Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-20

1988-06-01

The Mathematics of Directed Specifications

Jan Tijmen Udding and Tom Verhoeff

In this paper we lay a mathematical foundation for processes that communicate via directed
communication channels. We start from a collection of primitive specifications. Particular
correctness concerns partition this collection into equivalence classes, which can serve as
abstract specifications. The theory is illustrated by taking as correctness concern absence of
computation interference. In this case the abstract specification space can be identified with the
space of delay-insensitive specifications.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Udding, Jan Tijmen and Verhoeff, Tom, "The Mathematics of Directed Specifications" Report Number:
WUCS-88-20 (1988). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/777

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/777?utm_source=openscholarship.wustl.edu%2Fcse_research%2F777&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

THE MATHEMATICS OF DIRECTED
SPECIFICATIONS

Jan Tijmen Udding and Tom Verhoeff

WUCS-88-20

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

The Mathematics of Directed Specifications

Jan Tymen Udding

Department of Computer Science
Washington University
Campus Box 1045
St. Louis, MO 63130

Tom Verhoeff*

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands

June 1988

Abstract

In this paper we lay a mathematical foundation for processes that
communicate via directed communication channels. We start from a
collection of primitive specifications. Particular correctness concerns
partition this collection into equivalence classes, which can serve as ab-
stract specifications. The theory is illustrated by taking as correctness
concern absence of computation interference. In this case the abstract
specification space can be identified with the space of delay-insensitive
specifications.

*Currently on leave of absence at Department of Computer Science, Washington Uni-
versity, Campus Box 1045, St. Louis, MO 63130.

CONTENTS

2

Contents

0 Introduction
00 Research Context,
0.1 OVeIVIEW o vttt i e e e e e e e e

1 The Games
1.0 The Synchronous Game
1.1 The Asynchronous Game
1.2 The Correctness Concern oo v
1.3 Equivalence e

2 Analysis of the Synchronous 2-Person Game
2.0 Thepartialorderon 7,
2.1 7T asa Complete Lattice
2.2 The Empty Directed Trace Structure

3 Delay-Insensitive DTS’s

4 Isomorphic Specification Domains

5 Analysis of the Asynchronous 2-Person Game
5.0 Safe Reachable Game Vectors
5.1 Absence of Computation Interference
5.2 Satisfaction and Equivalence
53 TheSubspace Da . . . v v v v v v i v i it e e e

8 Composition

7 Concluding Remarks

8 Acknowledgements

10
11
15
17

17

22

30
31
32
35
37

43

46

48

0 Introduction

0.0 Research Context

The research reported in this paper springs from an interest in the design
of mechanisms that communicate with their environments. Ideally, design
starts with some form of initial specification and works its way towards a
final implementation that satisfies the specification in a certain sense. We-
shall be concerned with the logical part of the design trajectory. In this case,
the implementations we strive for are abstract networks of communicating
processes that operate concurrently. The translation into physical circuitry
is not addressed.

There is no general agreement on the semantics for systems with con-
currency. The formalism CSP [1], for instance, is based on a symmetric
(or undirected) synchronous communication primitive. The participants in
a communication action all complete it at the same step (synchrony) and
none will proceed until all partners are ready to engage in it (symmetry).
Physics, however, does not provide phenomena to implement this type of
communication directly on the circuit level. Therefore, it is more natural to
consider asymmetric (or directed) asynchronous communication primitives.
In this case, for each communication taking place there is an initiating party,
which sends a signal to other parties regardless of their readiness (asymme-
try). Each party is free to complete its part of the communication action
before the others do so (asynchrony). This type of communication corre-
sponds more closely to how physical systems influence each other’s behavior.
It is the designer’s responsibility, however, to guarantee that the receiving
ends are ready to process communications initiated by others.

The theory of directed specifications that we develop in this paper is
mathematical in the usual ways. It is formal in that it tries to isolate, and
where possible eliminate, intuition and empirical aspects. We are aware of
the fact that the link with physics needs attention, but we shall ignore that
issue here. It is abstract in that it transcends concrete applications, such as
electrical communications in VLSI circuits. Nevertheless, it may be helpful
to keep a particular interpretation in mind. It is concerned with foundational
security in that we start with the very basics and carefully built up from
there. Furthermore, the development of our theory for directed specifications
uses the method of structural enrichment and subsequent abstraction from
equivalence, which is often encountered in mathematics.

To illustrate this method we outline the key steps in the development of

4 0 INTRODUCTION

number systems in mathematics. There, one starts, for example, with the
set of natural numbers and the addition operator. Then it is noticed that
certain “numbers” (viz. negative) are missing. Therefore, a new domain
is created that is sufficiently rich to contain the objects with the desired
properties, say, the set of pairs of natural numbers, representing their dif-
ference. Also a new addition operator is defined for this enriched domain.
It turns out, however, that the new domain is too large and that certain
distinct objects are equivalent for the intended purposes. The extended set
of “numbers” is now obtained by abstracting from the equivalence. For in-
stance, the set of integers is obtained as the set of equivalence classes of pairs
of natural numbers. It is often interesting to find sets and operators that
are constructed differently but that are isomorphic to the new domain to
gain more insight in its structure. The cycle repeats itself from here, since
the new number system may serve as the basis for further extensions along
the same lines.

Specification domains can be constructed in a similar way. We start with
a rich set of implementation-like objects obtained from primitive specifica-
tions. Then we define an equivalence based on some correctness concern, for
instance, absence of computation interference. This resembles testing equiv-
alence of [0]. The new abstract specification domain consists of the resulting
equivalence classes. The cycle is repeated by incorporating other correct-
ness concerns that call for more refined specifications. A similar hierarchical
development of specification domains can also be found in [2].

We shall not be concerned with engineering applications in this paper.
Our conviction is that we need a good foundation first. We should be care-
ful not to introduce the analogon of the Roman numerals for engineering
purposes.

0.1 Overview

This paper does not present a complete theory. Its intention is to exemplify
the general paradigm. In section 1 we define two games. They capture the
operational semantics for our primitive specifications. In both games the
communications are directed. One game deals with synchronous communi-
cation, the other with asynchronous communication. Section 2 analyzes the
two-person. version of the synchronous game. It gives rise to an important
partial order on directed specifications. Sections 3 proves some properties of
this partial order when applied to the delay-insensitive specifications of [3].
Twoisomorphic domains of directed specifications are presented in Section 4.

The two-person version of the asynchronous game is analyzed in Section 5.
It shows that delay-insensitive specifications can be obtained as equivalence
classes of directed specifications induced by absence of computation interfer-
ence. Section 6 makes a first attempt at introducing a parallel composition
operator for our specifications. Finally, in Section 7 we look back at what
we have accomplished and what needs to be done in the future.

1 The Games

In this section we define two games that play a key role throughout this
paper. One is called the synchronous game and the other one is called the
asynchronous game. Both are modifications of the game underlying the
operational semantics of CSP [1]. We start out with a number of notions
and definitions.

Throughout this section we assume {2 to be a set of symbols. An alphabet
is a subset of . For alphabet A, A* denotes the set of all finite-length
sequences over symbols in A. A trace is an element of 2* and a trace set is
a set of traces. Concatenation of traces is denoted by juxtaposition and the
empty trace is denoted by «.

Definition 0 Trace s is said to be a prefix of trace ¢, denoted by s < ¢,
when (Ju :: su = ¢t). Trace set S is said to be prefix-closed when

(Vs,t:8<tAt€S:5€95)

O

Definition 1 Projection, denoted by [, of a trace on alphabet A is defined

by
e[A = ¢, and for trace s and symbol g,
(sa)fA = s[A ifadgA,
(sa)[A = (s[A)e ifac€ A

For trace set S and alphabet A, S[A is defined as {s: s € §: s[A}. O

Definition 2 The length of trace ¢, denoted by £(¢), is the number of
symbols in . The number of symbols ¢ in trace ¢, denoted by #.,t, is

L(t[{a}).]

6 1 THE GAMES

Definition 3 A directed trace structure, or DTS, is a triple consisting
of an input alphabet, an output alphabet and a prefix-closed trace set. For
DTS S, the input alphabet is denoted by 15, the output alphabet by oS,
and the trace set by t5. The input and the ocutput alphabets are disjoint
subsets of 2, and t5 C (i5 U 0S5)*. The alphabet of 5 is iS5 U oS and is also
denoted by aS. O

Note 0 Not requiring the frace set of a DTS to be non-empty seems
awkward at first. In the section on composition the crucial role of the empty
DTS will become clear. O

Rather than saying that a trace belongs to the trace set of a DTS we usually
say that it belongs to that DIS. In the same vein, we usually say that
symbol a is an input or of type input in DTS S when we mean a € 15. Also,
by the input alphabet of a collection of DTS5’s we mean the union of the
input alphabets of its elements.

