View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-03

1989-01-01

Towards a Fully Parallel Reason Maintenance System

Rosanne M. Fulcomer and William E. Ball

A truth maintenance system (TMS) is an Al system used to monitor consistency of information
in a knowledge base. A TMS may be necessary when non-monotonic reasoning is used since
incorrect assumptions can lead to contradictory conclusions. The Reason Maintenance System
(RMS), a specific TMS first described by Doyle [5],[6], is used along with an inference engine (IE),
or problem solver, to maintain a consistent set of beliefs and inferences. We have developed a
parallel version of the RMS for correctly assigning IN or OUT states to each believe node [7].
This algorithm uses diffusing computation [4] to assign... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Fulcomer, Rosanne M. and Ball, William E., "Towards a Fully Parallel Reason Maintenance System" Report
Number: WUCS-89-03 (1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/716

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/716?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/

cse_research/716
Towards a Fully Parallel Reason Maintenance System

Rosanne M. Fulcomer and William E. Ball

Complete Abstract:

A truth maintenance system (TMS) is an Al system used to monitor consistency of information in a
knowledge base. A TMS may be necessary when non-monotonic reasoning is used since incorrect
assumptions can lead to contradictory conclusions. The Reason Maintenance System (RMS), a specific
TMS first described by Doyle [5],[6], is used along with an inference engine (IE), or problem solver, to
maintain a consistent set of beliefs and inferences. We have developed a parallel version of the RMS for
correctly assigning IN or OUT states to each believe node [7]. This algorithm uses diffusing computation
[4] to assign the status to a node. In this paper we will further parallelize the RMS by superimposing a
locking mechanism on the RMS to have simultaneous status assignment computations performed. Also,
we will address how contradiction handling can be executed in parallel and the effect on the RMS when a
parallel contradiction handler is incorporated.

https://openscholarship.wustl.edu/cse_research/716?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/716?utm_source=openscholarship.wustl.edu%2Fcse_research%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages

TOWARDS A FULLY PARALLEL
REASON MAINTENANCE SYSTEM

Rosanne M. Fulcomer
William E. Ball

WUCS-89-03

Department of Computer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

A shorter version of this paper appears in the proceedings of the 2nd International
Conference on Industrial & Engineering Applications of Artificial Intelligence &
Expert Systems, 1989.

This work was supported by the Center for Intelligent Computing Systems at Wash-
ington University.

Toward a Fully Parallel Reason Maintenance System*

Rosanne M. Fulcomer
William E. Ball

Department of Computer Science
Washington University
One Brookings Drive
5t. Louis, MO 61630

Abstract

A truth maintenance system {TMS) is an Al system used
to monitor consistency of information in a knowledge base.
A TMS may be necessary when non-monotonic reasoning
is used since incorrect assumptions can lead to coniradic-
tory conclusions. The Reason Maintenance System (RMS),
a specific TMS first described by Doyle [5],[6], is used along
with an inference engine (IE), or probilem sclver, to maintain
a consistent set of beliefs and inferences. We have developed
a parallel version of the RMS for correctly assigning IN or
OUT status to each belief node [7]. This algorithm uses dif-
fusing computation [4] to assign the status to 2 node. In this
paper we will further parallelize the RMS by superimposing a
locking mechanism on the RMS to have simultaneous status
assignment computations performed. Also, we will address
how contradiction handling can be executed in parallel and
the effect on the RMS when a parallel contradiction handler
ts incorporated.

1 Introduction

The Reason Maintenance System [5] [6] is a specific
type of truth maintenance system. Truth maintenance
systems are an important AT technology because they
can reason without complete information using assump-
tions and can revise beliefs as new information becomes
known. Belief revision is important in maintaining
consistency among the beliefs represented in the truth
maintenance system. Such a system can also maintain
dependencies between information and give reasons as
to why certain information is believed true. Perform-
ing this type of sequential reasoning is computationally
expensive.

