
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-76

2004-09-01

The Design and Implementation of Database-Access Middleware The Design and Implementation of Database-Access Middleware

for Live Object-Oriented Programming for Live Object-Oriented Programming

Adam H. Mitz and Kenneth J. Goldman

We describe middleware and programming environment tools (JPie/qt) that allow programmers

to access relational databases in an object-oriented way. Building on top of the JDBC API and

leveraging live dynamic class creation and modification in JPie, the JPie/qt middleware

presents the user with a simple interactive mechanism for creating object-oriented applications

that access databases. Classes are generated mirroring the database schema and

programmers deal directly with these classes. Objects of these classes can be database-bound,

so reads and writes to their fields are reflected in the relational database immediately. Database

transactions are supported by connecting commit and rollback to... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Mitz, Adam H. and Goldman, Kenneth J., "The Design and Implementation of Database-Access
Middleware for Live Object-Oriented Programming" Report Number: WUCSE-2004-76 (2004). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1046

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1046?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1046

The Design and Implementation of Database-Access Middleware for Live Object-The Design and Implementation of Database-Access Middleware for Live Object-
Oriented Programming Oriented Programming

Adam H. Mitz and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

We describe middleware and programming environment tools (JPie/qt) that allow programmers to
access relational databases in an object-oriented way. Building on top of the JDBC API and leveraging live
dynamic class creation and modification in JPie, the JPie/qt middleware presents the user with a simple
interactive mechanism for creating object-oriented applications that access databases. Classes are
generated mirroring the database schema and programmers deal directly with these classes. Objects of
these classes can be database-bound, so reads and writes to their fields are reflected in the relational
database immediately. Database transactions are supported by connecting commit and rollback to Java
exception semantics.

https://openscholarship.wustl.edu/cse_research/1046?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1046?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages

1 of 10

The Design and Implementation of Database-Access Middleware
for Live Object-Oriented Programming

Adam H. Mitz and Kenneth J. Goldman
Washington University in St. Louis

{mitz, kjg}@cse.wustl.edu

Abstract
We describe middleware and programming environment
tools (JPie/qt) that allow programmers to access
relational databases in an object-oriented way. Building
on top of the JDBC API and leveraging live dynamic class
creation and modification in JPie, the JPie/qt middleware
presents the user with a simple interactive mechanism for
creating object-oriented applications that access
databases. Classes are generated mirroring the database
schema and programmers deal directly with these classes.
Objects of these classes can be database-bound, so reads
and writes to their fields are reflected in the relational
database immediately. Database transactions are
supported by connecting commit and rollback to Java
exception semantics.

1. Introduction

Object-oriented programming is intended to increase
reusability and maintainability [11]. Programmers
concentrate on data abstraction, encapsulation, inheritance,
and polymorphism. However, many real-world programs
require communicating with a relational database to ensure
that data persists between program invocations, to
communicate with an established corporate database, or to
use as a communications channel for distributed systems.
Using these databases means mixing two different
programming models, and essentially two programming
languages, within a single application. This added
complexity makes programs harder to construct and reason
about. The existing relational database APIs for most
object-oriented languages (such as JDBC in Java) provide
a bridge from the object-oriented model to the relational
database model. However, they essentially provide a
means to forward queries written in a relational database
language (e.g. SQL) and therefore require extensive
knowledge and use of the relational database model.
Consequently, programmers must think about their
applications as artificially split into heap objects (which
are accessed using an object-oriented language) and
database tuples (which are accessed using a relational
database language). This paper presents a middleware-

based approach to insulating the object-oriented
programmer from the relational query language and
model.

1.1. Design goals

We present a middleware framework called JPie/qt
(JPie queries and transactions), that bridges the object-
oriented and relational models in order to provide
programmers with object-oriented access to data stored in
a relational database management system. JPie/qt exposes
an object-oriented API to programmers and internally uses
Java’s JDBC [9] system to communicate with the
relational database. The specific design goals for JPie/qt
are described below.

