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ABSTRACT 
JPie is a visual programming environment supporting live 
construction of Java applications. Class modifications, such as 
declaring instance variables and overriding methods, take effect 
immediately on existing instances of the class to encourage 
experimentation in an educational setting.  Because programs are 
edited live, editing gestures must transform the program from 
one well-formed state to another, without intermediate 
ambiguous states. To accomplish this, JPie’s visual 
representation provides capsules, which represent logical code 
units, and semantic regions, which represent different aspects of 
a program.  A capsule’s meaning depends upon its containing 
semantic region.  Similarly, a gesture, which involves 
manipulation of a capsule, is interpreted on the basis of the 
semantic region in which it occurs.  This paper describes how 
capsules and semantic regions visually expose the structure of 
JPie programs and support live program editing through natural 
atomic gestures. 
 
Categories and Subject Descriptors 
D.1.7 [Programming Techniques] Visual Programming;   
D.2.6 [Software Engineering] Programming Environments –  
graphical environments, interactive environments  
 
General Terms 
Design, Human factors 
 
Keywords 
Live software development, program visualization 
 
1. INTRODUCTION 
The goal of our work is to make the power of general purpose 
software development accessible to a wider audience.  To 
advance this goal, we have created JPie, an educational 

programming environment for live visual construction of Java 
applications.   

In designing a programming environment for beginners, 
one option is to design a new language and execution model 
with a visual representation.  However, one of our primary 
educational goals is to ease the transition from our visual 
environment into more traditional software development. We 
want students learn the semantics of a widely accepted 
programming language, and we want them to leverage that 
language in order to construct relatively sophisticated 
applications.  Therefore, we did not invent a new programming 
language.  Instead, we built JPie as a software construction 
application supporting the execution model of a standard 
underlying programming language (Java). JPie users have 
available the entire Java API, as well as third party Java classes. 
While providing access to a powerful general-purpose language, 
JPie is designed to provide a low entry barrier and a gradual 
learning curve. 

JPie supports dynamic classes [14], which are like Java 
classes except that their class definitions can be changed at run-
time.   All changes to a dynamic class take effect immediately 
upon its existing instances.  Examples of live modification 
include declaration of instance variables and methods, 
modification of method bodies, method overriding, user 
interface construction, and event handling. Dynamic classes 
embody executable data structures that represent the program.  
JPie users edit programs by manipulating a visualization of this 
executable data structure.  The visual representation is designed 
to capture key abstractions of the programming model.    Direct 
manipulation of the visual representation eliminates the need for 
textual source code, and live modification avoids the edit-
compile-test cycle.   

A common complaint of beginning programmers is 
forgetting the language syntax.  At a superficial level, students 
may know that something is possible, but can’t remember how 
to write it.  At a deeper level, students often forget what is even 
possible, let alone how to write it.  Therefore, one of the design 
goals for our visual representation was to expose not only what 
“is” (the structure of the existing program), but also what “could 
be” (the range of possibilities in a given context). 

JPie’s primary structural unit is the capsule.   Capsules are 
simple graphical representations of programming language 
abstractions, such as variables and methods, that provide a unit 
of discourse for the programmer.  To make software 
development immediate and tangible, capsules are used by direct 
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manipulation.  Because each capsule represents an instance of 
some programming language concept, each gesture has a 
meaning in the programming model.  This is different from 
textual programming, in which the unit of discourse is a 
character, and some editing operations result in nonsensical 
programs.      

Capsules are manipulated within semantic regions.  A 
semantic region is a labeled place that corresponds to some 
programming option within the language.  For example, there 
are specific semantic regions for declaring methods, forming 
parameter expressions, and defining property connections.  
Semantic regions may be nested and may appear within 
capsules.  For example, a variable declaration capsule contains 
semantic regions for its initial value and modifiers, whereas a 
constructor capsule would contain a semantic region for its super 
call and body statements. 

Since they provide a scope or context, semantic regions 
roughly correspond to the empty space between delimiters in a 
textual programming language. However, they extend this idea 
in several ways.  First, they are visually explicit so that 
programmers can see them as options, rather than having to 
remember the possibilities. For example, a box labeled 
“parameters” provides a clue to a beginning programmer, where 
a pair of parentheses might not. Second, semantic regions are 
more precisely constrained than lexical scopes.  For example, 
there is one semantic region for declaring a method’s local 
variables, and a different one for declaring the method’s body 
statements.  As we will see, this precision is advantageous for 
creating a simple vocabulary of editing gestures, since the 
location in which the gesture occurs can be used to discern the 
intentions of the programmer.   