Definition 4 The reflection of DTS S, denoted by §, is the trace struc-
ture T with
iT=0S5,0T =18, and tT = tS.
O

Definition 5 The weave of a collection X of DTS’s, denoted by wX, is
the trace set

{s:se(US:5€eX:aS)"A(VS:5€ X :s[a5€8):s}.
O

Definition 6 A collection X of DTS’ is said to be closed, denoted by
clX, when
US:5eX:if)=(US:5€X:05)A
(VS,T:5Te XAS#£T:15niT =o05NnoT = §).
0

Every symbol in a closed collection of DTS’s occurs once as an outpuf sym-
bol and once as an input symbol of a DTS. The definition of a closed col-
lection could have been more general so as to allow DT5’s to have common
input symbols. We decided not to do so for reasons of clarity of exposition.
For example, if X is a collection of DT5’s then all U’s with the property that
cl(X U {U}) holds have equal input alphabets and equal output alphabets.

1.0 The Synchronous Game 7

1.0 The Synchronous Game

Given is a closed set X of DTS’. The synchronous game is played on a
game vector v of traces, one trace for each member S of X, denoted by v.5.
A move consists of choosing a DTS in X, say §, and a symbol, say a, such
that ¢ € 05 and (v.5)a € S and replacing those traces .7 by (v.7)a for
which e € aT. One move changes two traces in the game vector. The game
starts with the vector that has £ in all of its components. A game vector
is called reachable when it can be reached by a sequence of moves from the
initial game vector.

When playing the game we start at the initial vector and move from
one reachable game vector to another. Each move extends two traces with
a certain symbol. We can record the execution of a particular game, by
writing down from left to right and starting with the empty trace, those
symbols that the traces of the game vector are subsequently extended with.
We define the set of game traces as the set of the finite-length traces that
can be brought about in this way.

The weave of a closed collection X of DTS’s is related to the set of all
reachable game vectors in the following way. For any trace ¢ in wX the
game vector v defined by .5 = tfa$ for all § € X is reachable. Moreover,
the set of game traces contains wX as a subset.

1.1 The Asynchronous Game

The only difference between the synchronous and the asynchronous game is
the definition of a move. In the asynchronous game each move changes one
trace in the game vector. A move is either an output move or an input move.
An output move consists of choosing a DTS in X, say 5, and a symbol, say
a, such that @ € oS and (v.5)a € 5 and replacing v.5 by (v.5)a in the
game vector. An input move consists of choosing a DTS in X, say §, and
a symbol, say a, such that (37 : T € X : #,v.07 > #,v.5), and replacing
v.8 by (».8)a in the game vector. Notice that ¢ € 15 when this condition
holds. Also, if a game vector is reachable in the synchronous game then it
is reachable in the asynchronous game by twice the number of moves.

1.2 The Correctness Concern

We want to define correctness criteria for the execution of a game on the
union of two collections of DTS’ X and U. One collection is generally
interpreted as a set of modules and the other collection is viewed as the

8 1 THE GAMES

environments of these modules. For this pair of collections we want a certain
correctness predicate P(X,U) to hold. This induces the sat-relation as
follows. Specification X satisfies specification Y, or is at least as good
as Y, when P(X,U) holds whenever P(Y,U) holds for all collections of
environments U.

Definition T For correctness concern P and for collections X and ¥ of
DTS’s we say that X satisfies Y, denoted by X sat Y, when

(YU : P(Y,U) : P(X,U)).
()}

Property 0 The relation sat is a pre-order, that is, it is reflexive and
transitive. 0

Generally, P(X,U) is the conjunction of a number of predicates. One of
these predicates will always be that X U U is a closed collection, so that
modules and environments “hook up” to one another correctly. Throughout
the rest of the paper we choose as our additional correctness concern absence
of computation interference, which is defined in the following way.

Definition 8 A closed collection X is said to have absence of computation
interference when all reachable game vectors are safe. A game vector v is
safe when (VS : § € X : v.§5 € §5). We denote the predicate that X is
closed and has absence of computation interference by nsiX when playing

the synchronous game and by naiX when playing the asynchronous game.
(W]

When a move can extend a trace in a reachable game vector with an input
symbol while the resulfing trace does not belong to its corresponding DTS
we have computation interference. For a closed collection X of DTS’ ab-
sence of computation interference in the synchronous game is equivalent to
the set of game traces of X being equal to wX. This would have been an
alternative way to define absence of computation interference in this game.
Notice that the game vectors obtained from w.X by projection onto the
alphabets of the individual trace structures are exactly the safe reachable
game vectors.

Property 1 A closed collection of DTS’ X has absence of computation
interference in the synchronous game when the initial game vector is safe
and when for all safe reachable game vectors v

1.3 Equivalence 9

(VS T,a: 5, T€eXAacoSNiT:(v.8)aeS= (vT)aeT)
or, equivalently, when the initial game vector is safe and when

(V5,T,s,a: S, TecXAaecoSNiTAsewWX :
(s[aS)a € § = (s[aT)a € T).

It has absence of computation interference in the asynchronous game when
the initial game vector is safe and when for all safe reachable game vectors v

(V8T,a:85,T€XA#,0.5> #H0.T: (v e D).
]

We can confine ourselves in this property to the safe reachable game vectors
since any unsafe reachable vector can only be reached by a transition from
a safe to an unsafe vector. Notice that if a closed collection of DTS’s has
absence of computation interference in the asynchronous game then it has
absence of computation interference in the synchronous game. Notice also
that a collection containing an empty DTS has computation interference
since the initial game vector is not safe. It is unclear yet whether it is more
elegant to define computation interference so that the empty trace structure
does not result in interference.

1.3 Equivalence

Given the sat-relation we can define an equivalence relation on the space of
all collections of DTS’s. We call two specifications equal when no environ-
ment can distinguish the two. This equivalence is called testing-equivalence
in [0].

Definition 8 Two collections X and Y of DTS’s are called equivalent,
denoted by X equY, when Xsat¥Y AY sat X. o

Property 2 For collections X and Y we have
XequY = (VU = P(X,U) = P(Y,U)).
O
It is obvious that equ is an equivalence relation. In the sequel we study,

in detail, the situation in which both the collection of modules and the
collection of environments contain one element each. The resulting game

10 2 ANALYSIS OF THE SYNCHRONOUS 2-PERSON GAME

is also referred to as the two-person game. In a closed collection with two
elements the input alphabet of the one is the output alphabet of the other
one. We conclude with a few abbreviations that will be used in the next
sections.

Definition 18 We write SnaiT and SnsiT for nai{5,7T} and nsi{5, T}
when playing a two-person game on a collection consisting of S and 7’. O

Notice that Snai? and SnsiT are false whenever S and T have unequal
input alphabets or unequal output alphabets.

Definition 11 The (S,T)-game is the game played on the collection
{5,T}. A game vector v in the ($,T)-game is denoted by the pair of traces
(v.5,2.7). _ O

Property 8 The set of reachable vectors in the (5,T)-game is equal fo
the set of reachable vectors in the (T, 5)-game. O

2 Analysis of the Synchronous 2-Person Game

In this section we analyze the synchronous two-person game in detail. We
consider a space 7 of non-empty prefix-closed trace structures with input
alphabet I and output alphabet O, the union of which we call A. We show
that the sat-relation and the nsi-relation are equal on this space and that
they make 7 a complete lattice. The equivalence classes under equ are
singletons.

Definition 12 The space 7 is the space of trace structures obtained by
reflecting the trace structures of 7. O

Property 4 The two traces constituting a reachable game vector in a
synchronous two-person game are equal. O

On account of the last property we view the game vector as one single trace
rather than as a pair of (equal) traces. Notice that this single trace is also
the game trace as defined in the previous section. From Property 1 we infer
for a synchronous two-person game the following property, due to the fact
that the initial game vector is safe for elements of 7.

Property 5 For 5,7 € T we have

2.0 The partial order on T 11

SnsiT" = (Vv,a: vesSNT:
((aeOAvaeS)=vaeT)A
((eaelhveeTl)=vaeS)).

0
Property 6 For S € T we have SnsiS. o
Property 7 For 5,7 € 7 we have in the synchronous game
SsatT = (VU :TnsilU : Snsil).
O
2.0 The partial order on 7
On T we define the following relation.
Definition 18 For 5,7 € T and B C 2 we define
SCpT=(Vs,m:meBAsmeSAsecT:smeT).
O

Lemma 0 For §,T € 7 and B,C C A such that BUC = A, we have

SCpTASCoT=SCT.

Proof Since BUC = A, the left hand side of the implication reduces to
(Vs,m:sm &€ SAs€T:sme7T) Using e €T, it is straightforward to

prove § C T by mathematical induction on the length of the traces in T'.
O

We define the following relations on 7 and 7.
Definition 14 For 5,7 €T
SCT=8SCoTATCtS
and for §,7 € T
SCT=85C;TATCo 5.