1.1.1 Programming model unification. JPie/qt’s major
design goal is unifying the programming model. The
programmer needs no knowledge of SQL and its
associated programming model (data types, semantics,
etc). Using JPie/qt requires only that the programmer be
familiar with basic object-oriented concepts such as user-
defined types, data encapsulation, iteration over
collections, exceptions, and static methods. Another
aspect of this unification is the naming of classes and
fields. JPie/qt classes and fields are named corresponding
to the application-specific table and column names in the
database. Thus the names are directly relevant to the
programmer. Additionally, the concepts of failed
execution in the two models, exceptions and transaction
aborts, are unified in JPie/qt.

1.1.2 Flexibility. JPie/qt is designed to work with any
relational database for which a JDBC driver is available.
This offers the programmer flexibility in designing
applications. The programmer is not bound to a certain
database vendor. Additionally, the database schema is
assumed to be outside the programmer’s control. The
system is designed to work with databases that already
exist or are set up by a database administrator who is
unaware of JPie/qt.

1.1.3. Efficiency. Run-time performance of applications

2 of 10

developed with JPie/qt should be acceptable for
development purposes. To this end, JPie/qt makes use of
lazy instantiation and caching in order to minimize
communication between the JPie/qt and JDBC layers.

JPie/qt represents database rows as Java objects, but
these are initialized lazily. When an object corresponding
to a database row is instantiated, only the primary key
field is set to contain data matching that in the database.
None of the other fields’ data is fetched eagerly. Thus,
programs only incur the costs of fetching data that they
need.

1.1.4. Host language integration. JPie/qt’s host
environment is JPie (see Section 3). In order to provide
the programmer with an easy-to-use system, one of the
goals of the JPie/qt design is tight integration with the JPie
environment. To achieve this goal, the JPie/qt system is
designed to offer a GUI look-and-feel and semantics
consistent with JPie.

1.2. A motivating example

Consider a programmer working on a multiplayer
online game. The system uses a centralized relational
database to store the game state so that all players can see
the shared state and so that the state persists between
player sessions. To support a “scoreboard” feature that
summarizes the game, we require a function called
listPlayerLocations that reads each player’s name from the
database and lists it, along with the name of the room the
player is currently in.

Let’s begin by considering how one would construct
this method in JPie using JDBC directly, instead of
JPie/qt. Figure 1 reveals a surprising amount of incidental
complexity, sometimes called “accidental complexity”
[12], which the programmer must deal with in
constructing a correct JDBC program. First, and of utmost
concern, is the requirement that the programmer express
the data query in the SQL textual language. The
programmer must also know the relational schema and its
table relationships. As with any embedded textual

language, no compile-time syntax or type checking can be
done to validate the SQL strings. Secondly, the program
is composed almost entirely of operations on objects of
JDBC types such as java.sql.Connection,
java.sql.Statement, and java.sql.ResultSet. All three of
these types are needed to construct even the simplest
JDBC operation. Their use is unintuitive and they are
obfuscated by an overabundance of methods in their
public interfaces (especially ResultSet which deals with
iterating, inserting, updating, and retrieving data).

Figure 2 shows a method that is equivalent to the one in
Figure 1, but that uses the JPie/qt middleware for database
access. Use of JPie/qt has eliminated the incidental
complexities of both SQL syntax and the often rigid
associated API (such as JDBC). The program is written in
terms of the user-domain classes database.Player and
database.Room, and logically named (and automatically
created) methods on them: getAllRecords, getName, and
getLocationAsRoom.

1.4. Contributions

JPie/qt brings the power of a relational database
management system to a novice programmer or
application-domain expert familiar with object-oriented
programming abstractions. JPie/qt eliminates many of the
accidental complexities encountered when writing object-
oriented programs that interface with relational databases.
The programmer’s productivity is increased because he or
she interacts with rows of database tables directly as
objects on the Java heap.

2. Related work

Due to the prevalence of both the object-oriented
programming model and the relational database model,
seamless integration of the two is an important research
goal that has resulted in a number of technologies. Most
notably, the problem of better integrating data-access
features into the Java programming environment has been
addressed by Sun in JDO [13] and by various third-party
vendors in OO-Relational mapping tools [1]. In addition,
related work in the patterns literature [2], [6], [12], [13]
has some bearing on this problem. We discuss each of
these in turn.

