'rnuc;'rs)
and
pisaareas (157, RDPOLASS)
then
not (
DISACREBES (I-RBPGDASS( INP-STRUQTS — ISl ), EBFCLASS)

).
And

if
not ( IS, € mn.s'rnuc'rs)
and
not (DISAGRBBS (152, l-RB?DLASS(INP-STRUOTS)))
then
:-rmpcr,.ass( (:Nr-s'raucx'rs U IS]_) )
= rrerovass(ine-sTRucTs)

= REPFPOLASS

or

I-RBFGLASS( (INF—STRUOTS ) IS]_) )
=15, .

Incidentally, this system has been successfully implemented and studied as
a system of evidential reasoning [Loui86,88]. These papers also discuss in more
detail the combinations that are appropriate in situations in which there is more

10



than one undominated class. Combination of inference structures would take
us 00 far afield, and there is no analogue in analogical reasoning. It suffices
to say that here is another facet of statistical reasoning that has not yet been
exploited in case-based reasoning (though Clark’s attempts are a move in this
direction).

2.2 Reconstruction of Russell’s Inference.

Armed with this much understanding of Kyburg’s system, we can now state
Russell’s and Clark’s analogies as special cases of inferences with this system.
The point is that analogical inferences can be justified and understood in
terms of an existing and accepted system of statistical reasoning.
The constructions for Clark’s inferences are more interesting, so do not be
dismayed by the triviality of claim 1.

Claim 1. Russell’s analogies can be understood as Kyburgian sta-
tistical inference given an example from the most specific candidate
reference class, and given knowledge that the relative frequency of
the target property is extreme in this class,

P(:c, y) DETERMINBS Q(a:, z)
Pla,y) AQ{a,z)

P(b,y)

thus,

Q(b,z)
becomes

1.1.1. forall y,z:
[[(/\w) .P(:n, y)[] MAY-PROJBOT [|()tm)Q(:x:, z)[]

and

for all A, t:

i

@ € [|(A=).P(z, 1))

and (t & A)

and A mav-eromser [|(Az).Q(z, 2)(]
then

[I(Az}.P(z,9)]] C 4

1.1.2. (y)(z).
%( [|(3z).P(z, )], [I(3=).Q(z, 2)[] ) = [1, 1]
v

11



2 [[(3z).P(z, )], [|(A2)-Q(=,2)[] ) = [0, 0]
1.2. a € [[(Az).P(z,n) A (Az).Q(z,21)]]

1.3. b € [J(Ae).Plz,)|]

thus,
1.4. Paon( be [i(Aaz)Q($,z1)l] ) = [1, 1]

(the numbering is suggestive of the mapping between the premises).
Proof of Claim 1. Sufficiency. Without assuming details of Kyburg'’s system,
I can only sketch the proof. The critical observations are that

0 1.2 and 1.1.2 fix the % of Q’s among P’s.

o 1.3 says that this leads to an inference structure for the probability that b
isa Q.

o There may be other disagreeing inference structures, but 1.1. guarantess
that they are dominated.

Note that here as in Russell’s acconnt, the source case makes the inference
about the target indefeasible. We have taken the probabilities to be extremes. If
b is known not to be (Az).Q(z, z1), then that is an inconsistency, not a defeater
of the analogical inference.

1.1.1 can be weakened by taking just its first conjunct. 1.4 would still be a
conclusion if there are no known competing inference structures for b's Q-ness
or —{-ness. But note that Russell requires that the predicate P reflect “all
the information relevant to the query, ...for example, ...all the factors that
might affect the language a person speaks (nationality, country of residence,
parents’ language, ...and so on) ....” This is reflected in the requirement in
(1.1.1) that [|P(z,y)|] be the most specific candidate reference class to which
any individual will be known to beloeng. We require any individual, not just the
target individual, because Russell’s determination relation says nothing about
a particular individual. Usually, [|(Az).(z = £)|] is taken to be a candidate
reference class in Kyburg’s system, for all queries, but this almost surely will
not be the case here. There has to be some reason why, when we do analogy,
we are so certain that the inference from the putative determining case will not
be defeated by an inference from an even more similar determining case. In
Russell, and here, this certainty is simply imposed by fiat. The assumption of
certainty is relaxed in Clark’s study.

