View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-90-07

1990-03-01

Axon: Host-Network Interface Design

James P.G. Sterbenz

This paper describes the Axon host-network interface architecture. The Axon project is
investigating an integrated design of host architecture, operating systems, and communications
protocols to allow applications to utilize the high bandwidth provided by the next generation of
communications networks. The Axon host architecture and network interface is designed to
provide a high bandwidth low latency path directly between the network and host memory. A
pipelined communications processor (CMP) serves as a network interface with direct access to
host memory, capable of delivering bandwidth in excess of 1 Gbps to applications. This
provides the ability to support demanding applications... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Sterbenz, James P.G., "Axon: Host-Network Interface Design" Report Number: WUCS-90-07 (1990). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/682

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/682?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/682

Axon: Host-Network Interface Design

James P.G. Sterbenz

Complete Abstract:

This paper describes the Axon host-network interface architecture. The Axon project is investigating an
integrated design of host architecture, operating systems, and communications protocols to allow
applications to utilize the high bandwidth provided by the next generation of communications networks.
The Axon host architecture and network interface is designed to provide a high bandwidth low latency
path directly between the network and host memory. A pipelined communications processor (CMP)
serves as a network interface with direct access to host memory, capable of delivering bandwidth in
excess of 1 Gbps to applications. This provides the ability to support demanding applications such as
scientific visualizations and imaging, requiring high bandwidth and low latency.

https://openscholarship.wustl.edu/cse_research/682?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/682?utm_source=openscholarship.wustl.edu%2Fcse_research%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages

AXON: HOST-NETWORK
INTERFACE DESIGN

James P. G. Sterbenz

WUCS-90-07

March 1990

Department of Computer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-48¢9

Abstract

This paper describes the Axon host-network interface architecture. The Axon project
is investigating an integrated design of host architecture, operating systems, and com-
munications proiocols to allow applications to utilize the high bandwidth provided by
the next generation of communications networks. The Axon host architecture and
network interface is designed to provide a high bandwidth low latency path directly
between the network and host memory. A pipelined communications processor (CMP}
serves as a network interface with direct access to host memory, capable of delivering
bandwidth in excess of 1 Gbps to applications. This provides the ability to support
demanding applications such as scientific visualization and imaging, requiring high
bandwidth and low latency.

James Sterbenz is on leave of absence from IBM Corporation at Washington Univer-
sity in St. Louis.

AXON: HOST-NETWORK INTERFACE
DESIGN

James P. G. Sterbenz
Jjps@wucsl.wustl.edu
+1 314 726 4203

1. Introduction

Ongoing research in the computer communication and telecommunications fields suggests two emerg-
ing trends which are complementary to one another. First, as time goes on we will continue to witness
communication networks which can support increasingly high data rates. For example, networks with
data rates of hundreds of Mbps are being prototyped, and networks with data rates above 1Gbps are
being planned. The future generation of internetwork, consisting of these high speed subnetworks, is
referred to as the very high speed internetwork (VHSI) [Pa90)]. Second, a diverse application set hav-
ing differing bandwidth, latency, and reliability requirements will have to be supported on the VESI
communication substrate. For example, video distribution, computer imaging, distributed scientific
computation and visualisation, distributed file and procedure access, and multimedia conferencing
are all target applications. These trends pose a number of new challenges and opportunities to
researchers. Ome such challenge is how to support high performance interprocess communication
(1pc) in this environment.

The existing approach of supporting IPC cannot deliver the underlying high bandwidth to newer
and demanding applications because of a number of reasons: lack of integration among host archi-
tecture, operating system, and communication protocols; performance bottlenecks in the existing
end-to-end protocols and their implementation; and almost no support for the shared memory
paradigm in a loosely coupled or network environment.

A new communication architecture for distributed systems has been proposed called Axon
[StPa8%a, StPad90b]. The primary goal of the Axon architecture is to support a high performance data
path delivering vist bandwidth directly to applications. The significant features of Axon are: [1] an
integrated design of host and network interface architecture, operating systems, and communication
protocols; [2] a network virtual storage facility which includes support for virtnal shared memory
across networks [StPa89b, StPag0a, StPa90c]; [3] a high performance, lightweight object transport
facility which can be used by both message passing and shared memory mechanisms [StPa89c]; [4] a
pipelined network interface which can provide a high bandwidth low latency path directly between
the vHSI and host memory.

This paper presents a description of the Axon host and network interface architecture, and is
organised as follows: Section 2 describes the bandwidth and Iatency aspects of host-network interface
design. Section 3 provides an overview of the Axon architecture as background. Section 4 describes
the host architectures in support of Axon, Section 5 the Axon host—network interface, and Section 6
the design of the communications processor (CMP). Section 7 discusses Axon performance and the
partitioning of function between hardware and software.

2 Axon: Host—~Network Interface

2. Performance Measures

High performance is characterised by high data rate and low latency, with sufficient predictability.
The data rate of a connection R is constrained by the minimum data rate ; of components along
the conmection path: R = min(r;). The total end-to-end latency or delay I is the sum of the
delays d; through the various components: D = }_d;. The requirements for a high performance
host-network interface will now be considered in terms of date rate (clock cycle) and latency (delay).
These parameters are shown in Figure 1.

d, dy detdg do
source transmit receive | target
memory interface interface memory
Tht Tx Tn Ty The

Figure 1: Interface Performance Parameters

2.1. Network interface clock eycle

Define the maximum data rate for transmission by
R= min('l"hl: TzyTny Fry rh’;’)

with components: the source host rate h,i, the rate of the transmitting network interface r,, the
VHSI (network) rate ry,, the rate of the receiving network interface r,, and the destination host rate
hea.

Assume that the clock cycle of the sending and receiving hosts are equal: 7y = rpy=rys. A
host CPU processes data based on a word width of w with a clock cycle ¢t,,. The rate at which
data can be processed is then rp = 1/¢,, [word/sec] which is w/t, [bits/sec]. The vus1 data rate is
ra = 1/7 [bit/sec]. It will be assumed that the host is able to process data at the network bandwidth
(74 = tw/w where 74 is the normalised data rate excluding header/trailer overhead), and therefore
7 is used to determine the required clock cyele for the host—network interface interface. The data
rate of the interface is 1/7,, where an internal data path width of w allows the clock cycle to be
Tw S WT.

For example, for a VHsI supporting connections of 1Gbps (r = 1ns), a network interface with
octet wide data paths (w = 8) needs to have a clock cycle of at most 8ns.

2.2, Network interface delay

Define the total end-to-end transmission delay of an object o by
D, = do+ de+ d.+ dq‘!“ d,

with components: the object transmit time d,, the pipeline delay at the transmitting network inter-
face dy, the speed-of-light latency d., the subnetwork and gateway queuing delay d;, and the pipeline
delay at the receiving network interface d,. Note that this excludes the latency of retransmitted
packets.

Sterbenz 3

Object transmission time. The object transmission time is a function of the object size |o| [bits]
and data rate 1/7, giving d,=|o|r. Examples for objects of various sizes at 1/7 = 1Gbps are:

o lo| d,

bit b 1b 1ns

byte B 8b 8ns
packet 484-5B 424ns
128+16B 1.2us

page p 1IKB 9.2us
segment s IMB 9.4ms
1GB 9.6s

The packet structure and object hierarchy in-Axon will be described later; this table is intended to
provide an example rather than to specify the exact object sizes in Axon.

The overall goal is to minimise D,, and the Axon architecture must minimise dz+d,, which are
the interface delays between the vHSI boundary and host memory addressable by the application.
Note that as dy, d;, and d, scale downward, d; dominates. Also note that if |o| scales up with
application demands and host ¢CPU power and memory size, d, may remain a significant part of the
latency.

Distance related latency. The speed of light delay is a function of the path length g and the
velocity of light in fiber ¢y, giving d.=g/¢;. It is the responsibility of the VHSI to minimise queueing
delay dy. It is assumed that the VHSI provides rate based flow control, and therefore that the
endpoint hosts need not be concerned with congestion control and are not able to directly control
dg.