12 2 ANALYSIS OF THE SYNCHRONOUS 2-PERSON GAME

Property 8 For §,7¢ T wehave SL T = TC S. |

From Property 5 and Definition 14 we infer the following property, using
some set theory and the fact that S and T are prefix-closed.

Property 9 Yor S,7'€ 7 we have SnsiT’ = SC T. a

The relation C is also equal to the sat-relation of the previous section as we
show in the following lemmata.

Lemma 1 For 5,7,U € 7 such that SC T and T C U and for trace s
and symbol a € I we have

seSAaseT AsaceU=sacSAnsacT.

Proof We derive

s€c SAseTAsaelU
= {TEU,hence, U C;T }
seSAsacT
=> {SCT, hence, T'C; 5}
sa € SAsaeT
0O

Since this lemma holds for any 7" with the proper ordering, it holds for 7
and C. By Property 8 we then have the following corollary.

Corollary 0 For 5,7,U € 7 such that S £ 7T and T C U and for trace s
and symbol @ € O we have

sacSAseTAselU=2sacT Asac .
[

Lemma 2 For S,7,U € 7 such that S E T and T C U we have for
trace s
sedSnU=seT.

Proof By induction on the length of s.
Base: s = ¢. Trivial, since £ € 7.

2.0 The partial order on T 13

Step: We assume the implication to hold for trace s and consider trace sa.
We distinguish the cases ¢ € O and a € [.

Case a € 0. We derive

saeSnU
= {5nNVU is prefix-closed since § and U are; set theory }
saeSAsesSnlU
= { induction hypothesis }
sa € SAseT
= { SLCT,in particular SCp T }
sael

Case a € I. Now we derive

sacSNU
= { SnVU is prefix-closed since § and U are; set theory }
saeUAsesSNU
= { induction hypothesis }
sacUAseT
= {7 CU,in particilar U C; T }
saeT

Theorem 0 The C-relation is transitive.

Proof Let S,T,U € T besuch that SC T and T C U. We want to show
S C U, which falls apart into § Cp U and U C; 5. For the former case we
derive

aeO0AsaeSAsel

= { Lemma 2, using the prefix-closedness of § }
aCO0OANsaeESAseTAselU

= { Corollary 0 }
sa €U

and for the latter case we derive

acinsaclUAseS

14 2 ANALYSIS OF THE SYNCHRONOUS 2-PERSON GAME

= { Lemma 2, using the prefix-closedness of U }
a€EIANsESAsET AsacU
= { Lemmal}
sa €S
O

Notice that the case analysis in the last two proofs could have been avoided
by switching to the space 7, realizing that the trace sets of a trace structure
and its reflection are equal and that S € T C U is equivalent to SCTCU.

Theorem 1 Tor 5,7 €7 wehave SsatT =5C T.
Proof We derive for the implication from left to right

SsatT
= { Property 7 }
(VU :T'nsil : Snsil)
= { instantiation }
TnsiT = SnsiT
= { TnsiT, on account of Property 6 }

SnsiT
= { Property 9 }
SET
The other way round, it follows immediately from Property 9 and Theo-
rem 0, the transitivity of L.]

Theorem 2 (7,C) is partially ordered.

Proof Reflexivity: Obvious, using Properties 6 and 9.
Antisymmetry: For 5,7 € 7 we derive

SCTATCS
= { definition of C }

SCoT AT CrSATCoSASCT
= {Lemma0,JUO=A}

SCTrATCS
= { set theory }
5=T

Transitivity: Theorem 0.

2.1 7T as a Complete Lattice 15

2.1 7T as a Complete Lattice

In this section we show that (7",) is a complete lattice. We define operators
lub and glb on subsets X of 7 which we show to coincide with the least upper
bound and greatest lower bound of X respectively.

Definition 15 For X C 7 we define lub. X recursively in the following
way.
e ¢ € [ubX
e for trace s and symbols e € T and p € O
sa€elubX = selwbXANS:SeXAseES: sa€l)
spelubX = selbXA(IS:5€X:sp€l)
|

It should be clear that lub is weil-defined and yields an element of 7. The
function glb is defined similarly by interchanging [and G.

Property 10 For non-empty X € 7 we have
b X,glb.X C(US:5€X:5)
and

(NS:5€X:5)CubX,glhX.

Theorem 3 (7,L) is a complete lattice.

Proof We show that {ub.X is the least upper bound of any X C 7.
Therefore, each X C 7 has a least upper bound using the E-relation. Using
Property 8 we infer that any X C 7 has a greatest lower bound in the
C-relation, by which 7 is a lattice.

Let X C 7. We show that

0. (V5:5eX:5C {ub.X)and
1. VU:UeTANS:SeX:SCU): wbXLU)
Ad0. (V§5:5¢ X:SE ub.X)

Let § € X. We have to show S [[ub.X, which falls apart into lub. X Cr 5
and S Cp lub.X. For any trace s and symbol a € I we derive

16 2 ANALYSIS OF THE SYNCHRONOUS 2-PERSON GAME

sESAsa€E lubX
= { definition of {ubd }
SESANVT:TeXAs€eT :sacT)rse lubX
= {8 € X, instantiation }
sa €8

which proves [ub.X Cy §. Furthermore, we derive for any trace s and symbol
pe0

spESAsE lubX

= { predicate calculus, using S € X }
sEWbXA@BT:TeX:speT)

= { definition of lub }
sp € b X

which proves S Co lub. X.
Ad1. VU :UeTANMS:SeX:SCU): b X U)
Let U € T besuch that (V5:5 € X : § CU). Wehave to show lub. X C U,

ie. U Cy lub. X and ub.X Cp U. We derive for any trace s and symbol
ael

s€lub X ANsacU

= { U is an upper bound of X }
s€EubXAsacUA(VS:SeX :SCU)

= { definition of C, in particular U C; 5 }
sEbXAsac UANNS:SEXAsESAsacU: sa€ES)

= { predicate calculus }
sEubXA(NS:S5cXAs€8:50€08)

= { definition of fub }
sa € lub. X

which proves U Cy lub.X. Moreover, we derive for any trace s and symbol

pe 0

spelubXAasel
= { definition of lub }
(35:5e¢X:speS)Aselub X AselU

2.2 The Empty Directed Trace Structure 17

= { predicate calculus }
(35:5eX:speSAasel)
= { U is an upper bound of X, definition of C, in particular
SCoU }
(38:5€X:5pel)
= { predicate calculus }
spel

which proves lub. X Cpo U. mi

The reader may check that the bottom element of this lattice is I* and that
the top element is O*.

2.2 The Empty Directed Trace Structure

As mentioned earlier, we do not want to confine ourselves to non-empty
DTS5%. So far, however, we have not taken the empty DTS inio account.
The reason is that it would only complicate the proofs in the previous sec-
tions. From now onwards we assume 7 to contain the empty DTS and add
it as the new top of the lattice. More formally, the ordering becomes

SCT=SCoTATC;SA(eeT =>e€f)

It is obvious that the new space is a complete lattice. Some properties do
no longer hold, however. Properties 5, 6, and 9, and Lemma 0 hold only for
non-empty DTS%.

3 Delay-Insensitive DTS’s

Embedded in 7 are the delay-insensitive DTS’s, the definition of which has
been given in [3]. In this section we show that they almost form a sublattice
in 7. Only the empty collection of delay-insensitive DTS’ does not have
a delay-insensitive lower or upper bound. For the sake of completeness we
give here the definition of a delay-insensitive DTS. Symbols are said to be
of the same type if they are both input or both output symbols.

Definition 16 A non-empty DTS S € 7 is delay-insensitive when for all
traces ¢ and ¢, and symbols a, b, and ¢

Ry saa g 5.

18 3 DELAY-INSENSITIVE DTS’S

Rg3 sabt € S = shat € S for symbols @ and b of the same type.

Ry sabic € S A sbat € S = sbatc € S for symbols a and ¢ of another type
than b.

Ry sa€ SAshbecS = sabe § for symbols ¢ and b of different types.
O

Lemma 3 For X C 7 a collection of delay-insensitive DTS’s, U the
greatest lower bound of X, § € X, and for traces s and ¢ and symbols g € T
and pe O

spat e U A sapl € § = spal € §.

Proof We prove this lemma by induction on the length of .
Base: t = 2. We derive

spat € U Asapt € S
= {t=e}
spa EUAsape S
= { definition of ¢lb, which is the greatest lower bound, p€ O }
(VT :TeXAseT:speT)Asape S
= { instantiation, S € X is prefix-closed }
spESAsaES
= { §is delay-insensitive, rule Rz }
spa € S
= {t=c¢ }
spat € §

Step: For the induction step we discern between the traces ending in an
input and the ones ending in an output symbol. We derive for b€ [

spathe U A saptb € S

= { U and S are prefix-closed }
spat € U A sapt € S Asaplbe §

= { induction hypothesis }
spat € S A saptbe S

= {5 is delay-insensitive, rule R4 }

19

spatb € S
and for g € O we derive

spatg € U A saptqe S
= { definition of glb, which is the greatest lower bound, ¢ € O }
spat EUANT : T € X Aspat € T : spatqg € T) A saptg € S
= { induction hypothesis, using that S is prefix-closed }
spat € SAVT: T € X Aspat € T : spatqeT)
= {5 € X, instantiation }
spatg € S
0

Theorem 4 The greatest lower bound of a non-empty collection of delay-
insensitive trace sets is delay-insensitive.