12



Russell worries about what should happen when Louis speaks two languages,
or has two nationalities, and he alters the definition of a determination several
times to account for this case. Here, too, there would be complications, but I
will ignore them and focus only on total determinations. Accounts of his other
determination relations could be given, but would just be distracting.

2.3 Reconstruction of Clark’s Inference.

Claim 2. Clark’s analogies can be understood as Kyburgian statis-
tical inference in the presence of multiple statistical sources, when
there is knowledge about how conflicts were decided for the source
case.

It cannot be understood as using the single case to determine the frequency
of the target property among the intersection of candidate reference classes.
This is because even if the single case could determine the frequency, and we
could project from this single case, we could not explain Clark’s insistence on
the monotonicity of conflict resolution.

Ai(z) moroaras Q(z)

Ag(w) INDICATES Q(a:)

As(z) woroarss Q(z)

A4(a:) INDICATHS —=Q(:c)

Q(a)

Al(a) A Az(&) A As(d.) A A4(a)
Al(b) A Ag(b) A Ag(b) A AQ(b)
thus,

Q)

becomes

2.L.L %( [lAl], IR ) = [0, €]
2.1.2. [IA;[I] mav-rroimcr [|Q]]

2.2.L %( [|42[), Q) = [1 - ¢, 1]
2.2.2. [|A2!} MAY-PROJRCOT [iQi]

23.1 %([l4s|], lQ ) = [L -, 1]
2.3.2. [!A3ﬂ MAY-PROJBOT [iQI]

2.4.1. % [144]], [1@1) ) =

[0, ¢]
2.4.2. [|A4[] mav-rroszor [1Q]]

13



2.5. a € [JA; A Ay A Az A A4l]

2.6. Q(a) is acceptable on 2.1 — 2.5;
i.€. prOB 2_1_2.5( ac[|Q)>1~¢

2.7. b€ [[A1 A Az A Az A A4]]

thus,
28. pros(be[|Q) > 1~¢

Proof of Claim 2. Sufficiency. The crucial observations are

o There are as many inference structures for b € [|Q]], as for a € [|Q]], given
2.1-25.

o There may be other reasons for a € [|Q]], but on the force of the inference
structures that 2.1 — 2.5 support, rros (a € [|Q][]} is high.

o So some inference structure with reference class ¥, with %(V, [|Q|]) high,
dominates other inference structures (whether this reference infer-
ence structure is based on 2.2, 2.3, or some combination of them).

o If this inference structure is dominating for a € [|Q]], then it is dominating
for b € [|Q]].

What is more interesting than sufficiency is the insufficiency of a weakened
2.6. If 2.6 is weakened, so that Q(a) is simply acceptable, then this doesn’t
guarantee 2.8. Q(a) may be acceptable because of some other inference struc-
ture for a € [|Q|], and there may be no analogous inference structure for b & [|Q|].

Note that monotonicity of conflict resolution is achieved through the theo-
remns on how rrercrass behaves under unions and subtractions from wr.sTrucTs.
I inference structures dorninate each other in such a way that warrants conclud-
ing rnos (b € {|Q[]) exceeds some threshold, then adding yet another inference
structure that agrees with that conclusion cannot force the threshold lower.
This corresponds to Clark performing the analogy from a source case that has
fewer factors indicating the ultimate conclusion than the target case, but just
as many counter-indicating factors. Also, if we remove from the set of infer-
ence structures an inference structure that disagrees with the conclusion about
#rom (b € [|Q]]), that too cannot lower the threshold. This corresponds to Clark
performing the analogy from a source case that has as many indicating factors
for the ultimate conclusion, but even more counter-indicating factors.