The speed-of-light and queuing delays can be combined into a single distance related latency
deq = d; + dg, which reflects the scope of the network in terms of both geographic distance and
network hierarchy. The model for distance related latency is presented in Figure 2.

Figure 2: Distance Related Latency Model

Define the number of subnetwork N hops in an internetwork | as &, and the number of switch
node S hops in subnetwork N; as ;. The endpoint hosts are L (local) and R (remote), and gateways

G.

4 Axon: Host—Network Interface

The latencies for an internetwork, subnetwork, and switch (LAN) are:
dcq| dy +dy, +di + dy,, + dr
dch = dL + dNo + dRIHnO
dL -+ dc(sﬂﬂ} R)

dch

where d.(X,Y) is the speed of light delay between X and Y. Note that dy, = 0 or dy,, = 0 implies
an endpoint host connection to a gateway directly through a LaN.

The latencies associated with the endpoint hosts {L, R} include one switch hop, and are

dL = dysy + de(L, So0)
dr deSn,, + de(SEhg, R)

where d g is the quening delay through S. The latencies associated with the endpoint subnetworks
{Ng, Ny} are

ho

dy, = 2 [dgs; + de(Sogi-13:So7)]
j=1
ho—1

ANy = Z [dQSHj-I—dc(SHj’SH(j'i'I))]
j=0

The latency associated with the entire internetwork is:

H hi hi—1
di= |dai+ 2 dys,; + D de(Sij Sigj+1))
i=1 i=1 i=0

where the gateway latency (queueing and links to adjacent subnets) is

dgi = dyg, + de{Giy Niw1) + de(Gi, Ny)

The range of latency can be partitioned into regions, based on the geographic diameter g [km]
and hierarchical structure of the network: {LAN,MAN,WAN,IAN;c,1AN;c} (local network, metropolitan
network, wide area network, transcontinental internetwork, and intercontinental internetwork). This
results in a set of differing magnitudes of d. and d, for each network type.

For this discussion, a simple set of assumptions bounding distance for each network type and
queueing delay through gateways and switches will be used. The speed of light latencies are computed
assuming fiber optic transmission technology (¢; = 0.7¢), and upper bounds on distances [km] of
g € {2,100,5x% 10%,5x 103,20 x 10*}. The quening delays d, are computed assuming a conservative
1ms delay per packet switch and 10ms per gateway. A LAN is assumed to involve one switch latency, a
MAN subnet 3 switch latencies and a WAN b switch latencies. A transcontinental internet is assumed
to consist of a MAN at each endpoint connected through gateways into a WAN. An intercontinental
internet is assumed to traverse about 6 gateway—wWAN pairs.

The sum of these is the distance related latency d.q = d. + d, and are approximated below for
the five network types:

d. € {l0us, 500us, 25ms, 25ms, 100ms}
d; € {lms, 3ms, B5ms, 2bms, 100ms}
deg € {lms, 3ms, 30ms, 50ms, 200ms}

Sterbenz 5

10s— dy+d, P
1 |
" . b
1 [} H
- 1 I I
] | |
] 1 |
1s|— i i |
1 | 1
— AN ! R A
WAN T T T T T smEmEmEmEEmseEme
— | 1 I
MAN | B
!
1mg |- LaN . o e mmmmm e
{ LA |
— 1 /(1
wh_AN:dﬂ=0 | _—_/_ - i - ._: _______________
1 I |
1ps |- I Lo
H 1] I
e i i 1
| 1 i
1 1 1
. I 1 1
msb—t Lo bl gy
1ns 1us 1ms 1s 10s

Figure 3: Host Interface Latency Sensitivity

Host interface latency. By assuming d., as a constant bound for the various kinds of networks,
and plotting the end-to-end latency {without the object transmit time) d.y+d_, vs. the host interface
component dgr = dg + dy, the sensitivity of end-to-end latency to the host interface can be seen in
Figure 3.

This plot indicates when the host interface latency d.. dominates the distance related latency
deg, and assumes a data rate of 1/7 = 1Gbps. The result is that for wide area and internetworks,
the requirement for interface latency is dz» < O(1lms). For a the host interface to support LANS,
the requirement increases to dzr < O(100ps), and finally as an extreme lower bound, ignoring dy we
have d.. < O(1ps).

The Axon host-network interface is pipelined, as will be described later. The number of accept-
able stages in the host interface pipeline can be computed as ng,, = dyr/Tw. Assuming an interface
with octet wide data paths (w = 8), this allows a pipeline at most 125 stages long using the extreme
lower bound. Note that realistically, considering d, = 1ms increases this by two orders of magnitude,
and that object size begins to dominate above 10KB (d, = 92us).

2.3. Network interface performance

One of the performance targets of the Axon architecture is to support high bandwidth interprocess
communication with low latency, specifically sub-second round trip delay (including object transmis-
sion). The preceding discussion has shown that this is feasible even for the transfer of large objects
(1MB) over long distances distances (20 x 10%km), if a network interface can be designed with the
necessary performance. Thus the design of a host-network interface with a high speed clock (7))
and reasonably low latency (d,) will be explored in the rest of this paper, after a brief introduction
to the higher layer aspects of Axon.

6 Axon: Host—Network Interface

3. The Axon architecture

This section provides a brief introduction to the Axon architecture, with emphasis on functionality
that must be supported by the Axon network interface. First, 1PC primitives are discussed within
the framework of the vHsI environment. Then, a brief description is presented for the Axon sys-
tem level 1PC support and transport protocol. The host architecture, host-network interface, and
communications processor (CMP) are desecribed in subsequent sections.

3.1. IPC in the Axon architecture

A logical view of the Axon protocol hierarchy is presented in Figure 4. It is important to note that
this is a logical view of functionality only, and does not imply that strict layering (in the 150-0s1
sense) is being adhered to.

Host CPU+Memory Host CPU+Memory
process IPC~ |-] process I[PC
{s,7) |(7,0) | GRPC |stream stream| GRPC | {(r,w)] (s,7)
NMP NVS (08) CMP CMP NVS (08) NMP
ALTP-QT ALTP p-——————1 ALTP ALTP-QT
MCHIP}-~-——-—1 MCHIP
NAP NAP

Figure 4: Logical Axon Protocol Hierarchy

Ipc is supported with shared variable read/write (r,w) and message passing send/receive (s,7)
primitives. Axon supports a general form of remote procedure call, in which the code and data
segments can be located on arbitrary and independent hosts, with execution specified for an arbitrary
host, referred to as generalised remote procedure call (GRPC). Axon provides mechanisms to transfer
segment streams at high bandwidth with low setup overhead to support the special demands of high
performance visualisation and imaging applications. GRPC and segment streaming are described in
[StPa89b, StPad0a, StPadlc].

3.2. System level IPC support and NVS

The system level support for the various application level 1Pc paradigms is provided by two com-
ponents: NVs and NMP. The network message passing (NMP) interface performs relatively straight-
forward transformations from application level primitives (e.g. send and receive) to transport level
message passing calls (e.g. send-message and receive-message). Network virtual storage (NVs) is the
system shared memory interface for shared variables, GRPC, and segment streaming 1PC.

Nvs extends the typical virtual storage mechanisms to include systems throughout the vHsI. A
segmented programming model is used with underlying paging to facilitate storage management, as
in the Multics [Be72] operating system.

Nvs extensions allow the segments to be addressed when resident on a non-local host. This is
accomplished by including a host id. field in either the virtual address or the segment descriptor.
When a segment fault occurs for a nonlocal segment, the dynamic address translation facility invokes
the transport protocol to get a copy of the segment from the appropriate system. When the segment

Sterbenz 7

is returned, the appropriate page and segment deseriptor presence bits are set so that program
execution can resume with the normal fault recovery mechanisms.

