
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-79

2004-12-06

Capsules and Semantic Regions for Code Visualization and Direct Capsules and Semantic Regions for Code Visualization and Direct

Manipulation of Live Programs Manipulation of Live Programs

Kenneth J. Goldman

JPie is a visual programming environment supporting live construction of Java applications.

Class modifications, such as declaring instance variables and overriding methods, take effect

immediately on existing instances of the class to encourage experimentation in an educational

setting. Because programs are edited live, editing gestures must transform the program from

one well-formed state to another, without intermediate ambiguous states. To accomplish this,

JPie’s visual representation provides capsules, which represent logical code units, and semantic

regions, which represent different aspects of a program. A capsule’s meaning depends upon its

containing semantic region. Similarly, a gesture, which involves manipulation of a... Read Read

complete abstract on page 2. complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Goldman, Kenneth J., "Capsules and Semantic Regions for Code Visualization and Direct Manipulation of
Live Programs" Report Number: WUCSE-2004-79 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1049

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1049?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1049

Capsules and Semantic Regions for Code Visualization and Direct Manipulation Capsules and Semantic Regions for Code Visualization and Direct Manipulation
of Live Programs of Live Programs

Kenneth J. Goldman

Complete Abstract: Complete Abstract:

JPie is a visual programming environment supporting live construction of Java applications. Class
modifications, such as declaring instance variables and overriding methods, take effect immediately on
existing instances of the class to encourage experimentation in an educational setting. Because
programs are edited live, editing gestures must transform the program from one well-formed state to
another, without intermediate ambiguous states. To accomplish this, JPie’s visual representation provides
capsules, which represent logical code units, and semantic regions, which represent different aspects of a
program. A capsule’s meaning depends upon its containing semantic region. Similarly, a gesture, which
involves manipulation of a capsule, is interpreted on the basis of the semantic region in which it occurs.
This paper describes how capsules and semantic regions visually expose the structure of JPie programs
and support live program editing through natural atomic gestures.

https://openscholarship.wustl.edu/cse_research/1049?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1049?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages

 1

Capsules and Semantic Regions for Code Visualization
and Direct Manipulation of Live Programs

Kenneth J. Goldman

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, MO 63130
(314) 935-7542

kjg@cse.wustl.edu

ABSTRACT
JPie is a visual programming environment supporting live
construction of Java applications. Class modifications, such as
declaring instance variables and overriding methods, take effect
immediately on existing instances of the class to encourage
experimentation in an educational setting. Because programs are
edited live, editing gestures must transform the program from
one well-formed state to another, without intermediate
ambiguous states. To accomplish this, JPie’s visual
representation provides capsules, which represent logical code
units, and semantic regions, which represent different aspects of
a program. A capsule’s meaning depends upon its containing
semantic region. Similarly, a gesture, which involves
manipulation of a capsule, is interpreted on the basis of the
semantic region in which it occurs. This paper describes how
capsules and semantic regions visually expose the structure of
JPie programs and support live program editing through natural
atomic gestures.

Categories and Subject Descriptors
D.1.7 [Programming Techniques] Visual Programming;
D.2.6 [Software Engineering] Programming Environments –
graphical environments, interactive environments

General Terms
Design, Human factors

Keywords
Live software development, program visualization

1. INTRODUCTION
The goal of our work is to make the power of general purpose
software development accessible to a wider audience. To
advance this goal, we have created JPie, an educational

programming environment for live visual construction of Java
applications.

In designing a programming environment for beginners,
one option is to design a new language and execution model
with a visual representation. However, one of our primary
educational goals is to ease the transition from our visual
environment into more traditional software development. We
want students learn the semantics of a widely accepted
programming language, and we want them to leverage that
language in order to construct relatively sophisticated
applications. Therefore, we did not invent a new programming
language. Instead, we built JPie as a software construction
application supporting the execution model of a standard
underlying programming language (Java). JPie users have
available the entire Java API, as well as third party Java classes.
While providing access to a powerful general-purpose language,
JPie is designed to provide a low entry barrier and a gradual
learning curve.

JPie supports dynamic classes [14], which are like Java
classes except that their class definitions can be changed at run-
time. All changes to a dynamic class take effect immediately
upon its existing instances. Examples of live modification
include declaration of instance variables and methods,
modification of method bodies, method overriding, user
interface construction, and event handling. Dynamic classes
embody executable data structures that represent the program.
JPie users edit programs by manipulating a visualization of this
executable data structure. The visual representation is designed
to capture key abstractions of the programming model. Direct
manipulation of the visual representation eliminates the need for
textual source code, and live modification avoids the edit-
compile-test cycle.

A common complaint of beginning programmers is
forgetting the language syntax. At a superficial level, students
may know that something is possible, but can’t remember how
to write it. At a deeper level, students often forget what is even
possible, let alone how to write it. Therefore, one of the design
goals for our visual representation was to expose not only what
“is” (the structure of the existing program), but also what “could
be” (the range of possibilities in a given context).