In the next section, we will give a brief overview of
the RMS, which will include how status assignments and

*Supported by the Center for Intelligent Computing Systems,
Washington University, St. Louis, MO.

contradictions are handled. The problems of unsatisfi-
able circularities, nogood nodes, and conditional proof
justifications will be addressed. Also, in this section, we
briefly describe the solution developed by Petrie [1] to
avoid nogood nodes and conditional proof justifications.
In Section 3, an overview of a completed algorithm [§]
which correctly performs status assignment computa-
tion in parallel will be presented. In Section 4, we will
describe a way to increase the parallelism of the entire
system. Our proposed solution to handle contradictions
in parallel and its incorporation into the whole system
will be discussed in Section 5. Section 6 gives discussion
of related future work.

2 The Sequential Reason Main-
tenance System

2.1 Status Assignment in RMS

Inferences are passed to the RMS, which creates a node
for each belief and maintains the dependencies between
these beliefs. Each node in the RMS is assigned a status,
or label, of IN or OUT, where an IN label means the
node is believed to be true, and an QUT label means ei-
ther the truth value of the node is not known or the node
is not believed to be true. Associated with each node is
a set of justifications, which give reasons for the sta-
tus or label of the belief. Each justification, termed a
support-list (SL) justification, contains an INSET and
an OUTSET. An INSET contains those nodes which
must be believed in order for the node to be labeled IN.
An QUTSET contains those nodes which must not be
believed in order for the given node to be labeled IN.
A justification is valid if every node in its INSET is
labeled IN and every node in its QUTSET is labeled
OUT. If at least one justification in a node’s justifica-
tion set is valid, the node is labeled IN; otherwise the
node is labeled OUT. For each justification, there will

be only a single consequence. An assumption is a be-
lief having a supporting justification with a non-empty
OUTSET. A node which has an empty justification set
is always OUT.

We illustrate this labeling in Figure 1. Each letter is
a belief or node in the RMS. A justification is pictured
by the circle, in which edges from the letter to the circle
with a “+” mean that letter is a belief in the INSET
of the justification and those with a “” indicate the
letter is a belief in the OUTSET of the justification.
The arrow from the circle to a letter indicates the letter
is the consequent of that justification. Therefore, in
Figurel, A isin the INSET of the only justification for
B and in the OUTSET of the only justification for D.
C 1is in the INSET of the only justification for D. For B
to be IN, A must be IN and for D to be IN, A must be
OUT and C must be IN.

2

B D

Figure 1: Example of Structure

Problems arise in Doyle’s status assignment compu-
tation due to unsatisfiable circularities, which cause
infinite looping. An unsatisfiable circularity is shown in
Figure 2, in which B can be IN only if it is also OUT.

Figure 2: Unsatisfiable Circularity

In order to avoid the possibility of encountering un-
satisfiable circularities, some have restricted the RMS
to use only data without “odd loops” [3] [9]. An “odd
loop” is characterized by an odd number of OUTSETS
in a cycle, e.g. there is one “minus” present among all
the arcsin the cycle in Figure 2. We choose to not have
this restriction.

2.2 Contradiction Handling in the RMS

If the RMS receives information that certain nodes la-
beled IN cause a contradiction, it will create a contra-
diction node representing this information. If this con-
tradiction node remains IN after all status assignment
has been completed, dependency-directed backtracking
must be performed to find the set of maximal assump-
tions in the foundations of those nodes causing the con-
tradiction. Doyle’s algorithm creates what is called a
nogood node, which references those nodes causing the
contradiction. The nogood node is justified by a con-
ditional proof (CP) justification, which indicales which
contradiction node will be IN due to the status of cer-
tain nodes. To resolve the contradiction, a new justifi-
cation is created, which justifies an QUT belief which
caused one of the assumptions to be IN, so that the con-
tradiction node can be labeled QUT. The belief chosen
from the maximal assumption set is called the culprit,
A chosen node in the OUTSET of the supporting jus-
tification of the culprit is called the elective. It is the
elective that is the consequent of the newly created jus-
tification which causes the coniradiction node to have
OUT status. We illustrate this in the following example.