Nvs in Axon also involves extensions and additions to storage management policies. The replace-
ment policy is aflected as a result of pages from remote segments in the locality set, and therefore
requires redefinition of the working set to account for non-local segments. An entirely new policy,
the remote placement policy, is used to determine where remote segments are placed while being
used by the local system. These include real store (Rs), auxiliary store {As}, a combination (RAS), or
frame buffer (FB) placement, with a number of sub-policy options (swappable, nailed, efc). The Nvs
mechanisms, policies, and data structures are described in detail in [StPa89b, StPad0a, StPad0c].

3.3. Communication protocols

At the transport level, applications using the VHsI are best supported by a set of simple application-
oriented lightweight transport protocols (ALTP) for various classes of applications [StPa89c, PaTu90].
Key features of aLrps are the implementation of critical functions in hardware, rate based flow
control, application-oriented error control, and structured collections of packets.

Arrps are designed so that their functionality can be split into critical and non-critical paths.
The critical path consists of the data path and routine packet processing, which are implemented
in vL3I hardware to sustain data rates above 1 Gbps. The non-critical path function comsists of
everything else, specifically the control that must involve host interaction for connection setup and
initiation of object transfer. By optimising the eritical path functions, and by processing multiple
packets in a single host transport level operation, the per packet processing is sustained at the full
vHSI data rate. FFor the protocol to be efficiently implemented in hardware, its design must be well
integrated with the host architecture and operating system.

ALTPs are optimised to provide the kind of performance guarantees and functionality the specific
applications need. The ALTP type used in Axon is designed to support IPC object transfer (especially
NVs segments), called ALTP-07T. The underlying internet/network layer of function is provided by
a multipoint congram-oriented high-performance internet protocolt (McHiP) [Pad0, MaPa89], and
network access protocols (NAP).

. .. |segment page
MCHIP | connid| ALTP | reqid (trame) (scanline) pkt data cksuimn
ltype| ¢ (@ltye| g |lgl| & | Is| ol >
2 2 2 2 1 1 2 2 1 2

Figure 5: ALTP-0T Data Packet Format

Packet structure and format. Information is transferred throughout the internetwork in
packets. A structured group of packets corresponding to a single ALTP-OT semantic action is a
super-packet, consisting of an initial control packet (which may also contain a small amount of
data), and optionally followed by data packets. Bits in the packet header indicate whether the
packet is control or data. ALTP-OT control packets require processing by the ALTP-0T logic in the
CMP (comumunications processor), as well as by the host system hardware and operating system.
Data packets require considerably less processing, all of which can be done in real time by the cMmp
hardware. The format of a data packet presented in Figure 5.

A congram combines the desirable features of a datagram with those of a (soft) connection. For the purposes of
this paper, it can be thought of a connection with the added attxibutes of rapid setup and survivability in the presence
of network failures.

8 Axon: Host-Network Interface

Each data packet corresponds to a fragment =; of a page p; of a segment s, of a segment-group
g corresponding to a super-packet o. For a video-graphics segment a page corresponds to a scanline,
a segment to a frame, and a segment group to an image.

The benefits of this packet/super-packet hierarchy is that most of the usual per packet control
processing is only performed per super-packet in Axon. A structuring of the data that is recognised
by ALTP-OT allows the per packet processing to be simplified to the extent that visi implementation
is reasonable and efficient. In addition, since ALTP-OT is tightly integrated with the host systems
software it has direct access to the appropriate operating system facilities (via lightweight system
calls) and data structures (such as virtual storage management tables), resulting in efficient coor-
dination between ALTP-OT and conventional operating system operations. For example, assuming
a data rate of 1Gbps and packet size of 144B (128B data + 16B header/trailer), the transfer of a
stream of IMB segments will involve the host processing of super-packets every $.4ms, rather than
of packets every 1.2us. Additionally, super-packet processing corresponds to segment fault process-
ing, and therefore requires no additional interrupis and context switches, as would per packet host
processing.

Flow control. ALTP-OT uses rate based flow control. When ALTP-OT opens a connection, it
specifies atiributes of the connection in terms of parameters such as average and peak bandwidth,
and a factor reflecting the burstiness of the transmission. These parameters are used by all the
intermediate systems, including various packet switches and gateways, as well as the endpoint hosts
that the connection goes through, to make appropriate buffer and resource reservations. The rate
specification is negotiated between ALTP-OT and the internetwork/network layers, to ensure that the
requested rate does not exceed the capacity of internal network nodes (packet switches, gateways,
and subnetworks). Furthermore, any adjustments to the rate specification should be infrequent,
based on long term changes in application demands. It is assumed that the internet level (MCHIP)
[MaPa89, Pa90] has the functionality to support connections with specified bandwidth requirements,
and furthermore, that the probability of packet loss, errors, and resequencing is very low, which is
referred to as guasi-reliability.

This results in very simple flow control at the host—network interface, involving clocking packets
at the specified rate, which can realistically be designed into the cMP hardware. As long as both
ends transmit subject to the rate specification, the probability of packet loss within the vHSI due to
bufler overruns is very low. Since the internet level is responsible for resource allocation, ALTPs are
not concerned with congestion control, further simplifying the ALTP and network interface. Error
control is decoupled from the rate based flow control, which allows considerable simplification as
described below.

Error control. In the vHSI environment error control is performed, as much as possible, on an end-
to-end basis, and is decoupled from flow (rate) control, as described above. The ALTP error control
is as simple as possible, based on application characteristics. For ALTP-0T, the packet handling is:

¢ duplicate packets are discarded
¢ corrupted packets are discarded with application based selective retransmission
e missing packets are detected by timer expiration with application based selective retransmission

» packet sequence is irrelevant due to sequence by placement (see below)

Sterbenz 9

Note that due to the orientation of ALTP-OT to this application, the handling of duplicate and
out-of-sequence packets is considerably simpler and more efficient than would be the case for a gen-
eral purpose transport protocol. Since data packets have sufficient header information to indicate
the connection and request, and are placed directly into the proper location of target store, the over-
head of sequence buffering is eliminated. The simplified error control of ALTP-0T can be efficiently
implemented in vLSI hardware.

Retransmission strategies. Several options exist for the retransmission of packets: granularity of
retransmission and timer values, retransmission fetch policy, and preemption by the retransmission.

¢ granularity: The granularity of retransmission refers to how many missing packet events are
accurnulated before a request for retransmission is made. Due to the knowledge of the super-packet
structure of segment {groups) by ALTP-0T, a rich set of options can be exploited, that are based on
the granularity of the data structure transmitted: packet (PKT), page (PGE), segment (SEG), and
segment-group (GRP).

o fetch policy: The retransmission strategies can be classified by whether packets are always
requested for retransmission, or only if a page is referenced that contains them. If all packets
corrupted or missing are retransmitted, this corresponds to anticipatory retransmission (AR) thus
anticipating the future reference of all missing packets. In this case the timers indicate when a packet
retransmission request should be made. If the only packets retransmitted are those corrupted or
missing which are part of a page actually referenced, the policy is demand retransmission (DR), and
assumes that a number of packets in the segment will not necessarily ever be referenced. In this
case, the timers indicate how long 1o wait before a referenced packet is assumed to be missing,

» preemption: Since error control is in-band, packets retransmitted use the same connection
and allocated bandwidth as the primary data stream. The alternatives are to allow all of the original
request to flow before any of the retransmission requests are serviced resulting in a non-preemptive
(nP) policy, or to preempt (PE) the primary data stream and immediately retransmit.

The number of possible strategies is the cross-product of these orthogonal sub-policies: granu-
larity, fetch, and preemption, e.g. a reasonable strategy is to retransmit a page of error packets only
when the page is referenced, and preempt the primary data stream (PGE-DRPE).

Operations. The ALTP-OT requests and operations are listed below. A detailed description of
ALTP-OT is presented in [StPa89c].