It is tempting, but incorrect to take the translation to be

14



8.1.1 % [l }Ql) = [0, ]
3.1.2. [|A1]] mav-pro®BOY [1@]]

3.2.1. B( [l 4], [|QN) = [L ~¢, 1]
3.2.2. [|42]] mav-rromCT el

3.3.1. %([|4s]), [IQN ) = [L~¢, 1]
3.3.2. [IAs ” MAY-PROIJEOT [IQI]

3.4.1. %( [l44]), [IQ) = [0, €]
3.4.2. [|A4g]] mar-prosmer [|Q]]

3.5. %( [|41 A Az A Ag A A4l

y RI)=[1~e1]
%o( [|AL A Az A As A A4l
flel]) =10, ¢

3.6. a€ [|[A1 A Aa A As A Ay A Q)]

3.7. be[|lA1 A Az A Az A Ay

thus,
3.8. proa (b € [IQl]) >1l-€.

First, the single case reported in (3.6) does not establish which of the dis-
Juncts in (3.5) is true. Suppose, though, on the basis of (3.6), one of the disjuncts
could be made so probable that it is acceptable, through the observation of the
target case. This requires an additional theorem about sampling: that most of
the candidate reference classes for some property ¥ that are known to be mostly
¥ or mostly -y, can be decided (with high probability) by looking at a single
case, This is a theorem for appropriate ¢ and 4.

3.5.1. (y).
{2 (B(ey) =0, v %B(z,y) =[1 - ¢ 1])

A sample(z,y) = <1, 1> },

{z: %(z,y)=[1-¢1]}
}>1-5.
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{where, by sample(P,Q) = < s,r >, we mean that sP’s were sam-
pled, of which  were Q’s and s — r were —Q’s).

Additional knowledge about particular =’s and 1’s, or for particular sampling
procedures, might make § even smaller, for given .

When we have a situation like (3.5), and the § for which (3.5.1) is a theorem is
small enough to suit our needs (i.e. 1~ § is above the threshold of acceptability),
then let us write that Q is single-case-projectible from A3 A...A A4 that is:

[|A1 ALLA A4”1-Pnomcrrs [EQ“

Then (3.6) decides which disjunct in {3.5) is the right one; the massof 4; A... A
Ay 18 either @ or —@Q, and since a is a @, this decides that the bulk of 4; A...A
Ay is Q@ with high probability. So Q(?) could be inferred.

But the monotonicity of conflict resolution would be violated for the follow-
ing reason. If

Zo( [lA1 A Az A As A Agl], [IQID)
=[l-¢ 1]

A

D( (1Al [|@f] ) = [o, €],

it does not follow that

%( (142 A 45 A A4]], [IQIT)

can be bounded. In particular, it is not necessarily close to one. If b € [|4; A
Az A Az A A4]], indeed, Q(b) can be projected. But if (3.7) is altered, if b is
only known to be in [[42 A Az A Ay|], no projection is possible. It could be
that most races in which there are Porsches are not close races, most races in
which there are Ferraris are not close races, but races in which there are both
Porsches and Ferraris are often close races.

So in this formulation of the inference, we cannot weaken the number of
counter-indicating factors for the source case. It may be that the interaction of
two counter-indicating factors produces a joint indicating factor. Why could we
weaken it in the first reduction of Clark? In that reduction, the combination
of two counter-indicating inference structures can only counter-indicate. So
the counter-indicators for the source could be weakened without disturbing the
conclusion. Combination of inference structures is related to the cross product
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of two sets, while joint effects are related to the intersection of two sets; therein
lies the difference.

Anyway, we do allow the other half of Clark’s monotonicity desideratum.
We can know one more indicating factor about b, the target, and continue to
draw the conclusion. Add

3.7.1. b€ [lA1 A Az A Az A Ag A As]
3.7.2. B({|4s]], IR ) = [1 - ¢, 1]

3.7.3. [[A5|] mav-rrosmer [|Q]]
and (3.8) is still a conclusion in Kyburg’s system.