D, - f
O

x F O.........C
B~y

/
1 y +

Figure 3a: Notification of Contradiction

New Node: NOGOOD-X.Y
with CP-Justification: Censequent = C
INkypothesis = {X,Y}
OUThypothesis = {}
Status = IN

New Justification: Dj
with SL-Justifieation: INSET = {NOGOOD-X-Y,Y?}
OUTSET = {D, - {Dj}i
Status = IN

Figure 3b: Contradiction Resolution

Looking at Figure 3, we assurne the RMS has just
been notified that nodes X and Y cause a contradic-
tion. Let C be the contradiction node created. Using
dependency-directed backtracking, the RMS finds nodes
X and Y are the assumptions first encountered in the
foundations of C. The set {X,Y} is called the maximal
assumption set. From this set, a culprit is chosen, say
X, with OUTSET Dx, ie X is an assumption because
its supporting justification has a nonempty OUTSET.
One element, D; is selected from Dx and is called the
elective. Then D; is the node that is justified with a
new justification causing it to be IN. Because of D;’s
new status, U will be assigned an OUT status. This
justification has as its INSET the created nogood node
unioned with {Y} (or the rest of the assumptions in
the maximal assumption set without the culprit.) The
OUTSET of this justification contains the set Dx —D;
(or the rest of the OUTSET of X without the elective.)

2.3 Revision to RMS Contradiction
Handling

The use of nogood nodes and conditional proof justifica-
tions when handling contradictions causes problems in
parallelizing this mechanism. Particularly, the represen-
tations and creations of both the nogood node and the
conditional proof are difficult. As discussed later, our
parallel status assignment algorithms uses a represen-
tation for SL justifications that is not easily converted
to CP justifications. Nogood nodes pose the problem of
being created dynamically in the middle of the contra-
diction resolution. This will become more clear in the
following sections.

Both the nogoed node and CP justification create
problems in the sequential system, i.e. the CP justi-
fication must be emulated by a SI. justification for sta-
tus assignment computation which is expensive, and CP
Jjustifications restrict the instances in which the nodes
they support can be IN [5]. Though other systems us-
ing truth maintenance have attempted in correct this
problem, we have found that the changes that Petrie
proposes {1] 2] are the closest to what we expect from
the contradiction handler and these changes also aid the
parallelizing of the contradiction handler. In [1] can be
found a brief review of those other systems mentioned.

Petrie’s primary focus is to extend the capability of
justifications to provide simple explanations for the be-
lief of certain information, especially when the resoln-
tion of a contradiction contributes to the belief of that
information. His approach no longer makes use of either
the nogood node or the CP justification. Instead an SL
Jjustification is created for an existing node which will re-
solve a contradiction. The definition for the culprit and
elective are the same as carlier in the paper. But, Petrie

must redefine the term assumption to be a node with a
supporting justificaton with an OUTSET containing at
least one element which is not a contradiction.

Let C be the contradiction node. Dependency-
directed backtracking yeilds A, the set of maximal as-
sumptions. A belief P is chosen to be the culprit. Let D
be the OUTSET of the supporting justification of P. An
elective D; € D is chosen. To justify D; to be IN, a new
justification is created. The INSET of this justification
is the set consisting of, (A —{P}) |J I |J BI. The OUT-
SET is the set, {C} |J BO |J (D —{D;}), where I is the
INSET of P and BI and BO are respectively the IN and
OUT nodes required by Doyle for the SL justification
to implement the CP justification.

BI and BO are obtained as follows. Let F be the set
of all nodes in the foundations of C. Let R the set of
nodes in the repercussions of the elements of A (where
the repercussions of a node are formed by taking the
transitive closure of consequences for which the node
is a supporter.) Let T be the set antecedents of C,
and TR be the set of antecedents of the nodes in R.
Then some belief, N € BI, if N is IN and N € {FF
=A =R (T J TR)}. N € BO if the above holds
except N is OUT. Thus, a new justification is created
that is not a conditional proof justification to resolve
the contradiction.

1t is pointed out that this sclution may cause an un-
satisfiable circularity because of the addition of this new
justification for the elective, This will happend if an
element of this justification is contained in the transi-
tive closure of consequences of the elective, and if there
is now an “odd loop” containing that element and the
elective. If both of these conditions are satisfied, the
justification cannot remain in the system. A new elec-
tive is then chosen. If no new elective exists, a new
culprit is selected from the set of maximal assumptions.
If no such culprit exists, the contradiction cannot be
resolved.