Connection/congram
Join-ipe Join/establish connection/congram
respecify-rate alter rate specification
leave-ipc leave/terminate connection/congram
BReceive
get-segment obtain segment copy
acquire-segment acquire segment authorisation
get-page obtain page (must be acquired)
get-copy obtain permanent segment copy
get-stream receive segment stream
receive-message receive IPC message

retransmit-packets selective retransmission

10 Axon: Host—Network Interface

Transmit
release-segment release or return (if modified) segment
release-page release or return (if modified) page
remote-execute initiate remote process execution
send-copy send permanent segment copy
send-stream transmit segment stream
send-message send IPC message

invalidate-segment invalidate remote copies

4. Axon Host Architecture

This section describes the Axon host architecture configurations. High performance computer sys-
tems typically consist of one or more central processors (CPU), which communicate with memory
banks (M) and 1/0 processors (10P) through an interconnection network, as shown in Figure 6. In ad-
dition, various caches ($) may be present to utilize fine-grained locality and perform speed-matching
of data rates. Note that cPu blocks may represent special purpose processors or coprocessors (such
as array processors, video and image processors, or simulation engines), as well as general purpose
instruction processors. Additionally, the memory system may consist of a multi-level hierarchy in-
cluding extended memory (EM) for high performance backing store. Communication is typically
handled by front-end communications processors or network interfaces (N1), which use the 1/o inter-
face to the host system. The data stream is thus subject to the delays of both the network interface
and 1/o processor, as well as the additional operating system instruction path length and context
switching overhead for each, all of which contributes to the interface latency d.,. In addition, since
the 10Ps are designed to handle a wide diversity of 1/o devices ranging from slow unit record and
character devices to high speed mass storage, it is likely that 10ps will not perform optimally for
high 1/7 VHsI rate communications (if at all).

NET ~——= NI 0P a5, t &0
AS $ I(;C IO=P tH 38 i
CPU; & t tg t

CPU: $ s & H

EM M| M

Figure 6: Conventicnal Host Architecture

Sterbenz 11

For Axon to support communications in the VHSI environment, it is necessary to provide high
bandwidth low latency data paths directly to memory, motiving modifications to current host archi-
tecture. In particular, the most significant requirement is that the objects being communicated are
moved between host memory without any intervening store-and-forward hops. This is necessary to
avoid extra latency, large amounts of buffer space, and the complexity of buffer management. Two
configurations of host architecture meet these requirements.

4.1. Interconnect interface architecture (I1a)

The first Axon host architecture gives the cMP (communications processor) a relationship to the
system similar to that of 10Ps, interfacing directly to the processor-memory interconnection network.
This is referred to as interconnect interface architecture (11a), and is presented in Figure 7.

Bk e e e i 8t e e e e e e e e .

.
: :
1 3
- | CMP |——3 i £ i B |
= |
3
|
VHSI [!
1 1
: |
- =l CMP i £ £ & B |
i
| !
1
10C I0P & s @ i &
, :
: :
; : .
I
AS $ |10c IOP £ 3 ar i
i
______________ A
CPU| $ i i a1
.
:
:
cPU| $ £ i i
EM M || M
(=l mn
(=) |B)

Figure 7: Interconnect Interface Architecture (11a)

In addition, an interconnection between ¢MPs and 10Ps should be provided to allow direct, high-
speed transfers between the vHsI links and 1o controllers (10C) or devices (which provides the
path to auxiliary storage — As). Note that the interconnection network is depicted as a crossbar
for simplicity, but the actual structure will vary based on the particular host system architecture.
Axon only imposes the requirement that the interconnection be rich enough to allow the added
CMP connections, and has enough performance to sustain the additional VHSI communication traffic
without significant blocking.

12 Axon: Host~Network Interface

4.2, Memory interface architecture (MIA)

The second Axon host architecture interfaces the cMPs to a special multi-ported communications
memory module (cMM), similar in concept to VRAM (video-RAM) design. This is referred to as
memory interface architecture (MIA), and is presented in Figure 8.

=TT T '}
1
[0C IOP £ £ £ 3 B |
| i
H H 1 1
* . { !
1
AS $ |10C IOP £ £ 23 £ i
]
!
1
|
CPU| % £ =) 3 £ & |
CPU| $ 1 £ H— i
i
i
EM M || M CMM| - [CMM
& &0 CMP| -~ |CMP
4 1
1
———d
/ Y
VHSI

Figure 8: Memory Interface Architecture (Mi1A)

The ¢MM has a conventional random access port which appears like any other memory bank
to the processor-memory interconnect, out of which the ¢PU may execute code and access data.
The other ports are high speed serial access interfaces to the cMP (transmit and receive), and must
operate at a rate of 1/7,.

4.3. Comparison of host architectures (IIA and MI1a)

This section discusses some of the tradeofls affecting the choice of host architecture.

Remote segment placement. In 114, the interface is uniform to all memory modules in the real
address space, and to IOPs giving access to auxiliary storage. Thus, segments fetched across the
network can be easily placed anywhere in real storage, auxiliary storage, or both (corresponding to
the NVs remote segment placement policy).

In M14, however, all memory modules are not directly available to the cMP. Segments received
are placed in the cMMs connected directly to the cMP that has received them. Segments to be
transmitted must be present in the appropriate ¢MMs. This creates a partition of the real address
space {M1,..., Mn;CMMi, ...CMM,, }. Furthermore, remote segments are clustered in fewer memory

Sterbenz 13

modules. This scheme also makes memory access somewhat more difficult, particularly if there are
multiple CPU memory modules for the purpose of interleaved rmemory access. Additionally, the
fraction of real store devoted to MM must be determined, based on communications requirements.

Blocking of traffic. In I1a, communications uses the main host interconnect, and is therefore sub-
ject to blocking based on congestion due to traffic between memory (M) and cPus or 10Ps. Since the
cMP does not buffer packets, two approaches may be taken: blocked packets are dropped, or com-
munication blocks local interconnect traffic. Either method is acceptable if the blocking probability
is sufficiently low, and the latter has the advantage of requiring fewer packet retransmissions.

In MIA, the cMP-CMM interface is designed such that communications traffic can proceed at a
rate of 1/, with no blocking using the serial cMM ports.

Pragmatics. The 11a dictates a rich, complex host interconnect structure, and may require some
redesign of current host hardware architecture. The interconnect must support the additional cMP
connections and additional traffic at a rate of 1/7, per CMP attached, assuming w = w (cPU word
length matches cMP datapath width). If w # w, additional complexity results in data width con-
version.

The MI4A requires little redesign of host architecture, other than dealing with the physical address
configuration of M and cMM for proper real address space partitioning and memory interleaving. The
MIA does require a completely new memory design, specifically the high performance multi-ported
C¢MM, which must support simultaneous asynchronous serial ports of rate 1/7, along with a random
access port with a cycle time of ¢,,.

Additionally, in MIA, the connection between cMPs and 10Ps needs to be treated as a special case.
Segments could be staged through the cMM, but this violates the principle of avoiding store-and-
forward of data. The alternative is to cut-through on a oMM bypass path into the host interconnect.
Note that if a cut through is used, the blocking issues discussed in the context of 1A must be
considered.

5. Host—Network Interface

This section gives a brief description of the organisation of the Axon host-network interface design
for an MiA (memory interface architecture) host. A block diagram is presented in Figure 9. The
interface is bidirectional, but the functions have been labeled for communications in the left-to-right
direction for clarity.

The Arrp-oT critical path, consisting of the data path and per packet (7) processing, is imple-
mented in the ¢MP (communications processor). The GMP consists of datapath (cMP4) and control
(cMp.) portions. The cMP datapath interfaces to the VHsI optical links and the serial ports of the
CMM (communications memory module), and performs such functions as encryption/decryption and
format conversion (encode/decode). The cMP control functions are those directly related to the
datapath such as header build/decode, checksum generate/compare, rate specification timing, as
well as the per packet congram multiplexing and control.

The cMM is a multiported memory, with serial ports connected to the cMp transmitting and
receiving data paths, and the random access port available to the host ¢PU for program execution.