To support live experimentation, JPie lets programmers 
manipulate the program representation to effect changes while 
the program is running.  Therefore, it is important that each 
gesture provide an atomic transformation from one well-formed 
program representation to another.  Namely, there can be no 
intermediate ambiguous states in which the syntax is incorrect or 
in which declarations and uses do not correspond.  Most atomic 
gestures, such as variable and method declaration and use, are 
accomplished by drag-and-drop.  The capsule that is dropped 
and the semantic region into which it is dropped together 
determine the semantics of the gesture.  

The remainder of the paper is organized as follows. 
Section 2 provides background on dynamic classes, which are 
the foundation for live execution in JPie and the back-end data 
structure for our visual representation. Section 3 presents JPie’s 
mechanisms for visual representation and direct manipulation of 
dynamic classes using capsules and semantic regions. These are 
illustrated with a simple example in Section 4.  Section 5 
discusses JPie in relation to other work. We conclude, in Section 
6, with a summary and directions for future work.  
 
2. BACKGROUND 
JPie rests upon on the concept of a dynamic class [14], whose 
members (variables, methods, and constructors) can be modified 
live, even while instances of that class exist in a running 
program.  Internally, each dynamic class is modeled as mutable 
data structures that describe its members.  For example, a 
dynamic method’s data model includes a parameter list, local 
fields, and body statements.  As we will explain, JPie provides a 
visual representation of the model, and direct manipulation of 

the visual representation results in corresponding changes to the 
data structures representing the members of the dynamic class. 

Dynamic classes fully interoperate with compiled classes.  
Consequently, JPie programmers can use the entire Java API, 
may create dynamic classes extending either dynamic or 
compiled classes, and can override methods on the fly.  Instances 
of compiled classes may hold type-safe references to instances 
of dynamic classes, and call their methods polymorphically.   

To support interoperability, each dynamic class has a 
compiled peer that is generated when the dynamic class is 
created.  The peer class allows dynamic classes (and their 
instances) to present themselves to the Java Virtual Machine 
(JVM) as any ordinary type.  However, dynamic class execute in 
a semi-interpreted manner using an internal representation of the 
dynamic portions of the class definition.  The precompiled class 
overrides all of its inherited methods, and by default calls the 
parent method to carry out the computation.  However, when the 
JPie user dynamically overrides a method, the user’s 
implementation, rather than the parent’s, is invoked.  The 
implementation relies extensively on Java’s reflection 
mechanism and is accomplished without modification of the 
language or the JVM. 

The internal representation of dynamic classes directly 
captures the relationship between each use and its corresponding 
definition.  For example, each variable read expression refers to 
the object representing the variable declaration, each method call 
refers to the method declaration, each actual parameter 
expression refers to the formal parameter declaration, each 
overriding method refers to the method it overrides, etc.  
Because the references are direct, traditional textual identifiers 
are not used to define the semantics of programs.  Users can 
name variables and methods, but the names are used only for 
documentation purposes within JPie.  When programs are 
exported for execution outside of JPie, the programming 
environment renames members when identifiers clash. 

 
3. VISUAL REPRESENTATION AND 
DIRECT MANIPULATION 
In any visual programming system, an important part of the 
design is the systematic creation of graphical representations for 
the programming abstractions.  Our goal was to make as much 
information about each abstraction as explicit as possible, so as 
not to rely on the programmer’s memory.  Furthermore, we 
needed a representation amenable to direct manipulation.  
Finally, we wanted visual attributes the system could control for 
unobtrusive, timely feedback. 

Screen space in visual programming systems is always at a 
premium.  Wherever possible, we tried to provide ways to 
control the use of the space to help the programmer find and 
focus on the relevant portions of the program.  Where space 
saving came into conflict with explicit representation, we gave 
explicit representation higher priority.  
 