Proof Let X be a a non-empty collection of delay-insensitive trace
sets with greatest lower bound U. We show that U satisfies the rules Ro
through Rs.

Ry: U is contained in ({JS : § € X : §) on account of Property 10, using
X # 0. None of the trace sets of X contain traces of the form saa, so neither
does U.

Rg3: Let s and be traces and let ¢ and b be input symbols and let p and ¢
be output symbols. We prove the theorem by induction on the length of £.

Base: { = e. For inputs we derive

sabt e U
— {t:s}
sabe U

= { definition of ¢lb, which is the greatest lower bound; elements of
X are prefix-closed; a,b € I }

seUA(5:5€ X :sabe §)

= { elements of X are delay-insensitive, rule Rg }
s€UA(35:5¢€ X :sbac€s)

= { elements of X are prefix-closed; definition of glb; a,b € I }
sbaec U

20 3 DELAY-INSENSITIVE DTS’S

= {t=¢}

shate U
and for outputs

spgt € U
= {t=¢}
spge U
= { definition of glb; p,g € O }
sEUAVS:S€eXAseS:spe SINVS: 5 XAspe S :spge §)
= { predicate calculus, elements of X are prefix-closed }
SEUANS:SeXANs€eS: spg€S)
= { elements of X are delay-insensitive, rule Rg }
seUANVS:5eXAseS:sgp€eS)
= { elements of X are prefix-closed, predicate calculus }
SEUAVS:SeXAseS:sge S)YA(VS:S € XAsqg€e S:sqp€e S)
{ definition of ¢ib; p,g € O }
sgpe U
= {t=c}

sqgpt € U

Step: Now we assume that U satisfies Rg for traces { of a certain length.
For traces that are omne longer we discern between the type of symbol in
which they end. If the last symbol is in I we derive

sabtce U
= { definition of glb; c€ I }
sabt € UA(S: 5 € X :sabtc € 5)
= { induction hypothesis, R3 holds for the elements of X }
sbate UA(FS:5€ X :sbatc € 5)
= { definition of glb; c€ I }
sbate e U

and if the last symbol is in O we derive

sabte € U
= { definition of glb; c€ O }

2

sabt e UAN(VS:5 € X :sablc€ S)

= { induction hypothesis and Rg holds for the elements of X }
sbat c UN(VS: 5 € X :sbatc € 5)

= { definition of glb; e € O }
sbate € U

R4: For traces s and i, and input symbols @ and & and output symbols p
and ¢ we derive

saptbe U A spat € U
= { definition of glb; be I }
(35:5€X :saptb€ SyAspat €U
= { elements of X are prefix-closed, predicate calculus }
spat e UAN(35:5€ X :saptbe SAsapt € S Aspat € U)
= { Lemma 3 }
spat EUA(IS: 5 € X :sapth€ S Aspat € 5)
= { elements of X are delay-insensitive, rule R4 }
spat e UA{38:5€ X :spathe §)
= { definition of glb; b€ I }
spatb € U

and

spatge U Asapt € U
= { definition of glb; p€ O }
spat eUA(NS:SeX Aspat€ S:spatg€ S)Asapt € U
= {Lemma3}
(VS:5€ X Asapt € 5 : spat € S)A
(VS:S5€X Aspat € 5 :spatg€ S)Asapt € U
= { predicate calculus }
(VS:S€X Asapt €5 :spatg € S)Asapt €U
= { elements of X are delay-insensitive, rule R4 }
(VS:5€ X Asapt € S:saptge S)Asapt € U
= { definition of glb; g € O }
saptg e U

22 4 ISOMORPHIC SPECIFICATION DOMAINS

Ry: For trace s and symbols ¢ € I and p € O we derive

sa EUAspeU

= { definition of glb; U is prefix-closed;a € T and pe O }
sa€ UAspeUA(AS:5€X:5a€85)A
(VS:5€XAseS:spel)

= { elements of X are prefix-closed }
sa€UAspeUA(IS:S€X :sa€8)A
(VS5:5€eXAsaeS5:speS)

= { predicate calculus }
s €EUASpeUA(IS:S€X::50€ESASpES)A
(VS:S5€eXAsa€eS:sa€SAspES)

= { elements of X are delay-insensitive, rule Rs }
sacUAspeUA(AS:SeX :spa€ S)A
(VS:5€eXAsa€S:sapeS)

= { definition of glb;a € T and p€ O }
spa € UAspaclU

4 Isomorphic Specification Domains

In this section we present two alternative representations for directed spec-
ifications. The advantages of the alternative representations are that the
satisfaction relation (sat) is less complicated, that they are easier to ex-
tend when other correctness concerns are added, such as progress, and that
composition may be expressed more concisely.

Let I and O be disjoint alphabets and 4 = TUO. The domain 7 of
specifications introduced in the preceding section consists of all DTS’s with
input alphabet I and output alphabet O. Since the input and output alpha-
bet are fixed we can restrict ourselves to the trace sets of these DTS’s, that
is, we identify prefix-closed trace sets over 4 with DTS’ in 7. The empty
trace set is included in this section’s investigation. On 7 the relation T was

defined by
SCT = SCoTATC;SA(eeT=2eel)

23

for all $ and T in 7. This is the satisfaction relation for the synchronous
game and, as was shown earlier, it is a partial order.

Definition 17 For alphabet B, trace set 5 is B-extension-closed when
(Vs,e:s€S5Aac B:saeS)
and it is B-chop-closed when

(Vs,a:sa € SAa€ B:s€eS).
]

Notice that prefix-closed and A-chop-closed are the same for trace sets
over A.

Definition 18 The first alternative domain 77 consists of all pairs (T, U)
such that T is a non-empty prefix-closed I-extension-closed trace set over A
and U is an A-extension-closed O-chop-closed subset of T'. The relation C’
on 77 is defined by

(T,U)T' (V,W) = TCV AUCW
for all (7,U) and (V,W)in 7", m]

It is straightforward to show that C' is a partial order on 77. (cf. failures
model for CSP [1])

A mechanistic interpretation of specification (T, U) in 77 is the following.
Trace set T contains those traces that are not excluded from occurring by
this specification; that is, only traces not in T are guaranteed not to occur.
I-extension-closedness of T expresses that a specification can never exclude
the extension with an input symbol (mechanisms are passive with regard to
their inputs). The trace set U contains those traces for which the specifi-
cation allows undefined behavior. Extension-closedness of U expresses that
once undefined behavior is allowed it remains allowed. O-chop-closedness
of U expresses that an extension with an output symbol does not lead to
undefined behavior unless in the preceding state undefined behavior was al-
ready allowed (mechanisms are active with regard to their outputs). Hence,
undefined behavior can occur only initially or from a state with well-defined
behavior via the extension with an input symbol.

We claim that the posets {(7,C) and (77,LC') are isomorphic. Before
proving this we introduce some auxiliary concepts and discuss their proper-
ties.

24 4 ISOMORPHIC SPECIFICATION DOMAINS

Property 11 Tor X C7 and T € T we have
(VS5:5eX:SCT)=> (US:SeX:5CT.
O
Definition 19 For specification S in 7 we define trace sets x5 and u$
by
x§ = (UX:XCS:X),
us = xS\ S

We call x5 the extended trace set of 5 and uS the undefined trace set of 5.
O

Since the union of prefix-closed trace sefs is prefix-closed, we have xS € 7.
From & C § it follows that 5 C x5. From Property 11 we infer x5 C 5.
Because @ is the top of 7, we have A* C @ and, hence, x} = A* and ul) = A*.
Furthermore, because I™ is the bottom of 7, we have X C I* = X = [*
and, thus, x/* = I* and ul* = 0.

As an exercise the reader may prove such things as

xS=(UX: XCSASCX:X),

SCX = (XL S = X CxS5),

x(x§) = x5,

xS={t:teA"A(Vs,a:s€SAsa<tAsag S:acl):t}.
but we shall not rely on these properties later on.

L.emma 4 For specifications R and S in 7 such that R C 5 we have
xR C x5 and uR CuS.