A high performance microprocessor, the cMP assist processor (CAP), performs functions that are
not part of the critical path, but require high performance that would be inadequately provided by
the host CPU and would adversely impact the performance of other host processes. Examples include

14 Axon: Host—Network Interface

tink foult
segment fault segment present
poge foult rexmit timers MM allocate
ALTP—host I-p mapping ALTP—host
P addr
CPU - CAP CAP | cpPU
p addr p pres
A A |4 f A
™ pres
e —————— =Y ———— e | -
| |
| congram switch |
] rate spec |
| CMF, bulld header decade CMF, Plec |
H generate checksum compaore |
[|
I ¢ ratespec : confi confi I
g
! 7 eddr hdr /trail 9 hdr /trail 7 addr !
N A A | A Y AN B
| I
' |
{
[CMM w1 CMPy CMPy —i CMM i
| read T write 1
| !
L e T N e ee—_—m—— s
encrypt ” decrypt
encode ~\ eritical path e dedcede

Figure 9: Axon Host—Network Interface

the packet arrival to page presence mapping (7 — p), and packet retransmission timer management
functions.

The host CPU is responsible for link/segment/page fault handling (Nvs), and per congram func-
tions (ALTP-host).

Functional partitioning, A key issue in the implementation of high performance architectures
such as Axon is to determine the proper partitioning of function between the critical and non-critical
path.

Some function, such as the data path from network to memory and associated per packet control
is clearly part of the critical path and must reside in cMP hardware, to support small packets at high
data rate. For example, it is unreasonable to expect a host CPU to process incoming and outgoing
packets every 424ns (|«f = 53B, 1/7 = 1Gbps), and to concurrently execute the application needing
this bandwidth. It should be noted that the design of a simple critical path can remain constant
with control optimisations that affect non-critical path software in the c¢aP and host cpy.

Other control functions may or may not need to be part of the critical path, depending on the
data rate and time-space complexity tradeofls. Examples include packet retransmission timers and
host-network object mapping (packet arrival to page and segment presence). Parallelism in the data
path can be used to provide a speed advantage, allowing higher data rates (1/7) for a given cMmP
processing rate (1/7,). In addition, pipeline delay is used to allow control functions the necessary
time to operate at high data rates.

The partitioning of non-critical path function between the host cPU and CAP is also important.
This is dictated by the desire to engage the host in minimal interaction with the communication
that is not directly related to application execution. Thus, it is reasonable to expect the host to
initiate an ALTP-OT segment transfer as the result of a segment fault; the application process has
already been interrupted and a context switch taken to system state. But the host cPU should not
be involved in the protocol processing until the segment has fully arrived and the suspended process

Sterbenz 15

can resume. The cAP handles all of the asynchronous events that would otherwise cause the cpU to
be interrupted and suspend other processes, reducing application efficiency.

The determination of what control function should be implemented as part of the critical path
involves a time-space complexity tradeoff, and will be discussed in Section 7.

6. Communications Processor

This section describes the cMP (communications processor) design. First an implementation model
is presented, followed by a high level functional description of the cMP design implementing ALTP-0T
for an MIA host.

The goals for the design of the ¢MP include the ability to perform critical path functions in
real time with no packet buffering and to incorporate the necessary function in visi. This may be
realised by organising the cMP as a dynamically reconfigurable pipeline, based on the ALTP type
and options for a particular congram. The pipeline organisation allows packets to be processed at
the vHsI data rate.

6.1. Implementation model

The cMmP implementation model (Figure 10} consists of a set of datapath modules (DMs)
D={Dy, D;,...Dns1}, and control modules (cms) C={C1,Cs,...Cy}- The DMs perform data
manipulation and transformation on packets as they pass through the ¢cMp. In general, each DM
should be designed to perform its function without buffering a packet, except for the pipeline delay
as the packet passes through. One of the cMs (Cy) is responsible for pipeline configuration and
control.

CU
i
Cl (:2 L L L CM :
I
] i Control Bus i #
e e ettt
H i | I I
1 L L
| |
i Dl I)E . L L] DN i
BN N ey s il it o T R
0 Data Interconnect N

Figure 10: Communications Processor Implementation Model

A particular configuration of the pipe C;, consists of a permuted sequence of data modules
d = {do,ds,...dn) C D, forming a logical pipeline, along with a set of control modules controlling
them ¢ = {¢p,¢1,...¢6m} € C. The DMs are connected by a high speed interconnection network,
which is capable of transferring data between the modules subject to the configuration C;. Each
type of ALTP requires a particular configuration of the pipeline, e.g. ALTP-OT induces a configuration
Cor of the pipeline. Note that while this model allows for reordering of the bMs, a fixed sequence
pipeline may be sufficient in most implementations.

16 Axon: Host—Network Interface

transmit data pipe

LRI | LI I LI] LIS Y .
MM dat VHSE link
CMM cata = ECD ECR P28 XMT
1+ 1 l £l) I 1Lt E 1.t 1
CMM
N [V DR -4 i
|) !
Ao , e '
_CMM adr ADG -T
Bl 1
i
T | CKG | |- +4
1
|
EXA {~--»-| HDB !
I
RXT hdr/trail |
err ctl CSR
_host/CAP f _
- T | MPX | control
gt .
CSR
hdr/trail '
I
PEL HDD | — |
pkt ctl — - |
PPL CKC | ~—-|-————~~ +
i
I
- ADD '
CMM adr i
1
T | L] I (L | LRI
- DCD DCR S2P RCV :
CMM data VHSI link
L.l I i 1.1 I 13t ; Ll.l

receive data pipe

Figure 11: Communications Processor Block Diagram

6.2. Functional description

A block diagram of the cMP is shown in Figure 11. The CMP consists of a set of datapath modules
and control modules. The datapath modules perform manipulation and transformation on packets
as they pass through the cMp, without buffering (except for the pipeline delay).

The transmit data pipe and receive data pipe are the main data paths of the cMp. The transmit
pipe datapath modules are:

ECD - Encode performs any required data transformations to the data to correspond to internet-
work data format standards and accommodate heterogeneous hosts (such as byte ordering).

ECR - Encrypt performs data encryption of the data and internal control fields of the packet as it
passes through the data pipeline.

P25 - Parallel-to-serial datapath conversion prepares packet information for transmission on the
network link.

XMT -~ Transmit performs the line coding and transmission functions for the optical transmitter.

Sterbenz 17

Associated with the transmit data pipe are control modules:

RCT - Rate control uses the rate specification r; for each congram i, to determine the timing of
data reads from the ¢MM, and thus the rate at which packets are clocked out the transmit
pipeline for each congram. The »; values for each congram are obtained from the corresponding
CSR (congram state register — see below).

ADG — Address generate uses the initial cMM address of each page to form the addresses for each
packet read from the cMM.

CKG - Checksum generate sums the packet data fields as they pass through the data pipeline. The
computed checksum is then inserted in the packet trailer.

HDB -~ Header build uses the congram id., SR, and control information from arLTP-host to build
the header for the packet. All protocol levels of encapsulation (ALTP, MCHIP, and NAP) are
done at one time. The congram and request id.s (¢,7) and packet id. (segment id. k, page
number j, packet number {) are inserted into the header template from cMM.

The receive pipe datapath modules are:

RCV — Receive takes the bit stream derived from the optical receiver, eliminates line coding, and
derives the clock for the receive data pipeline.

S2P - Serial-to-parallel datapath conversion forms an w wide data path to give a speed advantage,
and octet access to packet header/trailer fields for GMP control and data pipeline manipulation.

DGR, — Deerypt performs data decryption of the data and internal control fields of the packet as it
passes through the data pipeline.

DCD - Decode performs any required data transformations to the data from internetwork data
format standards to the local host format.

Associated with the receive data pipe are control modules:

HDD - Header decode determines the congram id. for ¢MP configuration, and determines the packet
address in ¢MM from the packet index (ijk) and the base address of the page from the cor-
responding GSR (congram state register). The congram id. is used to select the appropriate
CSR.

GKC - Checksum compare sums the packet data fields as they pass through the data pipeline. The
computed checksum is then compared with the actual checksum in the packet trailer. If a
mismatch is found, the ppL and PEL (packet presence and error logic — see below) are notified
to indicate that the packet has been discarded after initial receipt.

ADD - Address decode uses the initial cMM address of the each page (from the csRr), and the
packet index (ijk) to form the cMM address for the writing of each packet.