3 Discussion.

3.1 Considerations on Clark’s Defeasible Analogical Rea-
soning.

It is fallacious to propose a reduction of one inference system as a special case
of another, then criticize it because it appears to make assumptions in the
language of the reducing system. It is fallacious because there is no guarantee
that the reduction is the only possible, and there is no guarantee that ensuing
disputes are not defects of the reducing system. This is what the Bayesians are
sometimes guilty of doing when they assail Dempsterian inference.

I will not do this. But there are some claims about Clark’s analogical infer-
ences I would like to make, and I take the reductions to be merely suggestive of
the truth of those claims.

The reason I have belabored the second formulation of Clark-like inference
is that it is an epistemologically more satisfying account of analogy. It does
not capture both halves of Clark’s monotonicity of conflict resolution. But it
is simpler to use the second reduction and not insist on the ability to project
from a source to a target when more relevant things are known about the source
than about the target (namely, that the source has additional counter-indicating
factors of the ultimate conclusion).

The latter account requires trivial background knowledge; it requires almost
no assumptions in order to reconstruct Clark’s inferences. Domination of infer-
ence structures hased on specificity of candidate reference classes does all the
work. There are only two specializations. The first is that when two factors
both indicate a conclusion, they do so with frequency intervals that nest. That
is, if 4, indicates @), and A indicates @, then %{41, @) and %(A42, Q) should
stand in the (possibly improper) sub-interval relation. I guaranteed this above
by taking all the intervals for indicating factors to be [1 — ¢, 1] (and all the
intervals for counter-indicating factors to be [0, €]). This could have been done
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in a more general way: by taking all the intervals for indicators to be anchored
on the right at 1 (and taking all the intervals for counter-indicators to be an-
chored on the left at 0). The second specialization is in (3.5.1), which says that
observation of a single case determines the statistics to be on one extreme or the
other, hence allows projection from that single case. (3.5.1) is a very natural
assumption about sampling, for the appropriate §.

In the former account, which preserves both parts of the monotonicity of
conflict resolution, the source case had to be treated in a special way. It was
not enough to say in (3.6) that Q(a) was in fact accepted, for instance, by some
fortuitous observation. It had to be that Q(a) was acceptable, on the basis of
a’s having properties A;, Aj, A3, and As. Q(a) could then be accepted by
inference. Or perhaps that inference was unnecessary because Q(a) had already
been observed; it wouldn’t matter which. But it is not enough to say that
Sand-Nearby, and Unfavorable-Environment, and Sand, among others, all
co-occurred at well;. It must be that their co-occurrence was not accidental,
that this was a special kind of co-occurrence that determines how conflicting
arguments of exactly the kind that were involved are to be resolved, for all future
cases, including well,. It must be that the co-occurrence of Louis’s N ationality
and his Language is not spurious; rather, that Louis’s Nationality and Louis’s
Language’s co-occur representatively.

3.2 Defeasible Determination and Defeasible Representa-
tiveness.

In the case of Russell-like analogies, since there is no defeasibility, the deter-
mination relation dictates that any source example will relate Nationality and
Language in a representative way.

In Clark-like analogies, the stipulation of this representativeness is the in-
tuition that drives the design of the inference system. Any source example
that involves certain factors and their resolution is representative of all such
resolutions.

Clark puzzles over how to generalize the formalism so that cases with the
same indicators and counter-indicators could have resolved differently in past,
arriving at different ultimate conclusions. He has taken the first step of in-
troducing defeasibility into determinations. Now a factor, such as French-
Nationality, only appears to determine whether French-Language or = French-
Language; it is a prima facie determiner. It defeasibly determines, and the ulti-
mate conclusion about whether French-Language or ~French-Language in a
particular case depends on what other defeasible determinations play mitigating
roles, such as —~French-N ationality-Parents defeasibly determining whether
French-Language or = French-Language.