��������	
�����“�
�
��������
��
�����
����������
������������
��
�
���������������� !”"�

�
#	���
���#���
�������
��
����
�
��$%�
�
&
�	�
'	
��$�	
��%"�

()��
$�#��
&�$%%*�
� +�����	�$��#��
�������$,%���

� � ��������#��
�������$-%��
%"�

.�
�#����#
$%"�

Figure 1. Pseudocode for JDBC example

/��$�����
��+�0�
����
���
�1���
���2#$%�%*�

� +�����	�$+��
����
$%��
� +��
���������1#����$%��
����
$
%%"�

.�

Figure 2. Pseudocode for JPie/qt example

3 of 10

2.1. JDO

Java Data Objects (JDO) [13] is an API that allows
Java-domain objects to be stored in a database. JDO users
can make instances of a class storable in a database by
changing the class to implement the PersistanceCapable
interface. (Unlike java.io.Serializable which serves a
similar purpose, PersistanceCapable is not an empty or
“marker” interface. There are a many methods that need
to be implemented; hence tools are used to automate this
process.) Since this may require far-reaching changes to
source code, a shortcut is provided by bytecode enhancer
utilities that modify Java class files directly. To retrieve
persistent objects, the JDO Query API is used with filters
specified as strings in the JDOQL language. JDOQL is a
textual query language (using Java-like syntax) that serves
the same purpose as SQL WHERE clauses.

JDO is flexible with regard to what backing store
system is used to store the objects. One commonly used
type of backing store is a relational database. When used
this way, JDO achieves goals similar to those of JPie/qt.
There are two major differences, however. First, JPie/qt
leverages JPie’s features to become very transparent to the
programmer. Therefore a separate textual query language
or object-oriented query API doesn’t need to be learned.
Additionally, JPie/qt is designed to work with legacy
databases in that the object-oriented schema is created
from the database instead of vice versa.

2.2. OO-relational mapping tools

Software packages such as IBM’s Rational Rose XDE
[1] provide professional programmers working in textual
languages with many of the same features that JPie/qt
provides to JPie programmers. In general, these tools
work by allowing the user to construct a model of the data
in a vendor-neutral format (UML, for example) and then
generating the relational tables and code stubs from this
model. The programmer then customizes the code and the
tool keeps the model in synch. In terms of both expense
and complexity these tools are typically out of reach for
the beginning or casual programmer. The main focus of
these systems is to assist developers with experience and
knowledge of both the relational and object models. This
is in contrast to JPie/qt, which seeks to abstract away
much of the relational model.

2.3. Patterns

Architectural and design patterns can be found in any
well designed system and JPie/qt is no exception.
Throughout this paper some instances of patterns are noted
in references. A few of the major patterns affecting the
system as a whole are described below.

2.3.1. Wrapper Facade. Wrapper Facade [12] is a pattern
that builds object-oriented APIs from procedural
operating-system level APIs. JPie/qt itself can be seen as
a Wrapper Facade around the relational database model
and JDBC. Wrapper Facades for OS APIs reduce the
incidental complexities of using those APIs and JPie/qt
does the same for relational databases and JDBC.
Traditional Wrapper Facades wrap OS concepts such as
sockets, threads, and locks and elevate them from untyped
handles or pointers to classes. JPie/qt on the other hand is
not a set of classes but a system that generates classes (and
a supporting class library). Thus, JPie/qt is able to present
the programmer with domain-specific abstractions that
encapsulate the relational database-access logic.

2.3.2. Half-Object Plus Protocol. Half-Object Plus
Protocol [2] is a pattern for distributed objects. Each
address-space contains “half” of an object, plus the logic
to communicate with its counterparts in other address-
spaces. In JPie/qt, database-bound objects (see Section
5.5) act like half-objects. They are objects of classes that
may have a number of fields, but the contents of some
fields are ignored. Instead accesses to the fields are
redirected to the JPie/qt system and on to the underlying
database. This simplified the design of JPie/qt. By using
this design the user’s interface to JPie/qt is primarily
through the classes with which they are familiar.

Half-Object Plus Protocol can be seen in another JPie
system known as CDE [10], a Client Development
Environment for distributed applications.

2.3.3. Crossing Chasms. The topic of object-relational
integration is discussed in Crossing Chasms: A Pattern
Language for Object-RDMBS Integration [14]. This work
lists patterns such as “Representing Objects as Tables,”
“Object Identifier,” and “Foreign Key Reference.” These
patterns document a straightforward approach to
representing relational tables in an object-oriented system.

