View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-61

2003-08-22

The Greedy pipe Toolset Manual (Version 1.0)

Seema Datar and Mark A. Franklin

Chip Multi-Processors(CMPs) are now available in a variety of systems. They provide the
opportunity to achieve high computational performance by exploiting application-level
parallelism within a single chip form factor. In the communications environment, network
processors (NPs) are often designed around CMP architectures and, in this context, the
processors may be used in a pipelined manner. This leads to the issue of scheduling tasks on
such processor pipelines. A tool and algorithm called Greedy pipe has been developed that
determines the nearly optimal schedules for such multiprocessor pipelines. The tool offers a
user friendly interface, with easily installable, portable and... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Datar, Seema and Franklin, Mark A., "The Greedy pipe Toolset Manual (Version 1.0)" Report Number:
WUCSE-2003-61 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1107

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1107

The Greedy pipe Toolset Manual (Version 1.0)

Seema Datar and Mark A. Franklin

Complete Abstract:

Chip Multi-Processors(CMPs) are now available in a variety of systems. They provide the opportunity to
achieve high computational performance by exploiting application-level parallelism within a single chip
form factor. In the communications environment, network processors (NPs) are often designed around
CMP architectures and, in this context, the processors may be used in a pipelined manner. This leads to
the issue of scheduling tasks on such processor pipelines. A tool and algorithm called Greedy pipe has
been developed that determines the nearly optimal schedules for such multiprocessor pipelines. The tool
offers a user friendly interface, with easily installable, portable and high-performance design. This report
contains a description of the Greedy pipe tool set (release1.0), including the tool retrieval, installation and
usage instructions.

https://openscholarship.wustl.edu/cse_research/1107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2003-61

The Greedypipe Toolset Manual (Version 1.0)

Authors: Franklin, Mark; Datar, Seema

August 22, 2003

Abstract: Chip Multi-Processors(CMPs) are now available in a
variety of systems. They provide the opportunity to achieve high
computational performance by exploiting application-level
parallelism within a single chip form factor. In the
communications environment, network processors (NPs) are often
designed around CMP architectures and, in this context, the
processors may be used in a pipelined manner. This leads to the
issue of scheduling tasks on such processor pipelines. A tool and
algorithm called Greedypipe has been developed that
determines the nearly optimal schedules for such multiprocessor
pipelines. The tool offers a user friendly interface, with easily
installable, portable and high-performance design. This report
contains a description of the Greedypipe tool set (release

1.0), including the tool retrieval, installation and usage
instructions.

Department of Computer Science & Engineering - Washington University in St. Louis

Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Washington
University in St.Louis

SCHOOL OF ENGINEERING
& APPLIED SCIENCE

The Greedypipe Toolset Manual (Version 1.0)
Seema Datar and Mark A. Franklin

Department of Computer Science and Engineering
Washington University in St.Louis, MO, USA
{seema,jbf}Qccrc.wustl.edu

Abstract

Chip Multi-Processors (CMPs) are now available in a variety of systems. They provide the
opportunity to achieve high computational performance by exploiting application-level paral-
lelism within a single chip form factor. In the communications environment, network processors
(NPs) are often designed around CMP architectures and, in this context, the processors may
be used in a pipelined manner. This leads to the issue of scheduling tasks on such processor
pipelines. A tool and algorithm called Greedypipe has been developed that determines the nearly
optimal schedules for such multiprocessor pipelines. The tool offers a user friendly interface,
with easily installable, portable and high-performance design. This report contains a descrip-
tion of the Greedypipe tool set (release 1.0), including the tool retrieval, installation and usage
instructions.

1 Introduction

The continuing increase in the logic and memory capacities associated with single VLSI chips
along with the growth in the networking infrastructure has resulted in the development of Network
Processors (NPs). Network processors are often combinations of Chip Multiprocessors (CMPs)
augmented with special purpose logic, dedicated to efficiently performing networking functions yet
flexible enough to respond to changes in protocol standards and functional requirements. Processors
within NPs are often arranged in a pipelined manner. Packets of information arrive from the
network and are classified and routed by a scheduler to one of a number of processor pipelines. A
packet after being routed to a pipeline, will invoke one or more of the applications associated with
the pipeline (e.g. routing, encryption, compression, etc.). After traversing the pipeline the packet
returns to the scheduler where it is typically be sent to a switch fabric for transmission to the next
node in the network.