JPie’s primary structural unit is the capsule. Capsules are
simple graphical representations of programming language
abstractions, such as variables and methods, that provide a unit
of discourse for the programmer. To make software
development immediate and tangible, capsules are used by direct

 2

manipulation. Because each capsule represents an instance of
some programming language concept, each gesture has a
meaning in the programming model. This is different from
textual programming, in which the unit of discourse is a
character, and some editing operations result in nonsensical
programs.

Capsules are manipulated within semantic regions. A
semantic region is a labeled place that corresponds to some
programming option within the language. For example, there
are specific semantic regions for declaring methods, forming
parameter expressions, and defining property connections.
Semantic regions may be nested and may appear within
capsules. For example, a variable declaration capsule contains
semantic regions for its initial value and modifiers, whereas a
constructor capsule would contain a semantic region for its super
call and body statements.

Since they provide a scope or context, semantic regions
roughly correspond to the empty space between delimiters in a
textual programming language. However, they extend this idea
in several ways. First, they are visually explicit so that
programmers can see them as options, rather than having to
remember the possibilities. For example, a box labeled
“parameters” provides a clue to a beginning programmer, where
a pair of parentheses might not. Second, semantic regions are
more precisely constrained than lexical scopes. For example,
there is one semantic region for declaring a method’s local
variables, and a different one for declaring the method’s body
statements. As we will see, this precision is advantageous for
creating a simple vocabulary of editing gestures, since the
location in which the gesture occurs can be used to discern the
intentions of the programmer.

To support live experimentation, JPie lets programmers
manipulate the program representation to effect changes while
the program is running. Therefore, it is important that each
gesture provide an atomic transformation from one well-formed
program representation to another. Namely, there can be no
intermediate ambiguous states in which the syntax is incorrect or
in which declarations and uses do not correspond. Most atomic
gestures, such as variable and method declaration and use, are
accomplished by drag-and-drop. The capsule that is dropped
and the semantic region into which it is dropped together
determine the semantics of the gesture.

The remainder of the paper is organized as follows.
Section 2 provides background on dynamic classes, which are
the foundation for live execution in JPie and the back-end data
structure for our visual representation. Section 3 presents JPie’s
mechanisms for visual representation and direct manipulation of
dynamic classes using capsules and semantic regions. These are
illustrated with a simple example in Section 4. Section 5
discusses JPie in relation to other work. We conclude, in Section
6, with a summary and directions for future work.

2. BACKGROUND
JPie rests upon on the concept of a dynamic class [14], whose
members (variables, methods, and constructors) can be modified
live, even while instances of that class exist in a running
program. Internally, each dynamic class is modeled as mutable
data structures that describe its members. For example, a
dynamic method’s data model includes a parameter list, local
fields, and body statements. As we will explain, JPie provides a
visual representation of the model, and direct manipulation of

the visual representation results in corresponding changes to the
data structures representing the members of the dynamic class.

Dynamic classes fully interoperate with compiled classes.
Consequently, JPie programmers can use the entire Java API,
may create dynamic classes extending either dynamic or
compiled classes, and can override methods on the fly. Instances
of compiled classes may hold type-safe references to instances
of dynamic classes, and call their methods polymorphically.

To support interoperability, each dynamic class has a
compiled peer that is generated when the dynamic class is
created. The peer class allows dynamic classes (and their
instances) to present themselves to the Java Virtual Machine
(JVM) as any ordinary type. However, dynamic class execute in
a semi-interpreted manner using an internal representation of the
dynamic portions of the class definition. The precompiled class
overrides all of its inherited methods, and by default calls the
parent method to carry out the computation. However, when the
JPie user dynamically overrides a method, the user’s
implementation, rather than the parent’s, is invoked. The
implementation relies extensively on Java’s reflection
mechanism and is accomplished without modification of the
language or the JVM.

The internal representation of dynamic classes directly
captures the relationship between each use and its corresponding
definition. For example, each variable read expression refers to
the object representing the variable declaration, each method call
refers to the method declaration, each actual parameter
expression refers to the formal parameter declaration, each
overriding method refers to the method it overrides, etc.
Because the references are direct, traditional textual identifiers
are not used to define the semantics of programs. Users can
name variables and methods, but the names are used only for
documentation purposes within JPie. When programs are
exported for execution outside of JPie, the programming
environment renames members when identifiers clash.

3. VISUAL REPRESENTATION AND
DIRECT MANIPULATION
In any visual programming system, an important part of the
design is the systematic creation of graphical representations for
the programming abstractions. Our goal was to make as much
information about each abstraction as explicit as possible, so as
not to rely on the programmer’s memory. Furthermore, we
needed a representation amenable to direct manipulation.
Finally, we wanted visual attributes the system could control for
unobtrusive, timely feedback.

Screen space in visual programming systems is always at a
premium. Wherever possible, we tried to provide ways to
control the use of the space to help the programmer find and
focus on the relevant portions of the program. Where space
saving came into conflict with explicit representation, we gave
explicit representation higher priority.