Petrie extends his sequential contradiction handling
algorithm [2] to perform resolution without finding the
maximal assumption set. He also provides reasons for
the following changes in his reasoning mechanism. If an
elective of a culprit has no justification, then the above
solution is used. But if the elective has justifications
that are invalid because of the lack of justification for
another set of nodes, i.e. those in the OUTSET of the
elective’s invalid justification, then it is this set of nodes
that should be justified by contradiction resolution. For
simplicity, only Petrie’s initial changes will be addressed
in our parallel algorithm.

3 Parallel Status Assignments

‘We have developed a parallel version of the RMS for cor-
rectly assigning IN or QUT status to each belief node
[8]. This algorithm uses the method of diffusing com-
putation [4] to assign the status to a node according to
[6]. In this method we consider each belief node to be a
separate processor and a justification is represented as
a directed arc from antecedent to consequent (also see
[10] for the same general mapping.)

Diffusing computation is a method in which compu-
tation proceeds by passing messages in a finite, directed
graph of processors. A processor is activated only when
it receives a message. When a processor is activated, it
performs its calculations and sends the result in a mes-
sage to its successor, Termination can be detected by
having processors issue signals as replies to the messages
they have received.

The environment node is the node which receives
the justification from the inference engine (IE) or prob-
lem solver and initiates status assignment computation.
It does this by sending a message to the consequent of
the new justification, which is called the head node.
The head node and all other beliefs are considered to
be internal nodes. It is the environment that detects
termination of the computation by the receipt of a signal
from the head node. The head node issues this signal to
the environment when it has received signals to all mes-
sages which it has sent to its consequents. Information
can also be passed within these signals. We make the
restriction, that everything received in a signal even-
tually propagates to the head node. A successor node
(referring to a directed graph) is considered engaged if
it has received a message from a predecessor. A node
that is not engaged is in its neutral state. The first
predecessor that sends a message to a successor is called
the engager of that successor. Signalling from a succes-
sor to a predecessor is restricted so that the engager of
the successor receives the last signal from the successor
before the successor goes into its neutral state. A node
may go from neutral to engaged several times during a
single computation.

Status assignments can easily be performed in parallel
using this method except in the presence of an unsat-
isfiable circularity. Reassignment of status to the belief
nodes begins when the IE passes a new justification to
the RMS causing an OUT node to change to IN. We re-
quire that a node send its status to all of its consequents
if it receives a message which changes its status or, upon
receipt of a message, it sends its status to those conse-
quents involved with if on a cycle. The first requirement
is to compute the status assignments as the sequential
RMS does. The second requirement is necessary in such
a message passing scheme and will be explained below.

We have solved the problem of stopping the possi-
bly infinite nurber of status assignments made to each
node in the circularity, which caused non-termination
or false termination detection of the computation in a
first attempt [10], by creating a mechanism which makes
the node which detects the circularity be the only node
which reports the circularity to its engager. This same
node will report the presence of the cycle to the rest of
the nodes on the cycle. Each node must know that it
may be on an unsatisfiable circularity.

The problem with message passing is that a proces-
sor may be delayed in sending its status message. This
may cause a satisfiable cycle to look like an unsatisfiable
circularity. This is because the delayed processor may
change the status assignment of a node on the circular-
ity. This change may satisfy the circularity, leading to a
consistent set of status assignments for the nodes on the
circularity. If this occurs, the node which first detected
the circularity must be notified so that it can retract its
previous detection, by reporting the satisfiability of the
circularity to its engager. Notifying the detector node
can only be accomplished if all nodes on the circular-
ity are aware that this detector node exists. We force
nodes to be aware that they are on a cycle. Then, if they
receive another message, and follow the second require-
ment above, eventually the detector of the unsatisfiable
circularity will receive a message, causing it to report
that the cycle has now been satisfied. Of course, this
new message may not cause the cycle to be satisfied,
even though a report is given. But, eventually, its un-
satisfiable nature will be detected again and reported.
The head node will receive these reports and from them
can determine if an unsatisfiable circularity exists.