3.1. Access to Types 
When JPie starts, the programmer sees a ‘Packages and Classes’ 
window, as shown in Figure 1. It contains a tree representation 
of all the packages and classes in the Java API (as well as the 
programmer’s own classes) and a place to create shortcut panels 
for organizing frequently used classes into categories.  From this 
window, one can open classes for editing and create new classes 
that extend other classes or implement interfaces. 
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3.2. Class Editing 
Each class is edited in a separate window.  Figure 2 shows a 
ShapesPanel class that extends the Java library class JPanel.  
Tabs along the bottom of the window provide access to panels 
for Data (instance variables), View (graphical appearance, 
layout, and property connections), Events (listeners to the view 
components), Constructors, Methods, Behaviors (periodic tasks 
that run as separate threads), and Instances (a list of instances of 
the class, selectable for viewing).  Each dynamic class window 
also provides summary lists of the variables and methods of the 
class.  
 
3.3. Capsules 
JPie’s principal visual unit is the capsule.  Capsules represent 
types (classes), variable declarations, variable accesses, 
properties, methods, method calls, constructors, constructor 
calls, and can also encapsulate constants and expressions. 
Because they are represented visually, capsules afford an 
opportunity to present the program with more information than a 
textual identifier provides.  For example, each capsule’s type is 
shown iconically on a “dot” that protrudes from the right side of 
the capsule.  The dot, which is reminiscent of dot notation in 

textual languages, provides an interaction point for making use 
of the capsule’s value or result within expression. Every capsule 
also has a label, typically used to display a textual identifier.  
However, because declaration and use are linked by reference in 
the data structure, the identifier is inconsequential for execution 
within JPie. The color of each capsule indicates its scope.  (For 
methods and instance variables, the color also indicates whether 
the member is declared or inherited.)  Providing all of this 
information explicitly means that capsules occupy more space 
than a textual identifier, but it saves the programmer from 
having to rely on memory to know, for example, the parameter 
types and return type of a method call, or whether a variable is 
local or an instance variable. 

Capsules are used by direct manipulation (selection or 
drag-and-drop), not indirectly by name.  The system maintains 
consistency of identifier labels.  If a variable or method is 
renamed, the labels at each use are updated.  

 
3.4. Semantic Regions 
Programmers manipulate capsules and other objects within 
clearly identified semantic regions. For example, all of the  
panels (Data, View, etc.) in the class editing window are 
semantic regions. Furthermore, a capsule can be opened by the 

Figure 1. Packages and 
classes. 

 

Figure 2. A class editing window, overriding “paint” in the methods panel. 
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programmer to reveal semantic regions in which to edit the 
internal implementation of the abstraction represented by that 
capsule. For example, each method declaration capsule contains 
labeled regions for the formal parameters, local variables, 
method body, return expression (if the return type is not void), 
and access modifiers. Clicking within a method body creates a 
new statement at that point. 

Semantic regions have two important advantages.  First, 
they organize the program into structural units.  This contributes 
to user interface consistency, efficient navigation and screen 
space utilization, and helps the programmer focus on the current 
task by controlling what information is displayed.  Second, 
semantic regions serve as consistent and intuitive targets for 
direct manipulation operations, such as statement creation, 
expression building, and drag-and-drop operations. 

For drag-and-drop gestures, the semantics and user 
feedback depend on what capsule is dragged, and into which 
semantic region it is dropped.  Since a single drag-and-drop 
gesture conveys both an object and a target, relatively complex 
editing operations can be completed in one atomic gesture.  For 
example, when a programmer drags a type capsule from the 
‘Packages and Classes’ window into the Data panel, the system 
declares an instance variable of that type (and automatically 
defines associated ‘get’ and ‘set’ methods).  On the other hand, 
if the programmer drags that same type into the Methods panel, 
the system declares a method with that return type.  Similarly, 
dragging an inherited method into the Methods panel creates a 
method to override the inherited one. Additional examples for 
class and method capsules are shown in Table 1.  Analogous 
gestures apply to other types of capsules, such as those 
respresenting variables, constructors, and the properties of 
graphical components. For example, similar gestures can be used 
to access a variable, reorder the formal parameter list, or move a 
local variable into the parameter list. All modifications, 
including method overriding, take immediate effect on existing 
instances. 