3.1. Access to Types
When JPie starts, the programmer sees a ‘Packages and Classes’
window, as shown in Figure 1. It contains a tree representation
of all the packages and classes in the Java API (as well as the
programmer’s own classes) and a place to create shortcut panels
for organizing frequently used classes into categories. From this
window, one can open classes for editing and create new classes
that extend other classes or implement interfaces.

 3

3.2. Class Editing
Each class is edited in a separate window. Figure 2 shows a
ShapesPanel class that extends the Java library class JPanel.
Tabs along the bottom of the window provide access to panels
for Data (instance variables), View (graphical appearance,
layout, and property connections), Events (listeners to the view
components), Constructors, Methods, Behaviors (periodic tasks
that run as separate threads), and Instances (a list of instances of
the class, selectable for viewing). Each dynamic class window
also provides summary lists of the variables and methods of the
class.

3.3. Capsules
JPie’s principal visual unit is the capsule. Capsules represent
types (classes), variable declarations, variable accesses,
properties, methods, method calls, constructors, constructor
calls, and can also encapsulate constants and expressions.
Because they are represented visually, capsules afford an
opportunity to present the program with more information than a
textual identifier provides. For example, each capsule’s type is
shown iconically on a “dot” that protrudes from the right side of
the capsule. The dot, which is reminiscent of dot notation in

textual languages, provides an interaction point for making use
of the capsule’s value or result within expression. Every capsule
also has a label, typically used to display a textual identifier.
However, because declaration and use are linked by reference in
the data structure, the identifier is inconsequential for execution
within JPie. The color of each capsule indicates its scope. (For
methods and instance variables, the color also indicates whether
the member is declared or inherited.) Providing all of this
information explicitly means that capsules occupy more space
than a textual identifier, but it saves the programmer from
having to rely on memory to know, for example, the parameter
types and return type of a method call, or whether a variable is
local or an instance variable.

Capsules are used by direct manipulation (selection or
drag-and-drop), not indirectly by name. The system maintains
consistency of identifier labels. If a variable or method is
renamed, the labels at each use are updated.

3.4. Semantic Regions
Programmers manipulate capsules and other objects within
clearly identified semantic regions. For example, all of the
panels (Data, View, etc.) in the class editing window are
semantic regions. Furthermore, a capsule can be opened by the

Figure 1. Packages and
classes.

Figure 2. A class editing window, overriding “paint” in the methods panel.

 4

programmer to reveal semantic regions in which to edit the
internal implementation of the abstraction represented by that
capsule. For example, each method declaration capsule contains
labeled regions for the formal parameters, local variables,
method body, return expression (if the return type is not void),
and access modifiers. Clicking within a method body creates a
new statement at that point.

Semantic regions have two important advantages. First,
they organize the program into structural units. This contributes
to user interface consistency, efficient navigation and screen
space utilization, and helps the programmer focus on the current
task by controlling what information is displayed. Second,
semantic regions serve as consistent and intuitive targets for
direct manipulation operations, such as statement creation,
expression building, and drag-and-drop operations.

For drag-and-drop gestures, the semantics and user
feedback depend on what capsule is dragged, and into which
semantic region it is dropped. Since a single drag-and-drop
gesture conveys both an object and a target, relatively complex
editing operations can be completed in one atomic gesture. For
example, when a programmer drags a type capsule from the
‘Packages and Classes’ window into the Data panel, the system
declares an instance variable of that type (and automatically
defines associated ‘get’ and ‘set’ methods). On the other hand,
if the programmer drags that same type into the Methods panel,
the system declares a method with that return type. Similarly,
dragging an inherited method into the Methods panel creates a
method to override the inherited one. Additional examples for
class and method capsules are shown in Table 1. Analogous
gestures apply to other types of capsules, such as those
respresenting variables, constructors, and the properties of
graphical components. For example, similar gestures can be used
to access a variable, reorder the formal parameter list, or move a
local variable into the parameter list. All modifications,
including method overriding, take immediate effect on existing
instances.

3.5. Statements and Expressions
Statements and expressions are formed as chains of capsules.
The bump on the right of a capsule, which indicates type of the
expression at that point in the chain, provides opportunities to
extend the chain (by accessing variables, calling methods, etc.),
similar to the dot (‘.’) notation in textual programming. Nested
boxes provide an explicit visual representation of scope and the
order of execution. All execution, including assignment, occurs
left to right, respecting the indicated nesting. This avoids any
possible confusion about order of operations, and provides a
convenient way to move statements among scopes. In addition,
the capsules for method calls and constructor calls have semantic
regions called slots, in which actual parameters are specified.

 JPie provides a calculator-like interface for building
statements involving control constructs (if, while, foreach, etc.)
and expressions involving mathematical operators. Similar to
[25], the constructs are provided as templates, but they contain
specialized semantic regions. For example, dragging a class
capsule into the loop variable region of a foreach statement
results in the declaration of a local variable (of that type) used
for iteration over the specified collection. See the paint method
in Figure 2 for an example.

Table 1. Semantic regions determine the result of a
drop.