Given a group of applications that have processor pipeline implementations specified as a series
of sequential tasks, these tasks need to be assigned to the processors in the NP pipeline such
that the system throughput is maximized. The tool and associated algorithm Greedypipe, obtains
optimal application task assignments for such pipelines in reasonable time. The algorithm employs
a greedy heuristic to schedule tasks derived from multiple application flows on pipelines with
arbitrary number of stages.

2 Pipeline Task Assignment Problem

Network processors typically have multiple input flows where each flow represents a connection
between designated source and destination in the network. Flows consist of a sequence of packets
that are separated in time. Each flow has certain characteristics and processing demands requiring

certain application algorithms to be applied to the successive packets associated with the flow. It

is assumed that the application algorithms consist of a series of sequentially ordered tasks and

implemented on a pipeline of identical processors. Each processor in the pipeline operates on a

packet, does some partial processing associated with the application (a particular task) and passes

the packet to the next processor in the pipeline. The flow’s processing requirements may have parts

common with other flows and may share the processing on one or more of the pipeline segments.
The N incoming flows can be represented as the set F' where

F:{Fla F2a F37 aFN}

with each incoming packet belonging to one of the N flows. The processing associated with each
flow packet can be partitioned into an ordered set of M; tasks, with Tj; corresponding to the
application requirements of the flow where i and j respectively designate the task and flow number.
Thus, for flow j:

T = (Tuyj, Tzj, Tsj - ;Thazs)
Each task belonging to a flow has a processor execution time given by:
tj = {tlja tgj, athj} where] =1to N.
The pipeline itself consists of R identical processors:
P:{P17P2a Ps, ... aPR}

The task allocation or assignment problem consists of mapping the full set of tasks onto the
P processors of a pipeline in a manner that preserves task ordering within a flow and optimizes a
given performance metric.

The following additional constraints also apply:

e The assignment process must maintain sequential task ordering.
e A task may only be assigned to a single processor.

e In situations where the same task is associated with multiple flows, there will be a single
instantiation of the shared task and it will be assigned to a single pipeline stage. If this
constraint for shared tasks is not desired, the tasks should be given different names.

3 Performance Metrics

The above defines the set of possible legal assignments. To determine an optimal assignment out
of this set it is necessary to specify a performance metric. The metric of interest in the network
processor environment relates to maximizing pipeline throughput (i.e., maximizing the number of
packets per second that can flow through the pipeline).

We consider the case where there are one or more flows, flows that may share tasks, and a single
pipeline. Assuming that the pipeline is synchronous (i.e., clocked), the clock period will be based
on the time associated with the maximum stage execution time where that maximum is determined
by the tasks assigned to each stage. The execution time for a single flow j, on a given stage k is
given by:

M

sjk = D Xijitij (1)
=1

where X;;p=1 if the task is assigned to a stage and X;;;,=0 otherwise.
The maximum stage execution time for flow j across all the R stages is:

M;
R

T; = max[tj,| = max > Xijti (2)
= =1

while the maximum stage execution time over all flows and stages is given by:

M;
N N R
T — maxT: = ma Xiiptss
a7y = max | ypax) > Xijeti 3)

To maximize packet throughput, the problem becomes one of finding a task assignment that
minimizes 7' in Equation 3 since packet throughput = 1/T.

The next section describes application of the Grredypipe tool to different system configurations
to obtain the optimal task allocation.

4 Example

To illustrate the operation of Greedypipe, we present a few examples with increasing complexity.
The first example considered is a simple single flow system that has five tasks to be assigned to a
three stage pipeline. The task details are as given in Table 1.

‘ ‘ Task 1 ‘ Task 2 ‘ Task 3 ‘ Task 4 ‘ Task 5 ‘

Flow 1 - Task Ids T1 T2 T3 T4 T5
Task Execution Times | 2 4 3 1 3

Table 1: A Single Flow with five ordered tasks

The task Ids are represented using the notation 7; where 7 identifies a unique task. Figure 1
shows one of the possible assignments and the optimal allocation using Greedypipe.