  
3.5. Statements and Expressions 
Statements and expressions are formed as chains of capsules.  
The bump on the right of a capsule, which indicates type of the 
expression at that point in the chain, provides opportunities to 
extend the chain (by accessing variables, calling methods, etc.), 
similar to the dot (‘.’) notation in textual programming.   Nested 
boxes provide an explicit visual representation of scope and the 
order of execution.  All execution, including assignment, occurs 
left to right, respecting the indicated nesting.  This avoids any 
possible confusion about order of operations, and provides a 
convenient way to move statements among scopes.  In addition, 
the capsules for method calls and constructor calls have semantic 
regions called slots, in which actual parameters are specified. 

 JPie provides a calculator-like interface for building 
statements involving control constructs (if, while, foreach, etc.) 
and expressions involving mathematical operators.  Similar to 
[25], the constructs are provided as templates, but they contain 
specialized semantic regions.  For example, dragging a class 
capsule into the loop variable region of a foreach statement 
results in the declaration of a local variable (of that type) used 
for iteration over the specified collection.  See the paint method 
in Figure 2 for an example. 

 
 

Table 1.  Semantic regions determine the result of a 
drop. 

A Class Capsule A Method Capsule 
Dropped on Results in Dropped on Results in 
Shortcut 
panel 

Shortcut Method 
panel in 
same class 

Move (reorder 
the method in 
the method list) 

Data panel Instance 
variable 
declared of 
that type 

Method 
panel in an 
unrelated 
class 

Copy of the 
method, and 
declaration of 
needed instance 
variables 

Methods 
panel 

Method with 
that return 
type 

Method 
panel in 
child class 

Overriding 
method 

Parameter 
list 

Parameter 
declaration 

Statement Method call 

Locals panel Local var. Expression Method call 
Statement Static 

reference to 
the class 

Debugger Breakpoint at 
that method 

Foreach 
statement’s 
variable slot 

Local loop 
variable of 
that type 

Trash Deletion 

 
3.6. Program Consistency 
Maintaining program consistency during modification of a 
running program is a difficult problem.  Because JPie’s back-end 
consists of an executable data structure representing the 
program, its user interface can maintain program consistency 
while supporting a high degree of interactivity.  The user 
interface prevents formation of syntactically incorrect statements 
and expressions by not allowing gestures that would result in 
them.  For example, a variable can only be dropped into a scope 
having access to that variable. Similarly, when a chain is 
extended with a method call, only the accessible methods for 
that type are presented as options. User feedback is provided on 
a status bar, where each semantic region provides an explanation 
when it refuses a drop. 

JPie also maintains referential consistency throughout the 
editing process.  For example, when a variable’s name is 
changed, all references to that variable (as well as the names of 
the ‘get’ and ‘set’ methods and their calls), are correspondingly 
updated.  Similarly, when a parameter list is modified, the 
system automatically updates all of its method calls accordingly.  
Maintaining consistency is possible because the internal 
representation of dynamic classes directly captures the 
relationship between each use (variable reference, method call, 
actual parameter expression, etc.) and its corresponding 
definition (variable declaration, method declaration, formal 
parameter, etc.).  An identifier is not represented as a text string, 
as it would be in a textual language.  Instead, it is represented 
internally as an object that refers to the declaration of that 
variable. 

JPie does not prevent two kinds of errors that may occur 
on the way to creating correct programs – missing expressions 
and type mismatches. For example, consider the semantic region 
(parameter slot) in which editing will take place for the actual 
parameter expression of a newly created method call.  At first, 
the parameter slot will be empty. Then, since an expression of a 
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particular type is required, temporary type mismatches may 
necessarily occur along the way to forming the expression.  If an 
integer is required as the parameter type and one drops a ‘list’ 
variable into the slot, there would be a type mismatch, but 
completing the expression by calling the ‘size’ method on the 
‘list’ variable would fix the problem. Whenever an inconsistency 
occurs, the system provides immediate feedback.  For example, 
each slot in a method call knows its expected type and will 
display a red border whenever its contained expression’s type is 
not compatible.  Incomplete expressions are similarly 
highlighted. References to deleted (or inaccessible) variables and 
methods are grayed out.  In all cases, placing the cursor over the 
offending expression reveals pop-up text that explains the 
problem. 

Because editing is live, an erroneous statement may be 
encountered during execution.  However, rather than allow the 
program to fail, execution is suspended in JPie’s debugger, 
where the programmer can correct the problem and resume 
execution. 