A Class Capsule A Method Capsule
Dropped on Results in Dropped on Results in
Shortcut
panel

Shortcut Method
panel in
same class

Move (reorder
the method in
the method list)

Data panel Instance
variable
declared of
that type

Method
panel in an
unrelated
class

Copy of the
method, and
declaration of
needed instance
variables

Methods
panel

Method with
that return
type

Method
panel in
child class

Overriding
method

Parameter
list

Parameter
declaration

Statement Method call

Locals panel Local var. Expression Method call
Statement Static

reference to
the class

Debugger Breakpoint at
that method

Foreach
statement’s
variable slot

Local loop
variable of
that type

Trash Deletion

3.6. Program Consistency
Maintaining program consistency during modification of a
running program is a difficult problem. Because JPie’s back-end
consists of an executable data structure representing the
program, its user interface can maintain program consistency
while supporting a high degree of interactivity. The user
interface prevents formation of syntactically incorrect statements
and expressions by not allowing gestures that would result in
them. For example, a variable can only be dropped into a scope
having access to that variable. Similarly, when a chain is
extended with a method call, only the accessible methods for
that type are presented as options. User feedback is provided on
a status bar, where each semantic region provides an explanation
when it refuses a drop.

JPie also maintains referential consistency throughout the
editing process. For example, when a variable’s name is
changed, all references to that variable (as well as the names of
the ‘get’ and ‘set’ methods and their calls), are correspondingly
updated. Similarly, when a parameter list is modified, the
system automatically updates all of its method calls accordingly.
Maintaining consistency is possible because the internal
representation of dynamic classes directly captures the
relationship between each use (variable reference, method call,
actual parameter expression, etc.) and its corresponding
definition (variable declaration, method declaration, formal
parameter, etc.). An identifier is not represented as a text string,
as it would be in a textual language. Instead, it is represented
internally as an object that refers to the declaration of that
variable.

JPie does not prevent two kinds of errors that may occur
on the way to creating correct programs – missing expressions
and type mismatches. For example, consider the semantic region
(parameter slot) in which editing will take place for the actual
parameter expression of a newly created method call. At first,
the parameter slot will be empty. Then, since an expression of a

 5

particular type is required, temporary type mismatches may
necessarily occur along the way to forming the expression. If an
integer is required as the parameter type and one drops a ‘list’
variable into the slot, there would be a type mismatch, but
completing the expression by calling the ‘size’ method on the
‘list’ variable would fix the problem. Whenever an inconsistency
occurs, the system provides immediate feedback. For example,
each slot in a method call knows its expected type and will
display a red border whenever its contained expression’s type is
not compatible. Incomplete expressions are similarly
highlighted. References to deleted (or inaccessible) variables and
methods are grayed out. In all cases, placing the cursor over the
offending expression reveals pop-up text that explains the
problem.

Because editing is live, an erroneous statement may be
encountered during execution. However, rather than allow the
program to fail, execution is suspended in JPie’s debugger,
where the programmer can correct the problem and resume
execution.

3.2. Visualization for Debugging
JPie’s thread-oriented debugger uses the same visual
representation that is used in the class windows. Programmers
can set breakpoints on methods, constructors, behaviors, event
handlers, statements, and expressions. When a breakpoint or
erroneous statement is reached within execution of a thread, a
debugger window pops up, providing a visualization of the call
stack as a series of tabbed panes. Each pane shows the expanded
visual representation of the method (or other item) responsible
for that stack frame. The debugger highlights (within each stack
frame) the expression that is currently executing (or about to
execute in the case of the top stack frame). In the debugger, the
programmer can control the execution speed of that thread and
watch the execution unfold, or can single-step through the
execution expression by expression, with pop-up text displaying
values for executed expressions. In addition to breakpoints, any
consistency errors (such as type mismatches) cause the debugger
to appear when execution of the offending expression is
attempted. The programmer then has the opportunity to
complete or correct the expression and resume execution.

Additional debugger support includes on-the-fly exception
handling and detection of common logic errors. When an
exception occurs that is not explicitly caught or thrown by a
method, the debugger appears and provides the programmer with
the opportunity to catch (or throw) the exception and resume
execution. Proactive detection of logic errors includes
dynamically adjustable stack bounding to detect possibly infinite
recursion, dynamically adjustable loop bounding to detect
possibly infinite loops, and deadlock detection. In the case of
deadlock, a separate window appears with a visualization of the
cycle in the wait-for graph. Within that visualization, the
programmer can click on threads involved in the cycle in order
to bring up debugging windows for them, and can optionally
terminate them to break the deadlock. (See Figure 11.)

4. EXAMPLE

To illustrate JPie’s support for visual representation and direct
manipulation of live programs, we describe the construction of a
simple timer application that displays a counter value on a
button. The timer increments the counter value, once per

second, and resets to 0
whenever the button is
pressed. In the course of
the example, we
describe the steps one
would take in JPie to
create a dynamic class,
create an instance of the
class, declare and use an
instance variable, define
a graphical view and
relate it to the data in the
object, define and call a
method, create a
periodic behavior that
executes as a separate
thread, and define an
event handler to react to
a user event in the view.