‘When this circularity problem arises, it is an indica-
tion that there is a problem with the beliefs and depen-
dencies among the beliefs within the inference engine.
If this occurs, all nodes involved in this diffusing com-
putation will be reset to the state they were in prior to
the computation, and the justification and belief nodes
involved in the circularity will be passed back to the
IE for handling. The full algorithm and its proof of
correctness can be found in [7].

4 Status Computation Using
Multiple Environments

In the above solution, only a single justification can be
processed at a time. In this section we will discuss how
multiple environment nodes can be used to allow dis-
joint stabus assignment computations to be performed
simultaneously.

To achieve maximum parallelism, multiple justifica-
tions must be handled in parallel. This requires the

RMS to process justifications as they arrive from the
IE, allowing multiple, separate status assignment com-
putations to occur simultaneously.

Instead of a single environment node, we propose to
allow some static number of environment nodes to be
present in the RMS, each of which can processan incom-
ing justification and initiate a status assignment com-
putation. In Figure 4, we are given that there are K
environment nodes, ey, €3, ..., e;. Each of these environ-
ment nodes can cormmunicate with each belief node.

g ho] “as €.

\ / /
AN

O@\OO——OO

Figure 4: Multiple Environment Nodes

To devise a scheme which divides the nodes among
the environment nodes so that little interference oc-
curs is much too costly, and would require the envi-
ronment nodes to communicate with each other, which
we would like to avoid. Also, since new justifications
can enter, creating new dependencies, a division scheme
would have to be dynamic in nature. But in the absence
of such a scheme a locking mechanism must be utilized.

The RMS will be restricted to report to the IE or
to give explanations only at quiesence or steady state
which is achieved when all environment nodes are not
active. An environment node is considered active when
it has initiated computation which has not terminated.
Any inactive environment node may receive information
from the IE or problems solver and begin computation
on that information.

To perform multiple status assignment computations,
a unique tag will be assigned to each environment node.
When an environment node initiates status assignment
computation by informing the head node of its new jus-
tification, its tag is included in the message. Wedefinea
node as being engaged under environment T if this node
was engaged by a message containing the unique tag for
environment T. Then, as long as a node is engaged un-
der a cerfain environment, it passes that environment’s
tag in all of its messages and cannot accept messages
from nodes engaged under a different environment.

Before we proceed to the details of the locking mech-
anism, we will illustrate the general restrictions on com-
munication with Figure 4. Let node B be engaged un-
der an environment with fag e, and node A be engaged
under an environment with tag e;. I node A sends its

status message to node C before node B (assuming that
messages arrive in the same order as they are sent), then
node C will be engaged under environment e;. Node C
is now restricted from receiving any message from any
sender with a different environment tag. If B attempts
to send its status to C, its message will not be received
by C, and B will be blocked from completing its com-
putation until C receives its message. B is only blocked
from completion, but can still send its status messages
to consequences not engaged under different environ-
ments.

4.1 Locking Mechanism

In this section we examine the problem of the above pro-
posal and show what extra constraints must be added
to achieve a correct solution.

We are given a static number of environments. The
purpose of each individual environment is to perform a
status assignment computation in a RMS dependency
graph. Cycles are allowed in the graph, and we know
that if status assignment is performed according to [8],
the computation by a single environment will terminate.
We consider this to be a single status assignment compu-
tation. It is possible for multiple environments to want
to engage the same node. This overlap can cause two
problems: deadlock may occur and consistency of the
dependency graph may be violated. We address these
problems in the above order.

In a single status assignment computation, there are
three types of messages sent out by the head node: the
“NIL” sweep, “label”, and “reset” messages. Unless
drastic changes are made in the status computation it-
self, no message type from one head node can overlap
a message type from another head node. Since during
the “NIL” sweep, the engagement tree under an envi-
ronment must consist of all reachable nodes from that
head node, all such nodes must be locked before the
“NIL” sweep messages are sent. These nodes must re-
main locked throughout the computation of status as-
signment. Once the receives its final signal the nodes
can be unlocked. Thus, the only way that two sta-
tus computations can be performed simultaneously is
if there is no link between any of the nodes in each
computation.