Proof Assume RC 5. We derive

xR

= { definition of x }
(UX:XCR:X)

C { RLC S and transitivity of T }
(UX:XCS:X)

25

= { definition of x }
x5
To show the second inclusion it is now sufficient to prove xRN S C R. We
do this by mathematical induction on the length of the traces.
Base: s = ¢. We derive

sEXRNS
= { s= ¢ and set theory }
ee s
= {RLCS}
ee R
= {s=¢}
sER

Step s = spa. We derive

sSeExXRNS
= { 8= spa and the prefix-closedness of xR and § }
Spe EXRNS A sgeExRNS
= { set theory and induction hypothesis, using £(so) < £(s) }
spt EXR A sga €5 A spE R
= {xRCRforaecOand RCSforael}
S0t € R
= {sa=s}
seR
(3

Property 12 For specifications § and 7 with 5 C T, trace s, and sym-
bol @ € I we have

seS = SU{sa} C T,
and

sESAs¢T = Suft:te A st} LT

26 4 ISOMORPHIC SPECIFICATION DOMAINS

Theorem 5 The posets (7,C) and (77,C’} are isomorphic.
Proof Consider the mappings f:7 — 7’ and g: 77 — 7T defined by

f(5) = (x5,u9),
g(T,U) = T\U
forall $ € 7 and (T,U) € 7’. Then f is an isomorphism between {7,C)

and (77,C'} with inverse g. More specifically, we claim for R and §in 7
and for (I, U) and (V,W)in T’

0. f(§)e T,

1. g(T,U)e T,

. 9(f(8)) = S, hence, f is one-to-one,

3. flg(T,U)) = (T,U), hence, f is onto,

4 RCS = f(B)L £(5),

(T T (VW) = g(T,U)C g(V, 7).

b

i

Ad 0. As noted earlier x5 is prefix-closed. From § C x§ and xf = A* it
follows that x5 is non-empty. Property 12 implies that x5 is I-extension-
closed. Clearly uS is a subset of x5 and it is A-extension-closed by Prop-
erty 12, We prove that uS is O-chop-closed by deriving for trace s and
symbol p e O

speusd

= { definition of u and set theory }
SpEXSAsp &S

= { definition of x and predicate calculus }
(AX:XCS:speXAsp¢gS)

= { definition of C, in particular Co, usingp € O }
3X:XCS:speXAségf)

= { X is prefix-closed }
(FX: XL S:seXAsédS)

= { definition of x and predicate calculus }
sExXSAsES

= { definition of u and set theory }
seus

27

Ad 1. The trace set T'\ U is prefix-closed because 7’ is prefix-closed and U
is A-extension-closed.

Ad 2. We show x5\ uS = S:

x5\ uSs

= { definition of u$ }
xS\ (xS\5)

= {SCxS5}
s

Ad 3. Weshow x(T'\U) =T and u(T\U) = U. We first deal with the first
equality. Since U is O-chop-closed and T\ U C T" it follows that TE T\ U
and, hence, the definition of x yields 7' C x(T"\ U). The other inclusion is
readily proven by mathematical induction on the trace length and is left as
an exercise to the reader. Now we derive the second equality:

w(T\U)

= { definition of u }
x(T\U)\(T\U)

= {x(T\U)=T}
T\ (T\VU)

= {UCT}
U

Ad 4. This follows immediately from Lemma, 4.

Ad 5. Assume (T,U) C' (V,W). We show T\ U C V \ W. For trace ¢ and
symbol a we derive

a €O ANtaeT\U ALteEV\W
= { set theory }
a€O0 ANtaeT ANt¢W
= {TCV and W is O-chop-closed }
taceV AtagW
= { set theory }
tae V\W

and

28 4 ISOMORPHIC SPECIFICATION DOMAINS

e€l ALET\U AtaeV\W

= { set theory }
a€l AteT Atad W

= { T is I-extension-closed and U C W }
taceT AtagU

= { set theory }
tac T\U

and finally

eeV\W

= { T is non-empty and prefix-closed, and set theory }
ceeET ANed¢W

= {UCW}
eeT Aned¢lU

= { set theory }
eeT\U

Corollary 1 The poset (77,C'} is a complete lattice.

Proof According to Theorem 33(7,C) is a complete lattice. Now apply
the above Theorem. O

In (7',C’) the bottom is (I*,8) and the top is (A%, A*). The specifica-
tion O™ in 7, which is the immediate predecessor of the top, corresponds to
(A*, A*\ O*)in 7’. For non-empty subset X of 77 it is readily verified that

WUT,U (T, U) e X : TLUT,U : (T, U)e X : U))

is in 77 and that it is the least upper bound of X. Its greatest lower bound
is obtained similarly by intersection.

Definition 20 The second alternative domain 7" consists of all subsets ¥
of A* x {L, T} such that for all traces s and ¢, and symbol a

0. (e, T)EF,
1. (st,T)eE F=(s,T)E F,

29

B

(s, L)eF=(s,T)EF,
3. (s,LYe FAte A*= (st,L) € F,
4. (s, T)EFAael>(sa,T)EF,
5. (sa,LYE FAa€O=(s,1)€F.
The relation &7 on 7" is defined by
FE'"G = FC G
for all F and G in 77 O

The relation = is obviously a partial order.

Theorem 6 The posets (77,C') and (7”,C") are isomorphic.

Proof It is straightforward to check that the mapping f: 77 — 7" defined
by

O, 0)y={t:teT: (¢, TuU{u:ueU:(u L)}

for all (T,U) € 7" is an isomorphism between (77,C') and (7”,C") with
inverse g: 7" — 7" defined by

gF)={t: (&, T)e F:t},{u: (v, L) € F:u})

for all F# € 7. In fact, there is the following correspondence between the
requirements for membership of 77 and 7.

T is non-empty (together with 1.),
T is prefix-closed,

U is a subset of T,

U is A-extension-closed,

T is I-extension-closed,

U is O-chop-closed.

SRR R

3

Again (7",C") is a complete lattice. Its bottom is I* x {T} and its top
is A* x {1, T}. Least upper bound and greatest lower bound of non-empty
sets are obtained by union and intersection respectively.

30 5 ANALYSIS OF THE ASYNCHRONOQUS 2-PERSON GAME

Finally, we would like to suggest a definition for synchronous parallel
composition (including hiding of internal communications) based on the
domain 77. A specification 5 is uniquely characterized by its four compo-
nents 15, o5, x5, and uS, where the pair (x5, uS) belongs to the domain 7’
with I =15 and O = 0S§. The idea behind the definition is that undefined-
ness is inherited from either operand and is back-propagated over output
symbols.

Definition 21 Given specifications § and T such that
iSNiIT =0 =05noT,
we define their synchronous parallel composite U by
iU = (iSuiT)\ (oSuUoT),
o = (oSUT)\(1SUIT),
xU = {w:ue(aSUaT) AufaS exS5Aual’ € xT :uf(asS +al)},
wU = {st,u:sue(aSual) Ate(oSUT)* A
(((st)[aS € xS A(st)[aT € ul) Vv
((st)[aS € uS A (st}[aT € xT))) : (su)[(as +aT)}.
O

That this is a proper definition and what its relationship is with composition
as discussed in Seciion 6 remains to be investigated.

5 Analysis of the Asynchronous 2-Person Game

In this section we analyze the asynchronous two-person game in detail. We
begin by characterizing the safe reachable game vectors in this game and
we proceed with a number of properties relating nai and C. Then we study
the asynchronous two-person versions of sat and equ. The major result
of this section states that each equivalence class under equ contains ex-
actly one specification that is delay-insensitive in a certain sense. For these
delay-insensitive specifications the relations nai and sat are equal to their
synchronous counterparts and, hence, equal to C.

As usual, let I and O be disjoint alphabets and A = TUO, and let 7 be
the set of non-empty DTS’s with input alphabet I and output alphabet O.
We can now define elements of 7 by giving just their trace set. We ignore
the empty specification in this section for a reason to be explained at the
end of this Section. We recall the partial order © on 7 as defined earlier:

5.0 Safe Reachable Game Vectors 31

SCT = 85CoT ATCt S

Least upper and greatest lower bounds are with respect to this order.

5.0 Safe Reachable Game Vectors

First we characterize the safe reachable game vectors in the asynchronous
two-person game,

Definition 22 On A* the relation C is defined as follows. For s and ¢
traces over A, s Ct holds when the game vector (s,t) is reachable in the
asynchronous (A*, A*)-game. Notice that in this game all game vectors are
safe. =

Example 0 Although the specification A* does not exclude any traces
from occurring in a game vector, not every pair of traces stands in the C-
relationship. For instance, for symbol a € I and symbol p € O we do have

eCa A apCuap A paCap,
but also

~(aCe) A ~{ap Cpa).

The relation ¢ may be characterized by the following

Property 13 For traces s and ¢ over A and symbols ¢« € I and p € O, we
have

eCe = frue,

saCt = sCt A #.5 < #,8,
sCip = sCt A F#p5> #,1,
spCe = sCe¢,

eCla = eCt,
spCia = spClV sCta.