4.1. Classes and
Instances
To create the timer
application, we begin by
creating a Timer class.
Dynamic classes are
created from the File menu, with the placement of the class in a
folder corresponding to its Java package. One may specify that
a class extends another class or implements an interface. Here,
we simply allow the class to extend Object by default. Upon
creation of the new class, JPie then generates the compiled peer
class and opens the class window for editing.

JPie creates every dynamic class with a no-argument
constructor whose body may be edited by the user. The
constructor may be deleted, or parameters may be added, but as
long as there is a no-argument constructor present, the class is
instantiable from the Instances menu. All instances show in a
list on the Instances panel, and can be selected there for viewing.
Therefore, we may immediately create an instance of the Timer
class. Until a view is defined for the class, there is nothing to
see when an instance is selected. However, subsequent changes
to the class definition, including the view definitions, will affect
that instance in the running program, as will be seen in Figure 4
after we declare an instance variable and connect it to a
graphical view.

4.2. Variables
Our first modification of the timer class is to create an instance
variable that will keep track of the elapsed time. Because we
want an integer variable, we drag the Integer class from the
packages and classes window into the Data panel of the Timer
class window. Dropping it there causes declaration of an
instance variable, as well as creation of associated ‘get’ and ‘set’
methods. We rename the variable ‘count’ and the associated
method names are updated accordingly, as shown in Figure 3.
The methods summary list includes not only these declared
methods, but also the inherited methods, in a different color.
Each variable, method, and constructor is shown as a capsule, as
described in Section 3. Recall that the variable type (or return
type) is indicated iconically, and scope is indicated by color.

Figure 3. Instance variable and
method summaries.

 6

Figure 4. View construction.

Figure 6. A method declaration.

4.3. Views and Property Connections
JPie provides a simple GUI builder, on the Views tab, that
allows a view for a class to be created and associated with the
data model. The functionality is not remarkably different from
those provided by commercial tools. However, we mention it
here for completeness, and also because its design is carried out
as a logical extension of the capsule and semantic region
metaphor.

Within the Views panel, one can drop capsules
representing graphical component class types. This gesture
results in instantiation of the component on the panel, where it
can be subsequently manipulated for layout purposes. (JPie also

provides some automatic layout options.) This arrangement of
components specifies what each instance of the class should look
like to the user. Selecting a component allows the programmer
to see capsules representing the properties of that component.
Those properties can then be connected to the properties of the
class (i.e., instance variables) or to properties of other
components in the view by dropping their capsules into a
semantic region labeled “connections.” In addition, initial
values of component properties can be specified in semantic
regions within expanded property capsules.
For our timer example, we drag the JButton class onto the Views
panel, creating a button in the view. To make the value of the
‘count’ variable appear on the button in the view, we establish a
property connection, again by drag and drop, that connects the
‘count’ property of each Timer object to the ‘text’ property of
the JButton in each of its views, as shown in Figure 4. The
change takes immediate affect on all instances, as shown in
Figure 5.

4.4. Methods
We create a method for incrementing the count. As for variable
declaration, we can declare a method by dragging the desired
return type into the methods panel. Since the increment method
will return nothing, we can either drag the Void type onto the
methods panel, or choose ‘New method’ from the Methods menu
to declare it. We name the method ‘increment’ and fill in its
method body by dragging the ‘setCount’ method from the
methods summary list into the method body. We then fill the
parameter slot by dragging in the ‘count’ variable and adding 1
to it, as shown in Figure 6. We can test the method immediately
in the Instances panel by calling it on an existing instance of the
class, and see the text on the button change from 0 to 1.

4.5. Threads

Figure 5. An instance of the Timer class.

 7

Figure 7. A behavior.

Figure 8. Recording and selecting an event.

Programmers can create threads in the conventional way, by
creating a subclass of the ‘Thread’ class and calling its start
method. In addition, JPie provides a Behaviors panel to
streamline the creation of threads that carry out periodic tasks
within objects of the class. For example, instances of an
‘animation’ class might have a behavior that periodically
changes the image in the animation. Each behavior looks like a
method with a void return type, but has additional regions in
which to specify a rate expression and a termination condition.
Behaviors can be started automatically on instantiation.

Since we want the Timer to increment once per second, we
create a Behavior, which is a thread whose body runs
periodically with a specified rate. In the behavior’s body, which
is edited just like a method body, we call ‘increment’ once per
second, as shown in Figure 7.

4.6. Event Handlers
In the Events panel, components of a view can be selected to
create event handlers that process user input. Each event handler
is a listener method in the Java event model. The programmer
demonstrates the user event of interest (mouse click, mouse
entered, etc.) by performing the event on the selected
component, and then selecting the event from a list of all the
recorded events. At that point, the event handler method turns
into the appropriate listener method with the appropriate
parameter for that event type. The listener is automatically
added to the component by the system so that whenever the
event occurs in a view of any instance of the class, it triggers
execution of the event handler within that instance. The
programmer can edit the body of the event handler like any other
method of the class.