In the following solution, performing the locking re-
quires the environment nodes to have some type of or-
dering. We will allow the ordering to be determined by
the IE passing the justification to an environment and
giving the environment a tag, increased with respect to
the previous tags it has given. Then the ordering on the
environments will be determined by the environment’s
tag. If multiple environments are competing to lock
the same node, the environment with the smallest tag

is considered the oldest and receives the lock. Along
with showing that the problems above cannot occur, we
must be able to show that starvation of an environment
cannot occur under this ordering,

Reservation requests are sent out before locks. Each
parent node must receive acknowledgments that it has
reservations from all of its children before locking them.
Once all reservations are received from the child, the
parent can send out locks.

We will define three new types of messages “reserve”,
“lock”, and “cancel”. A parent sends out the reserve
messages and waits for a response of “yes”, the reserva-
tion is complete or “no”, the child cannot be reserved.
A “no” response requires the parent to send cancel mes-
sages to its children causing them to cancel the reserva-
tions they have from their successors under this parent’s
environment. If a child is reserved/locked under an en-
vironment, then the receipt of a message from a par-
ent under the same environment is acknowledged with
a “yes”. The receipt of a message from a parent under a
different environment is always held, even if a message
from that parent or another from the different environ-
ment exists. A reservation can be changed if a parent
from a higher priority environment attempts to reserve
the child. If the child has already acknowledge a lower
priority environment parent, then the higher priority
environment waits instead of cancelling.

The key to the lack of deadlock is that when com-
petition arises, the lower priority environment cancels,
while the higher priority waits,

The locks are released by the enviromment when it
detects that computation has terminated.

4.1.1 Starvation

By definition, starvation occurs if there is an environ-
ment ready to process an incoming Justification, but this
environment is never allowed to retain all of its neces-
sary locks.

To show lack of starvation, we must be able to show
that an environment that cannot receive its locks at
some point will eventually become the environment with
the highest priority, and having this priority will allow
it to eventually receive all of its locks.

We are given a static number of environments, say E.
Let environment e;, have the number i as its tag, and let
< be the ordering of the tags, such that if i,j € N, and
1 £ j then, i has a higher priority that j. At all times
there are a finite number of environments with lower
priority that e; and a finite number of environments
with higher priority than e;. Assume it is possible for
e; to be starved from retaining its necessary locks. By
construction of the algorithm, those environments with
greater priority competing with e; require ¢; to cancel

its previous reservations. Those environments with less
priority competing with e; allow e; to wait and get the
reservation as soon as it is available. Thus, eventually ¢;
will becomne the environment with the highest priority.

Since all other environments have lower priority, when
e; sends out requests for lock reservations, any beliefs
not locked immediately become reserved for e; and can-
not be taken away. As for those beliefs already locked,
e; will wait to receive them as soon as they are released.
Thus, no starvation can occur.

4.1.2 Consistency

To show consistency, we need to show that if we give a
belief two pieces of knowledge and the belief determines
its status to be IN(OUT) after this combined knowledge
has been processed, then if we present the knowledge in
any sequential order, the belief will still determine its
status to be IN(OUT).

Assume that the status of the belief as described
above is IN. Let the two pieces of knowledge be called
K; and K;. Let K; be the first piece of knowledge pre-
sented and K; be the second piece of knowledge pre-
sented. Then no matter what status the belief deter-
mines after K; is processed, the belief determines its
status as IN after K; is processed. We must show that
we can change the order of K; and K; and still receive
the same status.

Let the belief be called B. Assume B has a status of
IN before both I; and K; are processed. (1) If B has
a status of IN after K; is processed, then K; and K;
can be processed in any order. (2) If B has a status of
OUT after K;, then K; must have caused all the valid
Justifications of B to become invalid. If K is processed,
it must validate at least one of those justifications. The
justification that it validates to support B cannot be
made invalid by K;, otherwise it would never have been
valid by K;. Thus, K; and K; can be processed in any
order.