Without proof we state

32 5 ANALYSIS OF THE ASYNCHRONQUS 2-PERSON GAME

Property 14 The relation C is a pre-order, that is, it is reflexive and
{ransitive. |

The reader can find more details about the relation C in [4]. For later use
we also mention

Property 15 For traces s, ¢, and u, and symbol ¢ € I we have
stCu = (Jup:up <u:sCug)
and

taCu = (3b,ug,u1 :b € I Au=ughus : £ C uob).

Of course, by I-O-duality of C we also have
sCtu = (s0:50 < s:5Ct).

The relation C can be used to characterize the safe reachable game
vectors of other games besides the (4*, 4*)-game.

Property 16 Let 5 and T be specifications in 7. In the asynchronous
(5,1)-game, safe game vector (s,t), i.e. such that s € S and t € T, is
reachable if and only if s Ct holds. |
5.1 Absence of Computation Interference

Now we can relate nai to T. From the non-emptiness of specifications and
Properties 1, 13, and 16 we derive

Lemma 5 For specifications § and 7" in 7, S naiT holds if and only if

(Vs,t,p:s€SAtETAPEOAsClp:ipeT)A
(Vs,t,a:s€ SAteTAaelAsaCl:sa€S).

From the reflexivity of C we immediately infer
Property 17 For S and T in 7 we have
Snail = SCT.

5.1 Absence of Computation Interference 33

Corollary 2 Relation nai is antisymmetric. o

A generalization of Lemma 2 is

Lemma ¢ For S, 7T, and U in 7 such that Snai7 and T C U, and traces
s€ Sand v € U with sCu wehaveu €T

Proof By mathematical induction on the length of #. Assume Snail
and TC U.
Base: u = e. Then u € T, since T is non-empty and prefix-closed.

Step: v = ugp for p € O. We derive

SESAsCuAuelU

= { u = upp, Property 13 using p € O, and U is prefix-closed }
SESAsSCuop A sCupAug €U

= { induction hypothesis, using &(uo) < £(u) }
SESAsSCugp ANug €T

= { SnaiT and Lemma 5 usingp € O }
ugp €T

= {u=uop}
wET

Step: u = uga for ¢ € I. We derive

seESAsCuruelU
= {u=1ua}
sESAsCuopahuga €U
= { Property 15 using a € I, and 5 and U are prefix-closed }
(Jso:s0<s:80E€ESAsgCupAuw € U)Aupa €U
= { induction hypothesis, using £(ug) < £(u) }
o ET Awga €U
= {TLCU,in particular U C; T usinga €I }
uga € T
= {u=wa}
vweT

34 5 ANALYSIS OF THE ASYNCHRONOUS 2-PERSON GAME

We can now prove the following substitution theorem.
Theorem 7 For §,T, and U in T we have
SnaiT ATCU = Snaill.

Proof Assume Snail and 7' E U. We prove Snail using Lemma 5.
Let s € 5 and u € U. We now derive

PpEOAsCup

= { Property 13 }
pEOAsCuphrsCu

= {Lemma6,usingse SanduelU }
peECAsCupAueT

= {SnaiT usings€ S}
peEOAupeT

= {TCU,in particular T Co U, usingu e U }
upe U

and

ea€EfAsaCu

= { Property 13 }
aclAhsaCunsCu

= {Lemma6, usings€ Sanduel }
aclAsaCurued

= {SnaiT usingse S}
sa €S

Corollary 3 For 5,7, and U in 7 we have

SCT ATnaill = Snail
Snail” A Tnalll = Snail

Proof The first implication follows from Theorem 7 by exploiting the fact
that interchanging the role of I and O gives the dual relations for both C
and nai. The second implication, expressing the transitivity of nai, follows

by applying Property 17. ‘]

5.2 Satisfaction and Equivalence 35

5.2 Satisfaction and Equivalence

We recall the definition of sat for the asynchronous two-person game:
SsatT = (VU :TnailU : Snail).
Property 18 Tor 5,7, and U in 7 we have

SsatT A Tnatll/ = Snaill
SsatT ATEU = SsatlU
SET ATsatU = SsatlU

Example 1 In general, we do not have
Snail A TsatU = Snaill.

Take, for instance, [= {a,8}, 0 =0, S =T = {¢,a}, and U = {¢,a,ab}.
In this case we do not even have

SnaiT A TsatU = SCU.
Of course, we do have

SnaiT A TsatlU = SsatU.

Property 19 For S and T in 7 we have
SET = SsatT.

Proof Assuming S C T wederivefor/ € T

Tnail
= { SCT and Theorem 7 }
Snail

hence, SsatT.
Property 20 Forsubset X of 7 and U € 7 we have
(V8:5€ X :5naill) = lub.Xnaill

36 5 ANALYSIS OF THE ASYNCHRONOQUS 2-PERSON GAME

Proof Let T = b X, then T € 7. Assuming the left-hand side of the
implication we show T nai U using Lemma 5. Let ¢t € T and u € U. In case
X is non-empty then on account of Property 10 and ¢t € 7', let § € X with
t € §. For non-empty X we now derive for symbol p

peEOAICup
= { SnailU by assumption, usingt € S and u e U }
upe U

If X is empty then T' = I* and, hence, for p € O we cannot have { C up.
Furthermore, we derive for symbol a

a€EIAtaCu

= { assumption, using u € U }
(VS:5¢eXAteS:taes)

= { definition of lub and T, using t € T" }
taeT

Corollary 4 For subset X of 7 we have

(V§:5€X:5naif) = b.X nailub.X.

Proof LetT = [ub.X. We derive

(VS:5€X:5nais)
= {T=bX}
(V§5:5€X:5naiSASCT)
= { Theorem 7 }
(V5:5€X:5naiT)
= { Property 20 }
lub. X naiT
= { definition of T }
lub. X nai lub. X

5.3 The Subspace Dy 37

5.3 The Subspace D,

In this subsection we introduce the subspace Dy of delay-insensitive specifi-
cations and we show how it relates to the equivalence classes.

Definition 28 The set of specifications Dy is defined by
Dy={5:5€¢T ASnais: 5}
0
The above Corollary can now be rephrased as: if X is a subset of Dy, then
wb.X € Dy. In a similar way (because of the 7-O-duality of nai) one can
prove that ¢lb.X € Dy4. Hence, Dy is a complete sublattice of 7.
There is an important relationship between the Rules given in Section 3
and membership in Dy, viz. § € D4 holds if and only if S satisfies Rules R,

R4, and Ry. This is sometimes referred to as The Fundamental Theorem

of Delay-Insensitive Specifications (also see [3,4]).
The equivalence class containing specification $ € 7 is denoted by [5],

that is,
[S1={U:UeTAUequs:U}.

We first show that each equivalence class contains at most one specification
from Dy.

Property 21 TFor § and T in 7 we have
Sequl' ASeDsnTeDy = 5=T.

Proof We derive

SequlASeDsAT € Dy
= { Property of equ and definition of D4 }
(VU 2 Snail =TnailU)A SnaiS AT naiT
= { predicate calculus }

SnaiT ATnais
= { antisymmetry of nai }
S=T

38 5 ANALYSIS OF THE ASYNCHRONQUS 2-PERSON GAME

Now we show that each equivalence class has a C-maximum.
Property 22 TFor S5 € T we have
lub.[S] € [S].

Proof Let T = [ub.[S]. We show SequT, hence T € [S]. From § € [5]
and the definition of least upper bound we infer § C T. Using Property 17
then gives Ssat 7. It remains to prove T'sat S. Let V be such that SnaiV
holds. Then for all U € [S] we have U naiV and, hence, Property 20 yields
T naiV, which completes the proof for T sat S. m|

The [-maximum of an equivalence class can serve as a canonical represen-
tative. Next we want to show that this maximum is in D4. Property 21
then implies that it is the only D member of an equivalence class. First
we need two more lemmata. Both lemmata construct a specification that is
equivalent to and strictly C-greater than a given specification not in Dj,.

Lemma 7 LetT €7,p€0,t €T, u€T such that up ¢ T and ¢t Cup.
Define 7 by

T"=Tu{v:vel:uw}
Then we have
T#£T ATCT A TequT’.

Proof The first conjunct is implied by up ¢ T' and up € T¥. From T C 7"
follows T Co T'. For trace s and symbol a € I we derive

sa€T'AseT

= { definition of T }
(saeTVv(Tv:vel*:sa=upv))AseT

= J{a#pbecanseacl,peO0,and INO =0}
(saeTv(@v:vel*:s=upv))AseT

= {up ¢ T and T is prefix-closed }
(saeTVvs¢T)AseT

= { predicate calculus }
sacT

5.3 The Subspace Dy 39

This shows 7' C; T, which completes the proof of ' . T”. Hence, we know
from Property 19 that T'satT” holds. All that remains to be shown for
TequT’is T satT. Assuming T naiU holds for some U € 7 we show that
T'nail holds as well using Lemma 5. Let s € T/ and w € U.