To complete the timer example, we want a way for the
user to reset the timer. To create an event handler, we select the
JButton on the Events panel as the event source and choose
‘New event handler’ from the Events menu. We then press the
record button in the event handler and begin acting upon the
JButton. All events that we perform are recorded in a dropdown
list, from which we choose the desired event, as shown in Figure
8. JPie immediately registers a listener for the event on the
JButton in each view of each Timer instance. Finally, in Figure
9, we complete the example application by filling in the method
body to reset the count whenever the user presses the button.

4.7. Debugging
Using the same visual representation as the class editor, the JPie
debugger allows programmers to watch the execution unfold.
Each thread is viewed in a separate window. The execution
stack is shown as tabbed panes.

Figure 9. An event handler.

 8

Figure 10 shows a debugging session for the thread that
updates the counter. The tabs at the left show that the behavior
called the increment method, which in turn called the setCount
method. On each panel, the current step in the execution is
highlighted in green. The user can pause and single-step the
execution or watch it unfold in slow motion.

5. RELATED WORK
Prior work in making software development more accessible has
generally taken three major approaches: high-level programming
language abstractions, integrated development environments
(IDEs), and visual programming systems.

5.1. High-level language abstractions

High-level languages like Fortran, C, Pascal, Smalltalk,
Lisp, C++, and Java support abstractions that help make the
programming process more natural. For example, languages
provide constructs to express procedural abstraction, parameters
and return values, abstract data types, encapsulation, iteration,
objects, methods, class hierarchies, inheritance, and
polymorphism. However, it is not the syntax itself, but the
abstractions and programming model that account for the
success of high-level languages. In fact, for the beginning
programmer, learning how to encode these abstractions in the
syntax of the language often becomes a distraction from
understanding the abstractions themselves. In designing JPie,
our goal was to leverage years of evolution in high-level
language design by providing the abstractions and programming
model of a modern language (Java). However, we wanted to
eliminate the learning curve of textual syntax, offering instead
direct manipulation of visual representations of programming
abstractions within live programs.

5.2. Integrated Development Environments

Integrated development environments (IDEs) are the most
common approach to facilitating programming in high-level
languages. They are umbrella applications, combining project
management, editor, compiler, run-time system, and debugger.
Some support multiple programming languages. IDEs that
support software development in Java include Inprise JBuilder,
Sun ONE Studio, NetBeans, Eclipse, Webgain Visual Café,
Metrowerks Code Warrior, and many others. Some
sophisticated IDEs, such as Eclipse, allow functionality to be
added to the IDE as third-party plug-ins [3]. Simpler IDEs
specifically targeted for the classroom include BlueJ [2] and
DrJava [1], which also provides some features as an Eclipse
plug-in. IDEs support writing textual code in a number of ways.
For example, source code editors may provide background
compilation, syntax colorizing, delimiter matching, and method
name completion. When compile or run-time errors occur, the
environment highlights the line of text at which the error was
detected. Common project management tasks are automated,
and programmers do not have to separately invoke an editor,
compiler, and debugger.

Educational IDEs, like BlueJ and DrJava, provide more
interactive features than the typical IDE, such as manual
invocation of methods on objects and interactive evaluation of
Java expressions. JPie takes this interaction further by
eliminating the need for a textual representation of the program.
Furthermore, using a fine-grain internal representation of
classes, JPie maintains global consistency throughout
development, and allows the program to be modified while it is
running.

Note that IDEs often do include a graphical user interface
(GUI) builder for “live” layout of graphical components, where
changes in relationships between the GUI and the underlying
data model are reflected instantly. However, such live
development applies only to certain aspects of the program. In
the end, a programmer must write the essential functionality of
the application in textual source code that is subsequently
compiled and run. Moreover, although they are helpful for
experienced programmers, GUI builders in IDEs can overwhelm
inexperienced programmers because completing the application
requires modifying computer-generated source code that
beginning programmers are likely to find confusing.

5.3. Visual Languages
Our approach in designing JPie was to raise the level of
abstraction by treating the programming process as an
application domain, amenable to the same human-computer
interface design principles that have been applied successfully to
other types of applications. Central to these principles is direct
manipulation of domain-specific entities. This is not a new idea.
Research in visual languages has produced many systems
supporting direct manipulation of program entities, but the
emphasis of that research has been on finding new ways to think
about computation that are particularly well-suited for visual
expression. Visual programming environments are typically
based on new languages (as opposed to being graphical front-
ends for existing languages), and they are generally based on
execution models that are deemed to be particularly well suited
for visual expression. These often provide a tight integration of
editing and program execution.

One of the most common visual language paradigms is
dataflow, in which data flows across “arrows” to trigger actions
performed in “boxes.” Examples include Show and Tell [8], one

Figure 10. Watching execution in the debugger.