Connection/congram multiplexing is handled by the congram control logic:

MPX - Congram multiplexing control logic performs the hardware context switching of the cMmP
in response to transmission requests and received congram id.s.

18 Axon: Host-Network Interface

CSR ~ Congram state registers hold all of the state information for each active congram, to allow
rapid control and pipeline configuration changes for multiplexed congrams using the omp.
There is a CsSR set for both the transmitting and receiving side of the cmP.

The packet control logic is responsible for recording packet arrivals and missing/corrupted packets.

PPL - Packet presence logic keeps track of packet arrival to allow the cAP and host to determine
the presence of complete pages and segments, so that the appropriate PDT (page descriptor
table} and SDT (segment descriptor table) presence bits can be set, and host ¢PU application
resumed.

PEL - Packet error logic keeps track of corrupted (from ckc) and missing (from RXT) packets so
that retransmission requests can be made, and also invalidates corrupted packets to the PPL.
The error control logic is responsible for generating the appropriate retransmission requests
and packet addresses.

RXA - Retransmit address generates the cMM addresses for packets to be retransmitted.

RXT - Retransmit timers determine when packet retransmission requests should be made.

7. Performance of Remote Access

This section discusses the performance of Axon in terms of the time to access remote storage.
First the partitioning of functions between the critical and non-critical path is described. Then
the determination of remote access time is discussed with respect to the operations involved and
functional partitioning,

7.1. Functional partitioning

A key issue in the implementation of the Axon architecture is to determine the partitioning of func-
tion 7 between the critical and non-critical path, which involves a time-space complexity tradeoff.

Time complexity. The impact on time complexity of a control function is the time taken for a
hardware implementation (in clock cycles) s. the time taken for a software implementation (in host
CPU or CAP mnstruction cycles).

For the host, the time that control function C; takes to complete #; is based on the instruction
cycle 1, and the number of instructions to execute m;, as well on any extra overhead m} such as
context switches and system calls: #; = (m; + mi)ty.

For the cMP, define the minor cycle 7 to be the inverse of the serial data rate on VHSI commu-
nications links, (e.g. for 1 Gbps, 7=1ns). Define the cMP major eycle 7, as the clock cycle internal
to the cMP within the parallel data path w bits wide. By allowing n; stages of pipeline delay for a
particular control function C; to take place, the time it takes to complete ig then 73 = n;7,. Thus,
the critical path time savings for C; is CP; = t;—m;.

Note that by implementing a control function in the critical path, there may be an associated
cost In increased the latency through the cmp 7,An;, due to An; more pipeline stages required for
Ci.

Sterbensz 19

Space complexity. For the host and caP, space complexity consists of memory used for software
implementation of the function. This will be assumed to be a sufficiently small fraction of total
memory that it will be ignored for the purposes of this paper.

For the cMP, space complexity has two measures: chip area and off-chip inferconnect lines.
Define a; as the area [m?] required to implement C;. Control function complexity can be classified
by the sensitivity to other parameters: [1] Fixed-cost control functions utilise a fixed area, relatively
independent of other parameters (an example of this is the rate control logic). [2] Datapath-width
sensitive control functions have an area that is a function of the data path width of the cmp:
a; = f(w), and thus constrain the possible speedup of the cMP by greater parallelism, in the same
manner that total available chip area limits the possible datapath width (an example of this is the
checksum logic). Note that a; need not be linear in w. [3] State-sensitive control functions are those
that utilise on chip memory in maintaining state (an example is the packet presence function). The
constraint to be met is that the sum of all the control and datapath functions implemented on the
CMP must not exceed the available area for a given process technology: 3 2; < acme. It will be
assurned that a complementary logic family will be used so that power dissipation is not a dominant
constraint.

The other space complexity measure is the number of off-chip interconnect lines (pinout using
conventional packaging techniques). Define {; as the number of off-chip interconnect lines needed
to implement control function C; on the cMpP. Thus, !; is constrained by the threshold of available
interconnect on a chip using a given packaging technology: 3 ;l; < lgue. The datapath width w is
clearly a significant factor in this case.

Thus, in determining if a function should be in the critical path, the tradeoff is in time saving
CP;, vs. acceptable chip complexity (a;, I;). Particularly as data rates scale upward, the decision can
be made determining which functions should be included into the critical path.

7.2. Remote storage access

The performance metrics of principal interest to Axon are the time that a process is blocked due to
a remote segment fault T, and a page fault on a remote segment T},; these are the cost penalty of
non-local Nvs object access. Note that this 1s similar to the primary performance metric in Memnet
[De88, DeSeB88] 7, which also provides a shared-memory view of the network, but that the Axon
measure is based on virtual rather than real memory access. The time involved in the processing
of a remote segment fault (and the resulting page faults) is indicated in Figure 12. Time increases
downward; the horizontal position indicates where the processing is taking place, as labeled on the
top of the figure.

The performaince metrics are a function of the functional partitioning F and input performance
parameters P, thus T" = f(F, P). The metrics T, and T}, will now be discussed.

Remote segment fault delay. Define the time a process must wait for a (remote) segment fault
Iy = T;'eq + Dgs + Trem + -Dp + Tresp +Tov

with components:

Treq £ local host request processing time

Fay .
Dy = latency of get-segment request propagation
Tiem = remote host request processing time
I, £ latency of returning the first page pg
Tresp Z local host time in processing page response
Two = superpacket to segment mapping

20 Axon: Host-Network Interface

—local host ———— network ——— remote host —y

process —— system — — system ——
Fel NVS rALTP-0Tq rALTP—OT4 NVS

¢ ¢ C c ¢ ¢

P A ¥ M A P

U P P P P U

Figure 12: Segment Fault Processing

Each of these time components will be described in greater detail, with particular consideration
of implementation options that affect the partitioning among host ¢PuU, ¢AP, and cMmP.

Treq is the local host request processing time
Ti‘eq = les +isr + tgsl

and consists of a context switch (fcs), segment fault processing (%), and get-segment local request
initiation (tgsl). Clearly the context switch is a function of the scheduler and the segment fault

a function of Nvs on the local host cPu. The request initiation must occur in coordination with
ALTP-OT on the host ¢PU or caP and the aMmp.

Dys is the end-to-end propagation delay of the get-segment request between hosts, and since the
control packet is small, is primarily a function of the latencies dg + d, + dy +d..

Sterbenz 21

Trem 1s the remote host request processing time
Ttem = tgsr +tes + s

and consists of remote get-segment request processing (%gsr), and only on the first get-segment for
each segment a context switch () and link fault (). As indicated before, the context switch is
a function of the remote host scheduler, and the link fault a function of the remote host Nvs. The
remote requesh processing is an ALTP-0T function that must be recognised by the ¢MP, and then
passed fo the cAP for processing.

Dy, is the the end-to-end delay of returning the first page pp in segment s. This consists of the
propagation of each packet in the page.

Dy=d.+d.+dg+dr+ [ﬂlﬂ'lf]
|74l
where |7g4| is the size of the data portion of the packet. Note that this expression assumes that the
stream of packets in each page is contiguous (e.g. not interleaved with other congrams). It is likely
that the usual course of action for the cMp will be to transmit packets in page bursts.

Tresp is the local host time in processing the page response
’I;'esp = fp+ tpc—qr + tdisp +ics

and consists of marking packet presence (ix.-), packet to page mapping (tpr), the process dispatch
(taisp), and a resulting context switch (fcs). The dispatch and context switch are a function of the
local host cru.

Recognising the arrival of packets must clearly take place on a per packet basis, and at least be
initiated by the cMP critical path. The packet to page presence mapping may be either explicit or
implicit. The cMp will place packets directly into the proper locations of the target page. In the
explicit case, the CMP critical path records packet arrivals, and determines page presence when all
of the page’s packets have arrived. One option is for the CMP to store packet presence state on
chip. A full array implementation involves far too much memory to consider. Since the probability
is high that packets will arrive in sequence, the CMP only needs to track expected packets that are
missing, tagged by congram id. Each time the last packet in a page has arrived, (initially or after
retransmission), the page is marked present in the PDT (page descriptor table). Note that explicit
mapping allows the OMP or CAP fo request retransmission of missing or corrupted packets based on
the best retransmission policy, e.g. whenever the timers fire for each packet.