 
3.2. Visualization for Debugging 
JPie’s thread-oriented debugger uses the same visual 
representation that is used in the class windows. Programmers 
can set breakpoints on methods, constructors, behaviors, event 
handlers, statements, and expressions.  When a breakpoint or 
erroneous statement is reached within execution of a thread, a 
debugger window pops up, providing a visualization of the call 
stack as a series of tabbed panes.  Each pane shows the expanded 
visual representation of the method (or other item) responsible 
for that stack frame.  The debugger highlights (within each stack 
frame) the expression that is currently executing (or about to 
execute in the case of the top stack frame).  In the debugger, the 
programmer can control the execution speed of that thread and 
watch the execution unfold, or can single-step through the 
execution expression by expression, with pop-up text displaying 
values for executed expressions.  In addition to breakpoints, any 
consistency errors (such as type mismatches) cause the debugger 
to appear when execution of the offending expression is 
attempted.  The programmer then has the opportunity to 
complete or correct the expression and resume execution.   

Additional debugger support includes on-the-fly exception 
handling and detection of common logic errors.  When an 
exception occurs that is not explicitly caught or thrown by a 
method, the debugger appears and provides the programmer with 
the opportunity to catch (or throw) the exception and resume 
execution.  Proactive detection of logic errors includes 
dynamically adjustable stack bounding to detect possibly infinite 
recursion, dynamically adjustable loop bounding to detect 
possibly infinite loops, and deadlock detection.  In the case of 
deadlock, a separate window appears with a visualization of the 
cycle in the wait-for graph.  Within that visualization, the 
programmer can click on threads involved in the cycle in order 
to bring up debugging windows for them, and can optionally 
terminate them to break the deadlock. (See Figure 11.) 
 
4. EXAMPLE 
 
To illustrate JPie’s support for visual representation and direct 
manipulation of live programs, we describe the construction of a 
simple timer application that displays a counter value on a 
button.  The timer increments the counter value, once per 

second, and resets to 0 
whenever the button is 
pressed.  In the course of 
the example, we 
describe the steps one 
would take in JPie to 
create a dynamic class, 
create an instance of the 
class, declare and use an 
instance variable, define 
a graphical view and 
relate it to the data in the 
object, define and call a 
method, create a 
periodic behavior that 
executes as a separate 
thread, and define an 
event handler to react to 
a user event in the view. 
 
4.1. Classes and 
Instances 
To create the timer 
application, we begin by 
creating a Timer class.  
Dynamic classes are 
created from the File menu, with the placement of the class in a 
folder corresponding to its Java package.   One may specify that 
a class extends another class or implements an interface. Here, 
we simply allow the class to extend Object by default.  Upon 
creation of the new class, JPie then generates the compiled peer 
class and opens the class window for editing. 

JPie creates every dynamic class with a no-argument 
constructor whose body may be edited by the user.  The 
constructor may be deleted, or parameters may be added, but as 
long as there is a no-argument constructor present, the class is 
instantiable from the Instances menu.   All instances show in a 
list on the Instances panel, and can be selected there for viewing. 
Therefore, we may immediately create an instance of the Timer 
class.  Until a view is defined for the class, there is nothing to 
see when an instance is selected.  However, subsequent changes 
to the class definition, including the view definitions, will affect 
that instance in the running program, as will be seen in Figure 4 
after we declare an instance variable and connect it to a 
graphical view. 
 
4.2. Variables 
Our first modification of the timer class is to create an instance 
variable that will keep track of the elapsed time.  Because we 
want an integer variable, we drag the Integer class from the 
packages and classes window into the Data panel of the Timer 
class window.  Dropping it there causes declaration of an 
instance variable, as well as creation of associated ‘get’ and ‘set’ 
methods.  We rename the variable ‘count’ and the associated 
method names are updated accordingly, as shown in Figure 3.  
The methods summary list includes not only these declared 
methods, but also the inherited methods, in a different color.  
Each variable, method, and constructor is shown as a capsule, as 
described in Section 3.  Recall that the variable type (or return 
type) is indicated iconically, and scope is indicated by color. 
 

Figure 3. Instance variable and 
method summaries. 
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Figure 4. View construction. 

Figure 6.  A method declaration. 