 9

of the first dataflow languages designed to be accessible to
children; Prograph [7], which has been developed commercially;
Khoros [22], which has been targeted for image and signal
processing; and our own distributed application configuration
language [19]. However, dataflow is not the only visual
language paradigm. Forms/3 [5] introduces procedural
abstraction within a declarative programming spreadsheet
paradigm. ThingLab [4] uses a constraint-oriented paradigm to
support the construction of geometric models. Statecharts [16]
supports software development with a nested state-machine
paradigm. VIPR [6] uses arrows and nested rings to declare
program behavior with elements of object-oriented
programming. AgentSheets [23][24] provides a rule-based
paradigm for specifying how interacting agents gather and
process information. Stagecast (a commercial realization of
KidSim [9] and Cocoa [17]) uses a combination of rule-based
programming and programming-by-example to support children
in developing games and simulations on a graphics grid. Logo
[20], a well-known programming language for children, uses a
mixture of visual components and textual programming.

Among visual languages, Alice [21] has a visual
representation that is closest to JPie’s. Alice appeals to children,
who can use direct manipulation of program abstractions to
construct object-oriented applications based on 3D worlds. Alice
is not designed to support general-purpose programming, but
instead streamlines programming for the 3D graphics domain.
In Alice, objects are instantiated before the program runs in a
global object tree. Therefore, the “main” program, methods, and
event handlers refer to particular named instances.

Although it does not support editing of live programs,
Alice’s visual representation and user interface strictly enforces
program consistency. For example, when creating a method call,
Alice requires programmers to fill in required parameters as part
of the gesture. However, in doing so it places some limitations
on expressive power. For example, one cannot temporarily use a
variable of the wrong type as an actual parameter, even if one
intends to subsequently call a method on that variable to form an
expression of the correct type. Like JPie, Alice uses templates
for programming constructs. Drag-and-drop is used with
copy/paste semantics. Alice provides semantic regions to the
extent that a variable can be dropped into an expression to create
a reference to that variable, and a method can be dropped into a
statement to create a method call. Alice does not provide access
to an underlying general-purpose programming language.

In summary, JPie differs from prior work in visual
languages by simultaneously achieving several goals. First,
rather than create a new language, we chose to provide a visual
representation for writing sophisticated applications in a widely
accepted programming language. Second, we created an open
system that allows access to the full Java API and other
compiled classes, with interoperability and full polymorphism.
Finally, we provide capsules and semantic regions to support
live modification of running programs through atomic gestures.

6. CONCLUSION
JPie provides graphical representations of programming
language abstractions that expose the Java execution model and
make software development immediate and tangible. JPie
programmers directly manipulate the graphical representations to
effect changes in the running program. Many operations, such
as variable and method declaration and use, are accomplished by
drag-and-drop. Through dynamic classes, JPie has fine-grain

awareness of program structure and takes advantage of this
knowledge to constrain program editing, check and maintain
consistency, provide timely feedback, and eliminate the edit-
compile-execute cycle. JPie’s debugger uses the same graphical
representation to allow logical errors to be handled on the fly.

Under development since 1999, JPie has been used for
three semesters in Washington University CS123, a laboratory
course that introduces object-oriented software concepts to
undergraduate students without prior programming background
[10][15]. Using JPie’s visual representation, students are
introduced to object-oriented programming, and because the
course does not have the usual programming language learning
curve, by the end of the semester, the students are using JPie to
construct relatively sophisticated Java applications. For
example, in one assignment, students create an internet chat
application. Using only standard Java sockets, the students build
both the client and a multithreaded server.

We are currently working on additional features, such as
heap visualization and learning curve management, to enhance
JPie’s pedagogical value. Educators interested in using JPie in
the classroom are encouraged to contact the author or see the
JPie web site [13].

7. ACKNOWLEDGMENTS
I thank the following students for their contributions to the JPie
project: James Aguilar, Ben Birnbaum, Joel Brandt, Ben
Brinckerhoff, Vanessa Clark, Melanie Cowan, Asha Haji, Matt
Hampton, Dylan Lingelbach, Adam Mitz, Brandon Morgan,
Jonathan Nye, Sajeeva Pallemulle, Joyce Ann Santos, Richard
Souvenir, Ray Thomas, and Haraldur Thorvaldsson. I also thank
all the students who have taken CS123 for valuable feedback.
This work was supported in part by the National Science
Foundation under CISE Educational Innovation grant 0305954.

8. REFERENCES
[1] Eric Allen, Robert Cartwright, and Brian Stoler, “DrJava:
A lightweight pedagogic environment for Java,” 33rd SIGCSE
Technical Symposium on Computer Science Education, February
2002.
[2] David J. Barnes and Michael Kölling, Objects First with
Java: A Practical Introduction Using BlueJ. Prentice
Hall/Pearson Education (2003).
[3] Erich Gamma and Kent Beck, Contributing to Eclipse,
Addison Wesley, Boston (2004).
[4] A. Borning, The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Laboratory, ACM
Transactions on Programming Languages and Systems (1981),
vol. 3 pp.355-387.
[5] Margaret Burnett, John Atwood, Rebecca Walpole Djang,
Herkimer Gottfried, James Reichwein, and Sherry Yang
“Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm,” Journal of Functional
Programming, 11(2), 155-206, March 2001.
[6] W. Citrin, M. Doherty, and B. Zorn, Formal Semantics of
Control in a Completely Visual Programming Language, Proc.
of 1994 IEEE Symposium on Visual Languages, St. Louis,
(1994), 208-215.
[7] P.T. Cox, F.R. Giles, and T. Pietrzykowski, (1989).
``Prograph: a step towards liberating programming from textual
conditioning.'' 1989 IEEE Workshop on Visual languages, pp.
150-156.