Assuming the same sequential ordering, let B has a
status of OUT before both K; and K; are processed. If
B has a status of IN after K; is processed, then K; and
XK; can be processed in any order. If B’s status remains
OU'T after K; is processed, then any changes K; made,
did not cause any justifications to become validd. But
K; caused some justification to become valid, either by
the changes it made alone, or the combined changes it
made with K;. Thus switching the ordering would not
change the ending status. Similar arguments apply with
B having a final status of OUT.

In the case of unsatisfiable circularities, the new
knowledge causing the unsatisfiability is thrown out,
and the net is set back to its original state prior to
the proeessing of that knowledge. Thus, we can simply

view the problem as one in which that knowledge never
existed.

4.1.3 Deadlock

Deadlock will occur if there exists a cycle of environ-
ments waiting on each other for their necessary locks.
Given that there are N environments and that we have
a cycle in which some number m, 2 < m < N, environ-
ments are waiting on each other. Because of the total
ordering placed on the priorities of the environments,
there is one environment with the highest priority and
one environment with the lowest priority. For conve-
nience, we can relabel the environments with tags from
1 to m, with the environment whose tag is 1 having the
highest priority. Now we can imagine a cycle of environ-
ments (with their tag as a subscript) as follows: ey, ¢;,
.y €5 61, 2 <1, < mand i# j, in which each environ-
ment is waiting to lock a belief{or beliefs) that its right
neighbor has. The environment e; has the highest pri-
ority. By construction of the algorithm, if e; attempts
to reserve a belief that e; has reserved, it will fail and
will cancel all other beliefs that it has reserved. The
environment e; has environment e;_; waiting on it so
ej—1 must have a higher priority than e;. So ej_; can
reserve all of its locks, which breaks the cycle.

5 Handling Contradictions in
Parallel

As stated earlier, using conditional proof justification
and nogood nodes poses problems for the both sequen-
tial algerithms and for parallelizing Doyle’s contradic-
tion handling mechanism. Thus we will attempt to par-
allelized Petrie’s contradiction resolution algorithm and
incorporate it into the parallel RMS. To begin, we must
extend the capabilities of the environment node. At the
same time, we wish to have the environment node main-
tain the same role in status assignment computation.
The IE sends the justification for a contradiction
node, which does not exist in the RMS. Upon receiv-
ing a justification for a contradiction the environment
creates a new contradiction node and supplies it with its
justification. This contradiction node is also an inter-
nal node. Af this point the environment must initiate
dependency-directed backtracking.

5.1 Finding the Maximal Assumptions

It is possible to find this set of assumptions by using 2
parallel graph search strategy initiated by the environ-
ment, starting at the contradiction node and continuing
(against the direction of the arcs) through the INSETs

of the supporting justifications of each node, until an as-
sumption is reached (using Petrie’s redefinition). Once
an assumption is reached, the search along that path
terminates and the assumptions and its OUTSET are
returned up the path.

Diffusing computation can be used to perform the
assumption search, in which each node that receives a
message determines if it is an assumption. If the node is
not an assumption, it sends messages to the members of
its INSET. Ifit is an assumption, it signals to its engager
that it is an assumption and returns itself and its QUT-
SET in the signal. All nodes that are not assumptions
will collect the pairs of assumptions and their OUTSET,
union them together as they are received in signals, and
send them in their signals to their engager. Eventu-
ally the contradiction node will send the set of pairs
which contain members of the maximal assumption set
and their OUTSETS to the environment. Though the
dependency directed backtracking will terminate, the
environment is still occupied with the handling of the
contradiction.

5.2 Choosing a Culprit and Justifying
an Elective

Once the environment node receives the set of assump-
tions, it randomly chooses one to be the culprit, and
from the culprit’s OUTSET it randomly chooses an elec-
tive. Next, a new justification is created to cause the
elective to be IN, according to the specifications given in
an earlier section. Since our parallel status assignment
terminates in the presence of unsatisfiable circularities,
and resets the nodes to their previous status, we can skip
the step to check the transitive closure of consequences
of the elective, and immediately perform parallel status
assignment with the elective as the head node in order
to change the status of the contradiction node to QUT,
Then if the new justification causes an unsatisfiable cir-
cularity, it will be ignored, and the environment will be
free to choose another elective if possible. If no new
electives or culprit with other electives can be chosen,
the contradiction cannot be resolved and the database
remains in a contradictory state.