4.3. Views and Property Connections 
JPie provides a simple GUI builder, on the Views tab, that 
allows a view for a class to be created and associated with the 
data model.  The functionality is not remarkably different from 
those provided by commercial tools.  However, we mention it 
here for completeness, and also because its design is carried out 
as a logical extension of the capsule and semantic region 
metaphor. 

Within the Views panel, one can drop capsules 
representing graphical component class types.  This gesture 
results in instantiation of the component on the panel, where it 
can be subsequently manipulated for layout purposes. (JPie also 

provides some automatic layout options.)  This arrangement of 
components specifies what each instance of the class should look 
like to the user.  Selecting a component allows the programmer 
to see capsules representing the properties of that component.  
Those properties can then be connected to the properties of the 
class (i.e., instance variables) or to properties of other 
components in the view by dropping their capsules into a 
semantic region labeled “connections.”  In addition, initial 
values of component properties can be specified in semantic 
regions within expanded property capsules. 
For our timer example, we drag the JButton class onto the Views 
panel, creating a button in the view.  To make the value of the 
‘count’ variable appear on the button in the view, we establish a 
property connection, again by drag and drop, that connects the 
‘count’ property of each Timer object to the ‘text’ property of 
the JButton in each of its views, as shown in Figure 4.  The 
change takes immediate affect on all instances, as shown in 
Figure 5. 
 
4.4. Methods 
We create a method for incrementing the count.  As for variable 
declaration, we can declare a method by dragging the desired 
return type into the methods panel.  Since the increment method 
will return nothing, we can either drag the Void type onto the 
methods panel, or choose ‘New method’ from the Methods menu 
to declare it.  We name the method ‘increment’ and fill in its 
method body by dragging the ‘setCount’ method from the 
methods summary list into the method body.  We then fill the 
parameter slot by dragging in the ‘count’ variable and adding 1 
to it, as shown in Figure 6.  We can test the method immediately 
in the Instances panel by calling it on an existing instance of the 
class, and see the text on the button change from 0 to 1. 
 
4.5. Threads 

Figure 5.  An instance of the Timer class. 
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Figure 7.  A behavior. 

Figure 8.  Recording and selecting an event. 

Programmers can create threads in the conventional way, by 
creating a subclass of the ‘Thread’ class and calling its start 
method.  In addition, JPie provides a Behaviors panel to 
streamline the creation of threads that carry out periodic tasks 
within objects of the class.  For example, instances of an 
‘animation’ class might have a behavior that periodically 
changes the image in the animation. Each behavior looks like a 
method with a void return type, but has additional regions in 
which to specify a rate expression and a termination condition.  
Behaviors can be started automatically on instantiation. 

Since we want the Timer to increment once per second, we 
create a Behavior, which is a thread whose body runs 
periodically with a specified rate.  In the behavior’s body, which 
is edited just like a method body, we call ‘increment’ once per 
second, as shown in Figure 7. 
 
 
4.6. Event Handlers 
In the Events panel, components of a view can be selected to 
create event handlers that process user input.  Each event handler 
is a listener method in the Java event model.  The programmer 
demonstrates the user event of interest (mouse click, mouse 
entered, etc.) by performing the event on the selected 
component, and then selecting the event from a list of all the 
recorded events.  At that point, the event handler method turns 
into the appropriate listener method with the appropriate 
parameter for that event type.   The listener is automatically 
added to the component by the system so that whenever the 
event occurs in a view of any instance of the class, it triggers 
execution of the event handler within that instance. The  
programmer can edit the body of the event handler like any other 
method of the class. 

To complete the timer example, we want a way for the 
user to reset the timer.  To create an event handler, we select the 
JButton on the Events panel as the event source and choose 
‘New event handler’ from the Events menu.  We then press the 
record button in the event handler and begin acting upon the 
JButton.  All events that we perform are recorded in a dropdown 
list, from which we choose the desired event, as shown in Figure 
8.  JPie immediately registers a listener for the event on the 
JButton in each view of each Timer instance.  Finally, in Figure 
9, we complete the example application by filling in the method 
body to reset the count whenever the user presses the button. 
 
4.7. Debugging 
Using the same visual representation as the class editor, the JPie 
debugger allows programmers to watch the execution unfold.  
Each thread is viewed in a separate window.  The execution 
stack is shown as tabbed panes.  