Clark puzzles over the next step, introducing defeasibility into representa-
tiveness. How should conflict resolution be done defeasibly?

‘We may consider the inference
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Al(x) INDIOATHS "'!Q(:t:)

Ag(x) INDICATRS Q(.’B)

As(x) IRDIOATES Q(:l!)

A4(x) INDIOATES —IQ(E)

Al(a1) A Ag(ﬂ.l) A Aa(al) A A4(Cl'.1) A Q(a1)
Al(ag) A Az(ag) A Ag(ag) A A4(a2) A Q(ag)
Al(ag) A Ag(a:;) A Aa(aa) A A4(a3) A —EQ(aa)
A1(b) A Az(b) A Aa(b) A A4(5)

thus,

Q(b)?

Clark mentions that a “majority verdict” could be taken, in this case, two cases,
ay and ap, are in favor of @, while the single case, ag, is opposed.

Are we willing to choose @ over =@ for b when no overwhelming number of
past cases are examples of @7 I think we are not. If the number of cases for
@ were overwhelming, say 10 against 1, then perhaps we should project Q().
Otherwise, by my lights, there is no sense to the inference, even if possibly
construed as some strong form of analogy.

The only sense I can make of such an inference is that we are accumulating
instances of the class [|4; A A2 A Az A A4l], and observing the relative frequency
among them that is is [|Q|]. Our willingness to project from this class based on
a small number of cases includes those times when we have a sample of 1 among
1, or 2 among 2, perhaps even 9 among 10; but not 2 among 3, or 5 among 11.

Fully defeasible analogical reasoning is apparently just defeasible reasoning
about the reference class, with the right to project from certain small samples.

3.3 Defeasible Reasoning with Specificity.

Oddly, Clark makes no use of the idea of specificity, which pervades defeasible
statistical reasoning, and defeasible reasoning in general [Loui87]. If 4, indicates
&, while A; A A; counter-indicates @, the latter should supercede the former for
a case t, s.t. Ay () A Ay(t). This is not a particularly egregious oversight, since
Clark’s whole philosophy is to make no a priori distinctions among determining
factors; he wants to resolve all conflicts by looking for source cases that manifest
these factors and seeing how their conflicts were resolved. But he misses an
opporiunity by not seeing the source case as a more specific reason than the
indication relation.

He could be faced with the case above, where A, and A3 are both indicators
of @, and A; and A4 are both counter-indicators of Q. There are two potential
sources: a; and az. a; is an A; and an A,, as well as a ~(. as is an A4; and an
Az and an Ay, as well as a Q. In this case, though one source argues for Q and
the other for ~Q, so that there is no majority verdict, taking specificity seriously
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would demand the (defeasible) conclusion Q(b). aj is just more specific a source
than a;.

3.4 Case-Based Generalization versus Case-Based Projec-
tion.

The difference between generalization and projection for arbitrary cases is that
the projection is defeasible. It is one thing to infer

P perermnss @
P(a) A Q(a)

thus,

(). Pz) — Q(z)

and quite another to say

P perormmnes @
Pa) A Q(a)
thus,
for all @: if P(z) is known,
then Q(z) is a justified defeasible conclusion .

The two are not the same because when I is taken to be non-monotonic, the
deduction theorem disappears. The former conclusion indefeasibly yields @ from
P. The latter admits defeaters.

‘What really seems to be desired is the latter.

“Case-based generalization” is a misnomer. Clark and Russell understand
the logic of analogy to be monotonic. I think this is a mistake.

4 Control of Statistical Reasoning Driven by
Few Cases.

The possibility of case-based reasoning suggests new control strategies for sta-
tistical reasoning programs. Already there is a need for studying control issues
in programs that pore over their database in response to a query, to construct
samples, from which to do reasoning about reference classes (e.g. the program
described in [Loui88]). It makes little sense to continue to extend sample sizes
beyond 10, or 20, in commonsense reasoning. There is hardly a difference in the
intervals that result from a sample of 7 out of 10, and a sample of 14 out of 20.
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If 1 had time to examine 20 cases, I would spot at 7 out of 10 for one class, and
spend the rest of my counting time in its subclasses.