5.3 Contradiction Handling Using Mul-
tiple Environments

Given the algorithms necessary to ensure that simul-
tanecus status assignment can occur, we hope to ex-
tend them to allow simultaneous contradiction handling
and intermixing of status assignment and contradiction
handling. Problems arise in simultaneous contradiction
handling because the environment performs most of the
computation in the contradiction handling and initiates

different types of computation. Thus, a node is not con-
stantly engaged under an environment and interference
can occur yeilding results that are incorrect. We believe
that the same or very similar locking mechanism can be
utilized if we immediately lock the contradiction node
before reserving any other nodes and give the environ-
ments handling contradictions an implicit higher prior-
ity over those environments only handling status assign-
ments. Then, none of the antecedents in the foundations
of the contradictions would be able to be reserved.

6 Discussion and Conclusion

The most obvious problems with this first attempt at
parallelizing the contradiction handler is that only two
steps can be easily parallelized, i.e. the dependency-
directed backtracking and the status assignment initi-
ated by justifying the elective. Also, the gathering of
the information for the new justification of the elective
is very diflicult to perform without repeated passes over
the network. These passes can only be done when they
do not interfere with other ongoing computation. Be-
cause we had hoped to exploit parallelism to a greater
degree, we are making a second attempt at paralleliz-
ing the contradiction handler which may diverge signif-
icantly from the sequential version.

The locking mechanism must also be improved to
handle contradictions and simple status assignment
computation. Another improvement is to have a dif-
ferent kind of priority ordering of the environments not
dictated by the IE, so the at multiple IEs can interact
with the RMS or one IE can send justifications simul-
taneously.

References

[1] €. J. PETRIE, J. Using explicit contradictions to
provide explanations in a tms. Tech. Rep. AI/TR-
0100-05, Microelectronics and Computer Technol-
ogy Corporation, November 1985.

[2] C. J. PETRIE, J. Extended contradiction resolu-
tion. Tech. Rep. AI-102-86, Microelectronics and
Computer Technology Corporation, March 1986,

(3] CHARNIAK, E., RIESBECK, C. K., AND McDER-
MOTT, D. V. Artificial Intelligence Programming.
Lawrence Erlbaum Associates, Hillsdale, New Jer-
sey, 1980,

[4] DuxsTrA, E., AND ScHOLTEN, C. Termination
detection for diffusing computations. Information
Processing Letiers 11,1 (1980).

[5] DoYLE, J. A truth maintenance system. Al 12, 3
(nov 1979), 231-272.

[6] DovLE, J. Some theories of reasoned assumptions,
an essay in rational psychology. Tech. Rep. CMU-
CS-83-125, Carnegie-Mellon University, May 1983.

[7] FuLCOMER, R., AND BaLL, W. Correct paral-
lel status assignments for the reason maintenance
system. Tech. Rep. WUCS-88-26, Washington Uni-
versity, 1988. Submitted for publication.

[8] FuLcoMER, R., AND BALL, W. Correct parallel
status assignments for the reason maintenance sys-
tem. In to appear 1989 Ini’l Joini Conference on
Artificial Intelligence (August 1989).

[9] GooDwiN, J. W. Watson: A dependency directed
inference system. In Proceedings of Non-Monotonic
Reasoning Workshop (oct 1984), American Associ-
ation for AI, pp. 103-114.

" [10] PeTRIE, C. J. A diffusing computation for truth

maintenance. In Proceedings of the IEEE Inter-
national Conference on Parallel Processing (1986),
pp. 691-695.

	Towards a Fully Parallel Reason Maintenance System
	Recommended Citation
	Towards a Fully Parallel Reason Maintenance System

	tmp.1459809062.pdf.BTqSF