First we consider the case with symbol ¢ € O such that s Cwgq, and
we want to show wg € U. If s € T then wg € U on account of TnaiU.
Otherwise, s = upv for some v € I*. Property 13 tells us that up Cupv and,
hence, we have

t Cup Cupv C wy.

From the transitivity of C we then infer ¢t Gwq and, therefore, wg € U again
on account of Tnaill.

Finally, we consider the case with symbol ¢ € I such that sa Cw, and
we want to show sa € 7. If s € T, then se € T on account of Tnail, and
thus sa € 7”. Otherwise, s = upv for some v € I*. Hence, sa = upva, which
is in 7' by definition of 77, @ being an input symbol.

This completes the proof of 7¥ nai U and thus that of 7/sat T'. O

Lemma 8 LetT €7,ea€l,teT,ue€T such that ta ¢ T and ta Cu.
On account of Property 15 we can write 4 = ugbu; for some b € I such that
ta C ugh. Define TV by

T' =T\ {v:ve A* : ugbv}.
Then we have
T£T ANTCT A Tequ?.

Proof The first conjunct is implied by ueb € T and upb ¢ T'. From
T’ C T follows T¥ C; T. For trace s and symbol p € O we derive

speET AseT”
= { definition of 77 }
speT As €T A-(ugh <)
= { T is prefix-closed }
sp € T A —(upb < 3)
= {b#pbecausebel,pcO,andINO =0}
sp € T A =(ugh < sp)
= { definition of 7 }

40 5 ANALYSIS OF THE ASYNCHRONOQUS 2-PERSON GAME

spe I’

This shows T Cp T, which completes the proof of T T 7”. Hence, we know
from Property 19 that T satT” holds. All that remains to be shown for
TequT’is T"sat T. Assuming T nai U holds for some U & 7 we show that
T’ nai U holds as well using Lemma 5. Let s € 7' and w € U.

First we consider the case with symbol p € O such that s Cwp, and we
want to show wp € U. Since 7V C T, we have s € 7. From T naill now
follows wp € U.

Finally, we consider the case with symbol ¢ € I such that sc Cw, and
we want to show sc € 7¥. Since 7V C T, we have s € T. From T nailU
now follows s¢ € T. It remains to show that -(ugh < se). Assuming ugh <
sc we derive a contradiction. On account of this assumption, se Cw, and
Property 15 let wy < w be such that ugh C wy. We now have ta C uph C wp
and, thus, ta Cwy. From t € T, wy € U, and T naiU then follows ta € T,
contradicting ta ¢ 7.

This completes the proof of 7/ nai U and thus that of 7/ sat 7. O

Theorem 8 For all § € 7 we have [ub.[5] € Dy.

Proof Let T = [ub.[S], we show T naiT using Lemma 5. Let t € T
and u € T. First we consider the case with symbol p € O such that ¢ C up,
and we show up € 7". Assuming up ¢ 7" leads to a contradiction as follows.
According to Lemma 7, which is now applicable, let 77 € 7 be such that

T#T ATCT A Tequl”.

From Property 22 we know S equT and, thus, T¥ € [S]. Since T is an upper

bound of [S] we have T/ C T. Combined with T L T” this yields T' = T,
contradicting T # T".

The case with symbol a € I such that {e C u is similar using Lemma 8.

(]

Corollary 5 For § € T we have S nai lub.[5].

Proof From S € [S] and the definition of least upper bound we infer
S C ub.[S]. Theorem 8 tells us that lub.[S]nailub.[S]. Application of
Corollary 3 now yields S nai lub.[S]. o

The following theorem gives a different expression for the maximum of
an equivalence class.

5.3 The Subspace Dy 41

Theorem 9 For S €7 let T = glb.{U : Snaill : U}. Then we have
SnaiT A SequT AT € Dy
and, hence, T = lub.[S].

Proof Let 77 = [ub.[S]. In the light of the preceding Theorem and its
Corollary it is sufficient to show T' = T?. We do so by proving that T" is the
greatest lower bound of {U : SnailU : U}. For U € T we derive

Snaill
= { SequT’, on account of Theorem 8 }

T'naill
= { Property 17 }
™eu
and, hence, 77 is a lower bound. Now we derive for V € T
(VU : Snail : V CU)
= { instantiation, using S nai7” from Corollary 5 }
VT

and, hence, T is greatest among the lower bounds. O

Corollary 6 ForSe 7 let T =glb.{U:U € DyASC U :U}. Then we
have

SnaiT A SequT AT € Dy

and, hence, T' = ub.[S]. O

We can now give a number of equivalent characterizations of Dy.
Theorem 10 For § € T the following expressions are equivalent:

0. § € Dy,

1. (VU = Snaill = S C U),

2. (VU =UnaiS=ULCS),

3. (VU : Snail = Ssat U),

4. (YU ::UnaiS = Usat §),
5 (VU = UsatS=ULCS),

42 5 ANALYSIS OF THE ASYNCHRONOUS 2-PERSON GAME

6. S = Wb.[S],

7. S =glb{U : Snaill : U},

8. glb{U : SnailU : U} = ub.{U:Unai§: U},

9. wb.[S]=glb{T: (VU : Unai§ = UnaiT): T}

See Example 1 for a reason why
(VU = SsatU=SCU)

is missing among the expressions in the Theorem. The last two expressions
in the Theorem derive from an analogous investigation of the relations sat’
and equ’ defined by

Ssat’'T = (VU :UnaiS:UnaiT)
Sequ'T = Ssat’'T A Tsat'S
forall S and T"in 7.
Corollary 7 On D, the relations nal, sat, and T are all the same. O

The Corollary is a special case of what is sometimes called The Fundamental
Theorem of Delay-Insensitive Composition, viz. that for delay-insensitive
specifications absence of computation interference in the asynchronous and
in the synchronous game are the same.

Theorem 11 The structures (7,sat)/equ, (7,nai)/equ, and (D4, C}
are isomorphic.]

Note 1 The treatment of the empty specification is still unsatisfactory.
When 0 is included in the present framework it would end up in an equiva-
lence class by its self and it would not belong to Dy. The reason for this is
that

(VS:8 € Tu{}:~(0nais))
and, hence, ~(Bnai@), i.e. @ ¢ Dy; and also ~(@ nai O*). Furthermore,
(VS:SeTAS#D: SnaiO*)

and, hence, =(5 equ®) for S # 0. Thus, @ would require a special treatment
in Theorem 8. There is, however, a case to be made for including the empty

specification in Dy anyway, but we could not find a natural way to do so.
[

43

6 Composition

In this section we briefly touch upon the issue of synchronous parallel com-
position of DTS%. We define the composite of two DTS’ and show two
monotonicity theorems.

By composing two DTS5’s, they communicate with each other via their
common symbols and with the environment via the non-common symbols.
The common symbols should be of type input in the one and of type out-
put in the other DTS, so we can add a third DTS, the environment, to
play the game on a closed collection. Absence of interference being our cor-
rectness criterion, we are interested in what signals an environment of the
composite can maximally send without causing interference, neither in the
communications with the composite nor in the communications between the
components. Moreover, we are interested in the outputs that such an envi-
ronment should minimally be prepared for in order to guarantee absence of
interference.

It is clear that we can no longer assume the alphabets of the trace struc-
tures under consideration to be equal and to have the same input and output
partitioning as we did in the previous sections. we extend the C-relation to
the space of all trace structures by defining it to be false whenever two trace
structures differ in their input or cutput alphabets.

Definition 24 The synchronous parallel composition of two trace struc-
tures S and 7', S || T, is defined as

glb{U : nsi{S,T,U} : U}.
)

From this definition, involving three trace structures, we see that we
should gain insight in the three-person game before actually trying to attack
the problem of composition. The area of the three-person game is unexplored
and we have not yet had the opportunity to study this game. Since we want
to give the reader some feel for the issues involved we prove two, rather
arbitrary, theorems, one having to do with the three-person game and the
other one with composition.

In the next theorem we prove some sort of monotonicity property of the
weave.

Theorem 12 For DTS’s Sy, S1, T, and U such that So C S1Ansi{S1,7,U}
we have

44 6 COMPOSITION

SowITwUC S wlwl.

Proof First of all, notice that Sy C 5, implies that the input alphabets
and output alphabets of Sy and Sy are equal. Since nsi{5;,T, U} holds, we
therefore have that {Sp,T, U} is closed. We prove the theorem by induction
on the length of the traces in SowT'w .

Base: This case is obvious, since nsi{S;,T, U} implies that ¢ is in all the
trace structures and, hence,ine € Sy wTwUl.

Step: In the induction step we assume the theorem to hold for traces of
a certain length and prove it to hold for traces that are extended by one
symbol a. We distinguish three cases: a ¢ a5y, a € iS5, and a € 05).