Possible Allocation

Packet Input Packet Output
et | m - T2 T3, T4, TH———o coKELOUR
P1 P2 P3
Throughput
Execution Time 2 4 3+1+3 =7 T = 1/MAX{2, 4, 7}
Per Stage =1/7

Optimal Allocation Using Greedypipe

Packet Input Packet Output
— T1,T2 - T3,T4 - 5 ——=
P1 P2 P3
Throughput
Execution Time 2+4=6 3+1=4 3 T = 1/MAX{6, 4, 3}
Per Stage =1/6

Figure 1: Example - Single Flow

The system throughput with the assignment using Greedypipe (Figure 1) is the same as is
obtained if one performed a complete enumeration of possible assignments and picked the best one.

Next, we consider a case of increased complexity with two flows and a task shared (Task T3)
between the two flows. The tasks in these two flows (see Table 3) need to be allocated to a pipeline
with three processors stages so that the shared task gets executed only on a single processor while
still maintaining the task ordering associated with each of the flows.

‘ ‘ Task 1 ‘ Task 2 ‘ Task 3 ‘ Task 4 ‘ Task 5 ‘

Flow 1 T1 T2 T3 T4 T5
Task Execution Times | 5 4 3 1 3
Flow 2 T6 T3 Tg Tg

Task Execution Times | 5 3 4 2

Table 2: System configuration with Two Flows

Figure 2 shows one of the possible assignments and the optimal allocation using Greedypipe.

Possible Allocation

Packet Input Packet Output
PR TLT2T6 - T3T8 | TATST |
P1 P2 P3
Execution Time 5+4=9 3 143=4 Throughput

Per Stage For F1

Execution Time
Per Stage For F2

T = 1/IMAX{9, 3, 4,5, 7, 2}
3+4=7 2 =1/9

Optimal Allocation Using Greedypipe

Packet Input Packet Output
—| T1,T6 — T2,T3,T8 |—=| T4,T5,T9 —=
P1 P2 P3
Execution Time 5 4+3=7 1+3=4 Throughput
Per Stage For F1

T=1/MAX{5,7,4,5,7, 2}
Execution Time 5 3+4 =7 2 =1/7

Per Stage For F2
Figure 2: Example - Two flows with a shared task

In the above example, due to the presence of a shared task T3, all the tasks before T3 in both
the flows need to get executed on or before the processor stage (P») that T3 is assigned to. Again,
the system throughput with the assignment using Greedypipe is the same as obtained using the
complete enumeration of possible assignments.

5 Greedypipe Toolset

The Greedypipe tool uses an algorithm based in part on a greedy algorithm and thus does not
guarantee an optimal solution, though it obtains an effective allocation quickly. Experimental
results indicate that over a wide range of conditions 95% of the time, Greedypipe obtains schedules
within 10% of optimal. The tool has been written using the C programming language. The
installation comes in the form of a tar file called greedypipe.tar. To install the tool, extract
the tar file and run the make command to build the binary greedypipe. The tool is enabled to
accept the input parameters at the command prompt or as a configuration file to be placed in
the same directory as the executable. To obtain the Greedypipe Toolset, e-mail your requests to
seema@ccrc.wustl.edu or jbf@Qccrc.wustl.edu.

5.1 Usage
The following command needs to be issued at the command prompt to run the Greedypipe tool
$ greedypipe

Greedypipe accepts the following command line arguments:

default prints the help message
-f reads the parameters from a configuration file named config.tzt
-C gets the input parameters from the command line

Table 3: Command Line Options For Greedypipe

The input parameters to be provided to the tool are the number of processor stages, the number
of probable flows in the system and the task details for each of the flows.

5.1.1 Command Line Format

The input parameters to Greedypipe can be provided through the command line by using the
following command

$ greedypipe -c

On issuing the above command the user is prompted to enter the system configuration interac-
tively as shown in Figure 3.

The entries in bold are the user entered values. The tool expects an integer value to be entered
for the number of processor stages, the number of flows and the number of tasks in flows. The
minimum integer value for all the entities can be 1. The task details pertaining to each flow are
entered in terms of task Ids and their respective execution times as

Taskldy = Execution Timey, Taskldy = Ezxecution Times,....