In the implicit case, when packets arrive, packet presence bits are set in the corresponding host
PDT entry. When the host page faults, the packet presence vector is examined to determine if the
whole page is present. If the entire page is not present (or on the page fault immediately after a
segment fault), the host will have to periodically check the packet presence vector for page presence.
Note that while relieving the cMP of a certain amount of complexity (especially memory for the
packet presence state}, this restricts the ability to request missing or corrupted packets to page fault
events rather than based on CMP or CAP timers, and imposes additional overhead on the host cru.
An alternative implicit scheme uses additional structure in the cMM to tag packet chunks of memory
with presence bits, which are used by the host (or CAP) to set PDT presence bits.

T is the superpacket to segment mapping. In the absence of packet errors (including mis-
sequence), a single super-packet transmission corresponds exactly to a segment transfer, and T}, = 0.
In the presence of errors, Ty is the delay waiting for all retransmitted = € spp, and mis-sequenced
packets to arrive. Note that a packet error for a segment roughly doubles the access time T}, assum-
ing that the object transmission delay d, does not dominate the latency. The most complex aspect

22 Axon: Host—Network Interface

of the error retransmission involves packet timers. A counter must be maintained for each active
congram, which is incremented for every expected packet arrival. If a packet is not yet present once
the corresponding value has been reached, it is a candidate for retransmission. It is reasonable to
expect that the cAP should be involved in this process in cooperation with the cMP. A more detailed
discussion of retransmission policies is presented in [StPa89c).

Page fault delay. Define the time a process is blocked on a remote page fault (after remote
segment fault and T) as Tj.

Assume a sequential program address reference trace, uniform rate specification, and sequential
packet arrival. If the packet arrival rate exceeds the rate at which the program execution proceeds
{ra > wfty), page fauits will not occur in the segment, and Ty = 0. The advantage of segment
granularity object movement has eliminated the end-to-end latency for each page fault.

If the rate of program execution exceeds the packet arrival rate (w/t, > 73), the process will
page fault and be blocked for T, = Ip|(w/7, —74). Thus it is important for the packet rate to exceed
instruction rate if possible. Clearly as program locality of reference decreases, the probability of
blocking for a page increases, unless there is a corresponding increase in the network data rate.

Note that the same effect of a uniform rate specification can be obtained by allowing a page
length burst at the peak rate, with an inter-page gap satisfying the average rate. This allows for a
simple implementation of the CMP rate control, and more efficient use of the oMM.

Remote execution. One additional consideration is important when an Axon host must deal
with unsolicited data. In the case of send operations, a large amount of data may follow a request,
but without waiting for an intervening acknowledgement response. (An acknowledgement is still
used to ensure that the initial control packet was received by the destination host.) In this case it
important to predict the necessary delay following the initial request, to allow the remote host to
prepare for incoming data.

As an example, the processing involved in a remote-execute operation is presented in Figure 13.
Many of the time parameters are similar to the get-segment described. Define the time a process
must wait for a (remote) segment fault as

Ty = ﬂ‘qure + Trem — D

with components:

Treq 2 local host request processing time

A .
Dpe = latency of remote-execute request propagation
Trem = remote host request processing time
Dy £ latency of sending the first bit in pg

This trace is similar to the semgent fault trace (Fig. 12), but with data flowing just after the
initial request, and in the same direction.

Dy is the the end-to-end delay of sending the leading edge of the first packet in the first page of
the first segment for remote execution wopgss.

Dy=d.+d.+dg+d,

and is just the end-to-end VHSI and host delay.

The delay between initiation and sending of unsolicited data is the time for the request to
propagate to the remote system and the remote processing time, minus the time for the first bit in
the data to traverse the network.

Sterbenz 23

—local host ——— network ———— remote host——

process — system —, — system —y process
P NVE [ALTF-OT rALTE—0T+ NVS fol
c ¢ ¢C c c ¢
P A M M A P
U P P P P U

Trem

e

Figure 13: Remote Process Execution

8. Related Work

Several recent efforts have been underway to provide high performance host-network interface archi-
tectures. The NAB (network adapter board) [KaCh88] is a custom host-interface designed to support
vMTP [Ch8Ga]. The NAB protocol processor is a general purpose microprocessor and uses VRAM for
communication, but packets are buffered in a siore-and-forward manner for sequencing since VMTP
is designed as a general purpose transport protocol.

Another approach to the performance problem is to implement existing transport protocol
mechanisms in hardware, as in XTP (express transport protocol) and the PE (protocol engine)
[Ch86b, ChEi88]). The XTP approach is to streamline existing protocol mechanisms and packet
formats for pipeline processing, and implement each step in the pipeline using a customised vLs1
PrOCEssOE,

Axon may be viewed as a second generation high performance host-network interface architec-

24 Axon: Host—Network Interface

ture, whose design is based on underlying assumptions and tradeoffs that are very different than these
other efforts. Specifically, these include the quasi-reliability provided by the underlying congram-
oriented internet protocol (MCHIP) and rate-based communications substrate, and the much higher
data rates of the vHsI. Furthermore, there is a greater emphasis on the integrated design of host
architecture, protocols, and operating systems, as well as on the systematic evaluation of the di-
vision of functionality between hardware and software. Finally, there is the provision of increased
functionality by the Nvs mechanism.

9. Conclusions

A new host communication architecture for the distributed systems has been proposed called Axon,
which can support 1Pc with high throughput and low latency across the vusi. The significant
features of Axon are the network virtual storage facility, which includes support for virtual shared
memory on loosely coupled systems, a high performance object transport facility which can be used
by both message passing and shared memory mechanisms, and a pipelined network interface. The
emphasis in the design of Axon has been to provide a direct data path between communicating
applications, using an integrated design of host architecture, operating systems, and communication
protocels.

The bandwidth and latency requirements of a high performance network interface have been
described. In particular, there is reasonable latitude in the interface delay with respect to the
overall end-to-end latency, as long as a sufficiently high data rate is maintained in the pipeline, and
no full packet buffering takes place. It is reasonable to expect sub-second round trip latency, even
across a long distance internetwork transporting large objects.

The design of the Axon architecture has been presented, along with alternatives and tradeoffs
in the host architecture giving the network interface direct access to host memory without store-
and-forward packet buffering. The design of the MIA (memory interface architecture) host-network
interface and ¢MP {communications processor) has also been presented. Given the appropriate func-
tional partitioning it is reasonable to implement critical functions directly in the network interface
hardware. The caP provides a useful role in the control processing hierarchy, allowing the cMmp
to only implement critical path function while relieving the host cPU of much of the overhead of
protocol processing.

‘The methodology for functional partitioning and determination of Axon performance has been
presented. The actions associated with remote memory access in Axon have been described, and their
evaluation will be pursued with appropriate simulation and implementation as this work continues.

References

[Be72] Bensoussan, A., C.T. Clingen, and R.C. Daley, “The Multics Virtual Memory: Con-
cepts and Design”, Communications of the ACM, Vol.15 #5, AcM, New York, May
1972, pp. 308-318.

[Ch86a] Cheriton, David, “VMTP: A Transport Protocol for the Next Generation of Computer
Systems”, SIGCOMM 86 Symposium: Communications Archilectures and Proiocols
{Computer Communication Review), Vol.16 #3, Acm, New York, 1986, pp. 406-415.

[Ch86b] Chesson, Greg, “Protocol Engine Design”, Proceeding of the Useniz Conference, 1986.

Sterbenz

25

[ChS8a)

[Ch88b]

[ChE:88]

[ChGr88]

[C187a]

[C187b]

[CoB8]
[Cy78]

[DeB8]

[DeSe88]

[Tem85a]

[(IBM85b]

[Ka89]

[KaCh8s]

[MaCh87]

Cheriton, David, “VMTP: Versatile Message Transaction Protocol”, DARPA Internet
Program Prolocol Specification, Defense Advanced Research Projects Agency — Infor-
mation Processing Techniques Office, RFc-1045, Arlington Va., Feb. 1988

Chesson, Greg, “X-Tp/PE Overview”, Protocol Engines, Inc., PEI 88-83, Santa Barbara,
Calif., 1988.