In the case that a ¢ aSy we derive

sa € Sowl'wl
= { weaving preserves prefix-closedness, definition of weaving }
s€ SgwTwUA(se)[aT €T A(sa)[aU € UAa €aSoUaT ual
= { induction hypothesis }
seSiwIwUA(sa)[al’ e TA(sa)[aU e UAa€aSoual ual
= { definition of weaving, ¢ ¢ a.59, aSp = a7 }
seS1wTwUA (sa)faS) € 51 A (sa)[aT € T' A (sa)[al e UA
aecaSUalual
= { definition of weaving }
sa € SywTlwl

In the case that a € 15; we derive

sa € SgwTwlU
= { weaving preserves prefix-closedness, definition of weaving }
s€SowTwUA (sa)[aT € T A(sa)[aU € UAa € aSoUaT Ual
= { induction hypothesis, aSy = a5; }
seSywTlwUA(se)[aT € TA(sa)[aU e UAa€aSuaTual
= { a € 15, hence, a € o7 U oU, since ¢l{So, T, U}; moreover,
nsi{5:,7,U} }
SES1WITwWUA(sa)[aS) € Sy A (sa)[al € T A (sa)[al € UA
acaSiualTUual
= { definition of weaving }

45

sa e SywTlwlU
In the case that ¢ € 0.5g we derive

sa € SowilwlU
= { definition of weaving, weaving preserves prefix-closedness, and
a€aly}
s€ SowTwUA(s[]aSg)a € Sp A (sa)[al € T'A (sa)[alU e U
= { induction hypothesis, a5y = a$; }
se S wTwUA(s[aS1)a € So A (sa)[al € T A(sa)[alU e U
= { SoC $1, a € 05, and s[a5, € Sy by the definition of weaving }
seSyuwTwUA (s[aSi)a € S1 A (sa)[aT € T A(sa)[al e U
= { definition of weaving, using a € a5 }
sac SywlwlU

In the next theorem we prove that || is monotonic with respect to €.

Theorem 13 For DTS’s Sy, 51, and T such that Sy C 51 we have Sp ||
TLCS || T.

Proof We prove that
{U :nsi{5,T,U}: U} C{U : nsi{S, T, U} : U}.

Hence, the greatest lower bound of the latter is at most (C) that of the
former set. This inclusion also holds when we reflect the trace structures
that we collect and switch to the dual ordering. This then establishes the
prooi. Let DTS U be such that

nsi{5, T, U} (0)
Since the alphabets of Sp and S; are equal and partitioned in the same way,
we have cl{Sp, T, U}. We show that {55, 7, U} has absence of computation
interference by showing (cf. Property 1
YV, W,s,a: VW € {S5, T, U} Aa € oV NiWA se SowlwU:
(s[aV)a €V = (s[aW)a € W) (1)
Because of the symmetry between T and U, it suffices to instantiate the pair
of dummies (V, W) by (S0, T), (T, So), and (T, U).

Instantiating V and W by Sy and T respectively we derive

46 7 CONCLUDING REMARKS

a€oSpNiT As€ SowTwlU A (s[aSy)a € Sy
= { Theorem 12, using sg C Sy, and (0} }
acoSyNiTAse Sy wTwU A (sfaSy)a € Sy

= {aS; = asi, 05 = 051, and Sy £ 57, s[a$; € 51 on account of
the definition of weaving }

aceoSiNiTAse S1ywlwlUA (s[aSl)a €5
= {(0), using Property 1 }
(sfaT)a eT

Instantiating V' and W by T and Sy respectively we derive

a€ol'NiSoAs€ SowTwUA(s[aT)aeT
= {1iSp = i51, definition of weaving, Theorem 12, using So C 51 and
(0) }
a€ol NiSi A(s[aSp) € SoAse SswTwUA(s[aT)aeT
= {(0) using Property 1 }
(s[aS1)a € S; Aa €151 As[aSy € S
= {aSy=aS5;,5%C5}
(s[aSo)a € Sp

Finally, we instantiate V and W by T and U and we derive

acol'NiUAse SowTwUA(s[al)aeT
= { Theorem 12 }

acoTNiUAse SswTwUA(s[aT)aeT
= {(0), using Property 1 }

(s[al)a e U

7 Concluding Remarks

In this section we summarize the results of the previous sections, relate it
to some other work in this area, and mention future research.

Given the space of all DTS’s as our primitive objects, we have discussed
a general approach to suppress irrelevant distinctions between objects in the
presence of particular correciness concerns. We have demonstrated this by

47

choosing computation interference as our correctness concern, which led to
the introduction of the C-relation. The mathematical framework associated
with this ordering turned out to be so rich that we touched only upon a small
number of issues: the two-person games, the relation between the equiva-
lence classes introduced by C, delay-insensitivity, and, very superficially,
composition.

The important distinction between our work and CSP [1], is that our
communications are directed. We believe that directed (asynchronous) com-
munications, as opposed to the synchronous communications in CSP, provide
a mathematically tractable, rich and formal basis as a first abstraction of
the operation of electrical circuits. This work supports this point of view
and one of the next research topics is to see how well this point of view can
be upheld when other correctness concerns play a role.

Additional correctness concerns in which we are interested are transmis-
sion interference, progress (e.g. liveness and deadlock), and fairness. Pre-
liminary research in these areas looks promising, but it is too early to report
on it. When progress is one of our additional concerns, we introduce equiv-
alence classes of a finer grain than with only the concern of computation
interference. It is unlikely in this case that we can still choose one canonical
representative in the class capturing all properties of that class. Presumably,
we have to extend our specifications with additional information, each new
specification then representing one class. This is similar to what one does
when introducing the integers from the natural numbers, or when extending
the trace model to the failures model as in [2].

An issue which has been brought up, but which has not been resolved
very satisfactorily is that of the empty DTS. The need for it is clear. Not
allowing DTS’s to be empty, there are two distinct ways in which the DTS
with trace set O* comes about. On the one hand it represents a composite
that will exhibit no computation interference as long as its environment is
willing to accept anything. On the other hand, it is the result of composing
two DTS’s that, no matter how the environment behaves, has (internal)
computation interference. Without the empty DTS we cannot distinguish
these two situations, since the greatest lower bound of the empty collection
of DTS7s is O* in the absence of the empty DTS. This is very similar to the
need to introduce divergence into the semantics of CSP. Therefore, we add
the empty DTS as the top of ourlattice. Once done so, there are at least two
ways to define interference in a closed collection containing an empty D7T'S:
it does or does not have computation interference. In this paper we chose
for interference in this situation. One of the reasons is that we believe a

48 REFERENCES

certain substitution theorem to hold, when done this way. This substitution
theorem states that we may replace, in a collection X of DTS, a collection
Y C X by an equivalent one without changing any interference properties
of the collection X (also c¢f. Theorem 7, esp. its Corollary). However, the
consequence of this choice is that another theorem we would like to hold, viz.
nai{3,T, 0}, where U is the composite of § and T, does not hold. Making
the other choice, makes the latter theorem true, but the former becomes
false. We are still investigating more elegant ways to incorporate the empty
DTS.

It seems to us, that the analysis of the three-person game should be
carried out before addressing the issue of composition. Due to lack of time
we have not done so, so far. In order to give the reader some feel for how
composition can be defined we have given two definitions for the synchronous
composition, one in the section on isomorphic representations and one in the
section on composition. Other, alternative and maybe more elegant ways to
define composition, can be given. For example, given an equivalence relation
the composite of S and T' can be defined is a representative of the DTS5’
that are equivalent to the collection {S,7'}. In the case of synchronous
composition each class has only one member, which represents that class.
In the case of the asynchronous game we could choose for the one delay-
insensitive DTS in the collection of DTS’ equivalent to {5, T}, except when
there is always interference in which case we choose the empty DTS as the
result of the composition. More research is called for before we can make
the most appropriate choice among these possibilities.

8 Acknowledgements

This research has been made possible by the financial support of the Com-
puter Science Department at Washington University, St. Louis. We are most
grateful to this department, especially to its chairman Jerome R. Cox Jr.
We thank Wei Chen and Charles E. Molnar for many insightful comments
upon earlier versions of this paper, which were made at numerous discussions
while we were still shaping our ideas.

References

[0] M. Hennessy, Algebraic Theory of Processes, MIT Press Series in Found.
of Comp., Cambridge Mass., 1988.

REFERENCES 49

[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall Int.,
London, 1985.

[2] E.-R. Olderog and C.A.R. Hoare, “Specification-Oriented Semantics for
Communicating Processes”, Acta Informatica, vol. 23, pp. 966, 1986.

[3] J.T. Udding, Classification and Composition of Delay-Insensitive Cir-
cuits, Ph.D. Thesis, Eindhoven, 1984.

[4] T. Verhoeff, Notes on Delay-Insensitivity, Master’s Thesis, Eindhoven,
1985.

	The Mathematics of Directed Specifications
	Recommended Citation

	tmp.1460750766.pdf.zr838