Figure 9.  An event handler. 
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Figure 10 shows a debugging session for the thread that 
updates the counter.  The tabs at the left show that the behavior 
called the increment method, which in turn called the setCount 
method.  On each panel, the current step in the execution is 
highlighted in green.  The user can pause and single-step the 
execution or watch it unfold in slow motion. 

 
 

5. RELATED WORK 
Prior work in making software development more accessible has 
generally taken three major approaches: high-level programming 
language abstractions, integrated development environments 
(IDEs), and visual programming systems. 
 
5.1. High-level language abstractions 
  

High-level languages like Fortran, C, Pascal, Smalltalk, 
Lisp, C++, and Java support abstractions that help make the 
programming process more natural.  For example, languages 
provide constructs to express procedural abstraction, parameters 
and return values, abstract data types, encapsulation, iteration, 
objects, methods, class hierarchies, inheritance, and 
polymorphism.  However, it is not the syntax itself, but the 
abstractions and programming model that account for the 
success of high-level languages.  In fact, for the beginning 
programmer, learning how to encode these abstractions in the 
syntax of the language often becomes a distraction from 
understanding the abstractions themselves.  In designing JPie, 
our goal was to leverage years of evolution in high-level 
language design by providing the abstractions and programming 
model of a modern language (Java).  However, we wanted to 
eliminate the learning curve of textual syntax, offering instead 
direct manipulation of visual representations of programming 
abstractions within live programs. 

 
5.2. Integrated Development Environments 

Integrated development environments (IDEs) are the most 
common approach to facilitating programming in high-level 
languages.  They are umbrella applications, combining project 
management, editor, compiler, run-time system, and debugger.  
Some support multiple programming languages.  IDEs that 
support software development in Java include Inprise JBuilder, 
Sun ONE Studio, NetBeans, Eclipse, Webgain Visual Café, 
Metrowerks Code Warrior, and many others.  Some 
sophisticated IDEs, such as Eclipse, allow functionality to be 
added to the IDE as third-party plug-ins [3].  Simpler IDEs 
specifically targeted for the classroom include BlueJ [2] and 
DrJava [1], which also provides some features as an Eclipse 
plug-in.  IDEs support writing textual code in a number of ways.  
For example, source code editors may provide background 
compilation, syntax colorizing, delimiter matching, and method 
name completion.  When compile or run-time errors occur, the 
environment highlights the line of text at which the error was 
detected.  Common project management tasks are automated, 
and programmers do not have to separately invoke an editor, 
compiler, and debugger. 

Educational IDEs, like BlueJ and DrJava, provide more 
interactive features than the typical IDE, such as manual 
invocation of methods on objects and interactive evaluation of 
Java expressions.  JPie takes this interaction further by 
eliminating the need for a textual representation of the program.  
Furthermore, using a fine-grain internal representation of 
classes, JPie maintains global consistency throughout 
development, and allows the program to be modified while it is 
running. 

Note that IDEs often do include a graphical user interface 
(GUI) builder for “live” layout of graphical components, where 
changes in relationships between the GUI and the underlying 
data model are reflected instantly.  However, such live 
development applies only to certain aspects of the program.  In 
the end, a programmer must write the essential functionality of 
the application in textual source code that is subsequently 
compiled and run.  Moreover, although they are helpful for 
experienced programmers, GUI builders in IDEs can overwhelm 
inexperienced programmers because completing the application 
requires modifying computer-generated source code that 
beginning programmers are likely to find confusing. 

 
5.3. Visual Languages 
Our approach in designing JPie was to raise the level of 
abstraction by treating the programming process as an 
application domain, amenable to the same human-computer 
interface design principles that have been applied successfully to 
other types of applications.   Central to these principles is direct 
manipulation of domain-specific entities.  This is not a new idea. 
Research in visual languages has produced many systems 
supporting direct manipulation of program entities, but the 
emphasis of that research has been on finding new ways to think 
about computation that are particularly well-suited for visual 
expression.  Visual programming environments are typically 
based on new languages (as opposed to being graphical front-
ends for existing languages), and they are generally based on 
execution models that are deemed to be particularly well suited 
for visual expression.  These often provide a tight integration of 
editing and program execution. 