A meta-level utility analysis of the expected value of continued examination
of cases is required, no doubt (see for example, [Russell& Wefaldss]).

Prior to doing such an analysis, we should identify what choices make sense.
These choices are determined by what are our current best arguments for pro-
jecting some property, and what counter-arguments, if constructible, would be
effective rebuttals. Our theory of analogy, or of more general projection from
few cases, is what determines where to seek counter-arguments.

Consider projecting from the single case:

Porsche(944) A Power ful(944)
Porsche(924)

apparently,
Power ful(924)

There are a few ways in which search can now be directed. A counter-argument
to this projection could produce counter-examples to the co-occurrence, e.g.

Porsche(356) A ~Power ful(356)

which dilutes the relevant statement of relative frequency. Or it could produce
a property that distinguishes putative target and source, e.g.

VW-Project(924) A -V W-Project(944)

together with a statement that this property is a counter-indicating factor, that
is, that it indeed leads to an interfering inference structure

VW-Project(Bug) A ~Power ful(Bug) .

This amounts to an appeal to the target’s membership in a more specific (i.e. more
relevant) class that is apparently counter-indicating.

A third way to attack the argument is to attack the determination relation
in virtue of which the single case can be projected. For instance, if one could
produce
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Ford(Mustang) A Power ful{ Mustang)
Ford(Escort) A ~Power ful(Escort)

it would be contentious whether

Jor all =,y

if @ € Car-Manufacturers

and y € Performance-Features
then T 1proJBOTSY .

This amounts to attacking the inference that led to the 1-projectibility relation
between Porsche and Powerful, that is being assumed {(in the real world, we
probably already know this relation, so the Ford examples are not going to
sway our opinion).

The Ford example is prima facie evidence that there is a Car-Manufacturer
class that is inhomogeneous in some Performance-Feature class. This exam-
ple could be countered by identifying Porsche in a subclass, e.g. European-
Marques, where the Ford example is excluded from this subelass. And there
should be prima facie evidence that there is homogeneity of members of this
class with respect to kinds of performance features; there should be reason to
believe that a Performance-Feature could be 1-projected from a European-
Car-Margue:

%([ISaabl], [|[Handles]]) = [1 — ¢, 1]
(Y ugol], [ Handies]]) = [0, 4
%([|Lotus]], [|Brakes-Well]]) = [1 -, 1]
%([|Daimler-Benz||, [|Slow(]) = [0, €]

This 1s a lot of background knowledge, and in the presence of such knowledge
we might as well assume that we also know

%([|[Porschel}, {|[Power full]) .

But it should be clear how the logic could direct the dialectic. If any of these
counter-arguments could be produced, search could next be directed toward
finding a reinstating argurment, and so forth,
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Investigations of control of this kind of reasoning would also benefit control
of purely qualitative defeasible inference, such as [Loui87] and [Pollock87].

How precisely to make control choices appropriate to this kind of reasoning
is the subject of a more ambitious invesitigation. For our purposes, it is enough
to recognize this kind of reasoning, and to recognize the relation between control
of choices and the study of how to undermine analogical inferences.

5 Conclusion.

Modern philosophers of science such as Quine and Ullian [Quine& Ullian70] and
Kyburg [Kyburg61] hold that analogy is an uninteresting special case of induc-
tion. AI authors have balked at this, preferring to view analogy as a more
interesting species of deductive reasoning, in Russell’s case, or as the resolution
of conflicting defeasible arguments, in Clark’s case. I present middle ground.
Analogy’s problems are best sorted with our most expressive language and ma-
chinery for inductive statistical reasoning. Case-based reasoning reveals itself
as the guide to dialectical maneuvers in this statistical reasoning.
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