The task Ids need to have the format Task{zzz} where 'xxx’ is a unique integer identifying the
task. The task Id can also be represented using a short-hand notation as T{zzz}. The execution
time could be any decimal number to a precision of 6 decimal places. The order of the entered
tasks also implies the sequence in which the tasks need to be executed for a flow. After getting
all the system configuration parameters, the tool computes the optimal allocation and displays the
task assignments for the pipeline. All the entries on the command line are case insensitive.

Please enter the number of stages in the pipelBe :
Please enter the number of flows in the systen2 :
Please enter the number of tasks in Flow -1 2 :

Please enter the task Ids in Flow — 1 with the corresponding execution times
(e.g. Task1=3.4,Task2=5.4,Task3=9.4)
Task1=2.3, Task2=4.5

Please enter the number of tasks in Flow -2 2 :
Please enter the task Ids in Flow — 2 with the corresponding execution times
(e.g. Task1=3.4,Task2=5.4,Task3=9.4)

Task3=6.2,Task4=8.0

Figure 3: Sample - Interactive Command Line Option

5.1.2 Configuration File Format

The input parameters to Greedypipe can alternatively be provided through a configuration file,
config.txt, by executing the following command

$ greedypipe -f

The configuration file should be placed in the same directory as the Greedypipe executable.
The configuration file contains the system configuration details like the number of processor stages,
the number of flows in the system, and the task details for each of th flows including their execution
times. Following is a sample format of the configuation file.

System Configuration File
Number of Stages = 3
Number of Flows = 2

Task Details for Flows

Each Task Identifier should be represented with a 'Task’ appended

by a unique integer associated with the Task Id

The Task Identifiers and the corresponding execution times for a Flow
should be represented as

Flow[Integer]:Task[Integer]=Task Execution Time,

Task[Integer]=Task Execution Time, ..
Task Description for each Flow should be entered on a separate line
Example :

Flowl:Task1=3.0,Task2=4.0,Task3=5.3
Flow2:Task4=2.3,Task5=7.4,Task6=6.5

Flow2:Task4=2.34367, Task5=7.4,Task6=6.5
Flowl:Task1=3.1,Task2=4.2,Task3=5.3

Figure 4: Sample - Greedypipe Configuration File

The contents of the file are not case sensitive. The lines in the file starting with the character
'#’ are considered to be comments. The system description primarily consists of three entries.

e The system description begins with the Number of Stages which denotes the number of pro-
cessor stages in the pipeline and expects an integer value to be entered after the '=" delimiter.

e The second entry in the file is Number of Flows that needs an integer index specifying the
number of flow classifications in the system, to be entered following the '=" delimiter.

e The third entry is a section in itself specifying the task details for each of the flows.

Each entry depicting the details for each flow should be entered on a new line and should comply
with the following format.

Flowldy:Taskld,=Fzecution Timeq, T asklds=FEzecution Times,..

The flow identification needs to be entered in the format Flow{zzz}, where 'xxx’ represents the
unique integer identifying the flow. The flow Id can also be represented using a short-hand notation
as F{zzz}. The flow identification is followed by the task identifiers with the respective execution
times for each task. The sequence of task entries in a flow entry represents the order of execution
of the tasks. If the task details for a flow cannot be entered on a single line, they should be entered
on a new line in the following format.

Flowld:Taskld,=FEzecution Timer,Taskldo=FEzecution Times,..
Flowld:Tasklds=FEzecution Times,Taskldy=FEzecution Timey,..

5.1.3 Output Format

Given a set of input parameters for the system configuration, the Greedypipe tool determines and
displays the optimal task assignments for the pipeline. Figure 5 shows a sample output format.

Greedypipe Allocation

Processor 1: Taskl Task6

Processor 2 : Task2 Task3 Task8
Processor 3: Task4 Task5 Task9
Pipeline Throughput = 1/7.000000 = 0.1428

Figure 5: Sample - Greedypipe Tool Output

The displayed output (Figure5) shows the tasks allocated to each processor stage and also the
throuput of the system for the given allocation.

6 Greedypipe Example

This section gives complete examples of execution of the Greedypipe tool using both the command
line option and the the configuration file option. The first example being considered has a system
configuration with 3 processor stages and two flow classifications. The applications for the first flow
are pipelined into two tasks while those for the second flow have been pipelined into three tasks.
Figure 6 shows all the steps of the Greedypipe tool execution when the above system configuration
information with the execution times for the slots is entered interactively through the command-
line.