One of the most common visual language paradigms is 
dataflow, in which data flows across “arrows” to trigger actions 
performed in “boxes.”  Examples include Show and Tell [8], one 

Figure 10.  Watching execution in the debugger. 



 9 

of the first dataflow languages designed to be accessible to 
children; Prograph [7], which has been developed commercially; 
Khoros [22], which has been targeted for image and signal 
processing; and our own distributed application configuration 
language [19].  However, dataflow is not the only visual 
language paradigm.  Forms/3 [5] introduces procedural 
abstraction within a declarative programming spreadsheet 
paradigm.  ThingLab [4] uses a constraint-oriented paradigm to 
support the construction of geometric models.  Statecharts [16] 
supports software development with a nested state-machine 
paradigm.  VIPR [6] uses arrows and nested rings to declare 
program behavior with elements of object-oriented 
programming.  AgentSheets [23][24] provides a rule-based 
paradigm for specifying how interacting agents gather and 
process information.  Stagecast (a commercial realization of 
KidSim [9] and Cocoa [17]) uses a combination of rule-based 
programming and programming-by-example to support children 
in developing games and simulations on a graphics grid. Logo 
[20], a well-known programming language for children, uses a 
mixture of visual components and textual programming. 

Among visual languages, Alice [21] has a visual 
representation that is closest to JPie’s.  Alice appeals to children, 
who can use direct manipulation of program abstractions to 
construct object-oriented applications based on 3D worlds. Alice 
is not designed to support general-purpose programming, but 
instead streamlines programming for the 3D graphics domain.  
In Alice, objects are instantiated before the program runs in a 
global object tree.  Therefore, the “main” program, methods, and 
event handlers refer to particular named instances. 

Although it does not support editing of live programs, 
Alice’s visual representation and user interface strictly enforces 
program consistency. For example, when creating a method call, 
Alice requires programmers to fill in required parameters as part 
of the gesture.  However, in doing so it places some limitations 
on expressive power.  For example, one cannot temporarily use a 
variable of the wrong type as an actual parameter, even if one 
intends to subsequently call a method on that variable to form an 
expression of the correct type.  Like JPie, Alice uses templates 
for programming constructs.   Drag-and-drop is used with 
copy/paste semantics. Alice provides semantic regions to the 
extent that a variable can be dropped into an expression to create 
a reference to that variable, and a method can be dropped into a 
statement to create a method call.  Alice does not provide access 
to an underlying general-purpose programming language. 

In summary, JPie differs from prior work in visual 
languages by simultaneously achieving several goals.  First, 
rather than create a new language, we chose to provide a visual 
representation for writing sophisticated applications in a widely 
accepted programming language.  Second, we created an open 
system that allows access to the full Java API and other 
compiled classes, with interoperability and full polymorphism.  
Finally, we provide capsules and semantic regions to support 
live modification of running programs through atomic gestures. 
 
6. CONCLUSION 
JPie provides graphical representations of programming 
language abstractions that expose the Java execution model and 
make software development immediate and tangible.  JPie 
programmers directly manipulate the graphical representations to 
effect changes in the running program.  Many operations, such 
as variable and method declaration and use, are accomplished by 
drag-and-drop.  Through dynamic classes, JPie has fine-grain 

awareness of program structure and takes advantage of this 
knowledge to constrain program editing, check and maintain 
consistency, provide timely feedback, and eliminate the edit-
compile-execute cycle. JPie’s debugger uses the same graphical 
representation to allow logical errors to be handled on the fly.  

Under development since 1999, JPie has been used for 
three semesters in Washington University CS123, a laboratory 
course that introduces object-oriented software concepts to 
undergraduate students without prior programming background 
[10][15].   Using JPie’s visual representation, students are 
introduced to object-oriented programming, and because the 
course does not have the usual programming language learning 
curve, by the end of the semester, the students are using JPie to 
construct relatively sophisticated Java applications.  For 
example, in one assignment, students create an internet chat 
application.  Using only standard Java sockets, the students build 
both the client and a multithreaded server. 

We are currently working on additional features, such as 
heap visualization and learning curve management, to enhance 
JPie’s pedagogical value.  Educators interested in using JPie in 
the classroom are encouraged to contact the author or see the 
JPie web site [13]. 
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Figure 11.  Deadlock visualization shows the threads and objects involved in a cycle. 
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