Chesson, Greg, Brendan Eich, Vernon Schryver, Andrew Cherenson, and Al Wha-
ley, “XTP Protocol Definition”, Revision 3.1, Protocol Engines, Inc., PEI 88-13, Santa
Barbara, Calif., 1988.

Chesson, Greg, and Larry Green, “XTP - Protocol Engine vis1 for Real-Time LaNs”,
EFOC/88 Amsterdam, Protocol Engines, Inc., PEI 88-53, Santa Barbara, Calif,, 1988.

Clark, David D., Mark L. Lambert, and LiXia Zhang, “NETBLT: A High Throughput
Transport Protocol”, SIGCOMM 87 Symposium: Frontiers in Compuier Communi-
cations Technology (Computer Communication Review), Vol.17 # 5, AcM, New York,
1987, pp. 353-359.

Clark, David D., Mark L. Lambert, and Lixia Zhang, “NETBLT: A Bulk Data Trans-
fer Protocol”, DARPA Internet Program Protocol Specification, Defense Advanced Re-
search Projects Agency — Information Processing Techniques Office, Rrc-998, Arlington
Va., Feb. 1988.

Comer, Douglas E., Internetworking with TCP/IP: Principles, Protocols, and Archi-
tecture, Prentice-Hall, Engelwood Cliffs, N.J., 1988.

Cypser, R.J., Communication Architecture for Distributed Systems, Addison-Wesley,
Reading, Mass, 1978.

Delp, Gary S., The Architecture and Implementation of Memnet: A High-Speed Shared-
Memory Computer Communication Network, University of Delaware Department of
Electrical Engineering, #88-05-1, Newark, Delaware, May 1988.

Delp, Gary S., Adarshpal S. Sethi, and David J. Farber, “An Analysis of Memnet:
An Experiment in High-Speed Shared-Memory Local Networking”, SIGCOMM ’88
Symposium: Communications Architectures and Protocols (Computer Communication
Review), Vol.18 #4, AcM S1acoMM, New York, 1988, pp. 165-174.

Systems Network Architecture: Concepts and Products, 1M Corporation, GC30-3072-2,
1985.

Systems Network Archilecture: Technical Querview, 1BM Corporation, GC30-3073-1,
1985.

Kanakia, Hemant Ratubhai, High Performance Host Interfacing for Packet Switched
Networks, Stanford University Department of Electrical Engineering, Ph.D. thesis, Palo
Alto, California, Nov. 1989.

Kanakia, Hemant and David R. Cheriton, “The VMP Network Adapter Board (NAB):
High Performance Network Communication for Multiprocessors”, SIGCOMM ’88 Sym-
posium: Communicalions Archileciures and Protocols (Computer Communication Re-
view), Vol.18 #4, Acm, New York, 1988, pp. 175-187.

Martin, James and Kathleen Kavanagh Chapman, SNA: IBM’s Networking Solution,
Prentice-Hall, Engelwood Cliffs, N.J., 1987.

26

Axon: Host—Network Interface

[MaPa89]

[Or72]

[Pad0]

[Paf0a]

[PaTu90]

[RFCT93]

[St87]

[5t88]

[StPa89a)

[StPa89b]

[StPa&9c]

[5t90]

Mazraani, Tony Y. and Gurudatta M. Parulkar, “Specification of a Multipoint
Congram-Oriented High Performance Internet Protocol”, Proceedings of the Ninth
Annual Joint Conference of the IEEE Compuier and Communications Societies
(INFOCOM’90} IEEE Computer Society, Washington D.C., June 1990, abridged from:
Washington University Department of Computer Science, technical report wucs-89-20,
St. Louis, Aug. 1989.

Organick, Elliot 1., The Multics System: An Ezamination of Hs Structure, MIT Press,
Cambridge, Mass., 1972.

Parulkar, Gurudatta M., “The Next Generation of Internetworking”, Compuier Com-
municaiion Review, Vol.20 #1, AcM Siccomm, New York, Jan. 1990, pp. 18-43, also:
Washington University Department of Computer Science, technical report wucs-89-19,
St. Louis, May 1989.

Partridge, Craig, “How Slow is One Gigabit Per Second?”, ACM SIGCOMM CCR,
Vol.20 #1, New York, Jan. 1990, pp. 44-53.

Parulkar, Gurudatta M. and Jonathan S. Turner, “Towards a Framework for High
Speed Communication in a Heterogeneous Networking Environment”, JEEE Network,
Vol.4 #2, IEEE, New York, March 1990, pp. 19-27, also: Proceedings of the Fighth
Annual Joint Conference of the IEEE Computer and Communications Socteties (IN-
FOCOM’89), IEEE Computer Society, Washington, D.C., Vol.I1, pp. 655667, also:
Washington University Department of Computer Science, technical report wucs-88-7,
St. Louis, 1988.

“Transmission Control Protocol”, DARPA Iniernet Program Protocol Specification, De-
fense Advanced Research Projects Agency — Information Processing Techniques Office,
RFC-793, Arlington Va., Sep. 1981

Stallings, William, Handbook of Computer Communication Standards, Volume 1: The
Open Systems Interconnection (OSI} Model and OSI-Related Standards, McMillan,
New York, 1987.

Stallings, William, Paul Mockapetris, Sue McLeod, and TFony Michel, Handbook of
Computer Commaunicalion Slandards, Volume 3: Department of Defense (DOD} Pro-
toco! Standards, McMillan, New York, 1988.

Sterbenz, James P.G. and Gurudatia M. Parulkar, Azen: A High-Speed Communica-
tion Architecture: for Distribuied Applications, Washington University Department of
Computer Science, technical report wucs-83-36, St. Louis, Sept. 1989, presented at
the Fourth IEEE Communications Society Workshop on Computer Communications,
Dana Point, California, QOct—-Nov 1989,

Sterbenz, James P.G. and Gurudatta M. Parulkar, Azon: Network Viriual Storage
Design, Washington University Department of Computer Science, technical report
wucs-89-13, St. Louis, May 1989.

Sterbenz, James P.G. and Gurudatta M. Parulkar, Axen: Application-Oriented
Lightweight Transport Prolocol Design, Washington University Department of Com-
puter Science, technical report wucs-89-14, St. Louis, Sept. 1989.

Sterbenz, James P.G., Azon: Host-Network Interface Design, Washington University
Department of Computer Science, technical report wucs-90-7, St. Louis, March 1990.

Sterbenz

27

[StPag90a)

[StPag0b]

[StPa90c]

[Tu85]

[Tu86)

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon: Network Virtual Storage
Design”, Computer Communication Review, Vol.20 #2, AcMm SiccoMM, New York,
April 1990, pp. 50-65.

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon: A High-Speed Communica-
tion Architecture for Distributed Applications”, Proceedings of the Ninth Annual Joint
Conference of the IEEE Computer and Communicaiions Societies (INFOCOM’90)
IEEE Computer Society, Washington D.C., June 1990.

Sterbenz, James P.G. and Gurudatta M. Parulkar, “Axon Network Virtual Storage for
High Performance Distributed Applications”, 10th International Conference on Dis-
iributed Computing Sysiems, IEEE, Washington D.C., June 1990, pp. 484-492,

Turner, Jonathan S., Design of a Broadcast Packel Swilching Network, Washington
University Department of Computer Science, Washington University Computer Science
Department, technical report wucs-85-4, St. Louis, March 1985

Turner, Jonathan S., “Design of a Broadcast Packet Network,” IEEE Trensactions on
Communication., IEEE Vol.36 #6, New York, June 1988, pp. 734-743.

	Axon: Host-Network Interface Design
	Recommended Citation
	Axon: Host-Network Interface Design

	tmp.1456444019.pdf.T7x58