 10

[8] T.D. Kimura, J.W. Choi, and J.M. Mack, “A visual
language for keyboardless programming.” Technical Report
WUCS-86-6, Washington University in St. Louis, June 1986.
[9] Allen Cypher and David C. Smith, "KidSim: End User
Programming of Simulations." In Proceedings of CHI, 1995
(Denver, May 7-11). ACM, New York, 1995, pp. 27-34.
[10] Kenneth J. Goldman, “A Concepts-First Curriculum for
Introductory Computer Science,” 35th SIGCSE Technical
Symposium on Computer Science Education, March 2004.
[11] Kenneth J. Goldman, “A Demonstration of JPie: An
Environment for Live Software Construction in Java,"
OOPSLA’03 Conference Companion, October 26-30, 2003,
Anaheim, California, USA.
[12] Kenneth J. Goldman, “An Interactive Environment for
Beginning Java Programmers,” Science of Computer
Programming, Special Issue on Practice and Experience with
Java in Education, Elsevier, 53 (2004) pp. 3-24.
[13] Kenneth J. Goldman et al., “JPie: Programming is Easy,”
http://jpie.cse.wustl.edu, July 2003.
[14] Kenneth J. Goldman, “Live Software Development with
Dynamic Classes,” submitted for publication.
[15] Kenneth J. Goldman, “Washington University CS123:
Introduction to Software Concepts,”

http://www.cse.wustl.edu/~kjg/cs123, January 2003.
[16] David Harel, “Statecharts: A Visual Formalism for
Complex Systems.” Science of Computer Programming,
8(3):231-274, June 1987.
[17] N. Heger, A. Cypher, and D.C. Smith, "Cocoa at the
Visual Programming Challenge '97." In Journal of Visual
Languages and Computing 9(2), 1998. pp. 151-169.
[18] Alan Kay, “The early history of Smalltalk.” In T.J. Bergin
and R.G. Gibson, eds., History of Programming Languages - II,
New York: ACM Press and Addison-Wesley Publishing Co.,
1996, pp. 511-578
[19] T. Paul McCartney and Kenneth J. Goldman. “Visual
Specification of Interprocess and Intraprocess Communication.”
In Proceedings of the 10th International Symposium on Visual
Languages (VL'94), St. Louis, MO, October 1994, pp. 80-87.
[20] Seymour Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books: New York, 1980.
[21] Randy Pausch, Tommy Burnette, A.C. Capeheart,
Matthew Conway, Dennis Cosgrove, Rob DeLine, Jim Durbin,
Rich Gossweiler, Shuichi Koga, Jeff White, Alice: Rapid
Prototyping System for Virtual Reality, IEEE Computer
Graphics and Applications, May 1995.
[22] J. Rasure and C. S. Williams, "An Integrated Visual

Language and Software
Development Environment,"
Journal of Visual Languages and
Computing, Vol. 2, 1991, pp
217-246.
[23] A. Repenning,
"Agentsheets: A Tool for
Building Domain-Oriented
Dynamic, Visual Environments,"
University of Colorado at
Boulder, Ph.D. dissertation,
Dept. of Department of
Computer Science, 1993.
[24] A. Repenning, "Creating
User Interfaces with
Agentsheets," 1991 Symposium
on Applied Computing, Kansas
City, MO, IEEE Computer
Society Press, 1991, pp. 190-196.
[25] Tim Teitelbaum , Thomas
Reps, The Cornell Program
Synthesizer: a syntax-directed
programming environment.
Communications of the ACM,
24, 9 (Sep. 1981), 563-573.

Figure 11. Deadlock visualization shows the threads and objects involved in a cycle.

	Capsules and Semantic Regions for Code Visualization and Direct Manipulation of Live Programs
	Recommended Citation
	Capsules and Semantic Regions for Code Visualization and Direct Manipulation of Live Programs

	tmp.1470340445.pdf.HgLDm

	Abstract: Abstract: JPie is a visual programming environment supporting live construction of Java applications. Class modifications, such as declaring instance variables and overriding methods, take effect immediately on existing instances of the class to encourage experimentation in an educational setting. Because programs are edited live, editing gestures must transform the program from one well-formed state to another, without intermediate ambiguous states. To accomplish this, JPie?s visual representation provides capsules, which represent logical code units, and semantic regions, which represent different aspects of a program. A capsule?s meaning depends upon its containing semantic region. Similarly, a gesture, which involves manipulation of a capsule, is interpreted on the basis of the semantic region in which it occurs. This paper describes how capsules and semantic regions visually expose the structure of JPie programs and support live program editing through natural atomic gestures.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: December 6, 2004
	Author: Authors: Goldman, Kenneth J.
	Title: Capsules and Semantic Regions for Code Visualization and Direct Manipulation of Live Programs
	ReportNumber: 2004-79
	DepartmentName: Department of Computer Science & Engineering