Input Paramaters

Please enter the number of stages in the pipeline : 3

Please enter the number of flows in the system : 2

Please enter the number of tasks in Flow — 1 12

Please enter the task ids in Flow — 1 with the corresponding execution times
(e.g. T1=3.4,T2=5.4,T3=9.4)

T1=2,T2=3.4,T3=5

Please enter the number of tasks in Flow — 2 :3
Please enter the task ids in Flow — 2 with the corresponding execution times
(e.g. T1=3.4,T2=5.4,T3=9.4)

T4=6,T5=1.2,T6=4

System Configuration

Flow 1 - Taskl Task2 Task3
Execution Time — 2.000000 3.400000 5.000000
Flow 2 - Task4 Task5 Task6

Execution Time - 6.000000 1.200000 4.000000
Greedypipe Allocation

Processor =1 : Taskl Task4
Processor =2 : Task2 Task5
Processor = 3: Task3 Task6

Pipeline Throughput = 1/6.000000 = 0.1667

Figure 6: Sample - Greedypipe Tool Interactive Execution

The next example being considered has the input parameters provided through the configuration
file. The pipeline has three processor stages and two flows. The applications in the first flow are
pipelined into five tasks while those in the second flow are pipelined into four tasks. Figure 77
shows the contents of the config.tzt file that describes the pipeline configuration details for the
Greedypipe tool.

System Configuration File
Number of Stages = 3
Number of Flows = 2

Task Details for Flows

Each Task Identifier should be represented with a 'Task’ appended

by a unique integer associated with the Task Id

The Task Identifiers and the corresponding execution times for a Flow
should be represented as

Flow[Integer]:Task[Integer]=Task Execution Time,

Task[Integer]=Task Execution Time, ..
Task Description for each Flow should be entered on a separate line
Example :

Flowl:Task1=3.0,Task2=4.0,Task3=5.3
Flow2:Task4=2.3,Task5=7.4,Task6=6.5

Flowl:Task1=5,Task2=4,Task3=3,Task4=1,Task5=3
Flow2:Task6=5,Task3=3,Task8=4,Task9=2

Figure 7: Example - config.txt

Figure 8 shows the allocation generated by Greedypipe for the above system configuration.

System Configuration

Flow 1 - Task1l Task2 Task3 Task4 Task5
Execution Time — 5.000000 4.000000 3.000000 1.000000 3.000000
Flow 2 - Task6 Task3 Task8 Task9 9

Execution Time - 5.000000 3.000000 4.000000 2.000000
Greedypipe Allocation

Processor =1 : Taskl Task6
Processor =2 : Task2 Task3 Task8
Processor = 3: Task4 Task5 Task9

Pipeline Throughput = 1/7.000000 = 0.1428

Figure 8: Example - Greedypipe Tool Output

More information regarding the employed Greedypipe algorithm can be found in the Technical
Report Task Scheduling of Processor Pipelines with Application to Network Processors (Technical
Report #WUCSE-2003-60), Washington University in St.Louis, Department of Computer Science
and Engineering.

	The Greedy pipe Toolset Manual (Version 1.0)
	Recommended Citation
	The Greedy pipe Toolset Manual (Version 1.0)

	tmp.1471023011.pdf.c9YFO

	Abstract: Abstract: Chip Multi-Processors(CMPs) are now available in a

variety of systems. They provide the opportunity to achieve high

computational performance by exploiting application-level

parallelism within a single chip form factor. In the

communications environment, network processors (NPs) are often

designed around CMP architectures and, in this context, the

processors may be used in a pipelined manner. This leads to the

issue of scheduling tasks on such processor pipelines. A tool and

algorithm called Greedypipe has been developed that

determines the nearly optimal schedules for such multiprocessor

pipelines. The tool offers a user friendly interface, with easily

installable, portable and high-performance design. This report

contains a description of the Greedypipe tool set (release

1.0), including the tool retrieval, installation and usage

instructions.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 22, 2003
	Author: Authors: Franklin, Mark; Datar, Seema
	Title: The Greedypipe Toolset Manual (Version 1.0)
	ReportNumber: 2003-61
	DepartmentName: Department of Computer Science & Engineering