Representing Objects as Tables describes the analogy
between classes in the object-oriented model and tables in
the relational model. Object Identifier notes that classes
don’t necessarily have fields whose values are unique
across all objects. To mesh with the relational model,
each class needs a field that serves as its unique identifier,
also known as a primary key. Foreign Key Reference
describes how the object reference graph is represented in
the database. It is used in concert with Object Identifier,
since object references are represented as foreign key
fields in the database. Foreign key fields are those that
contain copies of the primary key of another table.

JPie/qt uses all three of the patterns mentioned above to
map the object-oriented model to the relational database
model. JPie/qt adds additional features such as Primary
Key Reference (following a Foreign Key Reference in the
opposite direction to obtain a collection of referents) and

4 of 10

Table Browsing (scrolling through all existing instances).

3. The JPie environment

JPie/qt is an extension of JPie, a tightly-integrated
development environment for live construction of Java
applications [7]. JPie enables inexperienced programmers
to create Java programs through direct manipulation of
program constructs, using the standard Java platform
APIs. JPie focuses on the process of software design and
creation as an experience that can be made simpler and
more intuitive for programmers. JPie/qt extends JPie’s
progress towards these goals in the area of database-
connected programs. JPie also provides on-the-fly class
creation and modification mechanisms that are used to

implement JPie/qt.

3.1. Programming in Java with JPie

In JPie, fully functional Java programs are created
without entering code as text. Instead of encoding
programs textually, users manipulate graphical
components directly representing the programming
abstractions. JPie users have access to the classes in the
Java 2 Platform SDK (J2SE) as well as third party classes.
Classes created within JPie are known as “dynamic
classes” because they can be modified during program
execution, providing a live development experience [8].

The JPie user can define the fields, methods, and
constructors of the class. Additionally, support is given

JDBC

JPie/qt

JPie Core

Java Reflection

Class Method

1 *

DClassWrapper

1

1

DClass

DynamicClass DMethodWrapper

DMethod

DynamicMethod1

1

DynamicDatabaseClass

Closure
1

*

ForeignKeyClosure PrimaryKeyClosure

Field 1*

DFieldWrapper

DField

DynamicField1

1

1

*

DatabaseField

ConnectionManager

*
-Creates

1

*

-Creates

1

DatabaseTable

UserClass1
Connection ResultSet

RecordCollection
-Creates

* 1
1
1

1
1

1

-Reflected As1

Figure 3. JPie/qt UML static structure

5 of 10

for designing a graphical view for the class, creating event
handlers that react to events on the view, and defining
behaviors (methods that execute periodically in their own
threads). Java statements are created within method
bodies inside method, constructor, event handler, or
behavior definitions.

3.2. Executing and debugging dynamic classes

JPie users can see a list of all instances of a class that

have been created. Instances can be created by invoking a
menu command (for classes with a default constructor).
When an instance is selected in the list, its graphical view
is shown. Should an exception occur in a dynamic class
method, a debugger appears. The debugger shows the
same graphical view of methods as is used in method
definition. Methods can be changed in the debugger or the
dynamic class window and all changes are reflected in
already existing objects. By taking advantage of live code
modification, developers can avoid the edit-recompile-
execute cycle when debugging their programs.

3.3. JPie internals

To support dynamic classes, JPie extends the Java
reflection API’s capabilities to allow modifying classes,
fields, methods, and constructors. An intuitive way to
structure the API would be to inherit from the Java
reflection classes like Class and Field. Unfortunately
these are final classes, so instead the JPie reflection
hierarchy wraps them in the wrapper classes (Figure 3)
ClassWrapper, FieldWrapper, MethodWrapper and
ConstructorWrapper. The abstract classes DClass,
DMember, DField, and DConstructor represent the
interfaces common to both compiled and dynamic classes.

Extending the reflection system, however, isn’t enough
to make dynamic classes fully interoperable with compiled
classes. To achieve this, each dynamic class has a
compiled peer. The compiled peer is a traditional Java
class with the same name and inheritance ancestors as the
dynamic class. In addition, all compiled peers implement
a special interface, DInstance, used by the JPie system.
Instances of the compiled peer class (known as peer
instances), act as proxies [6] for the dynamic class
instances in the JVM. Using this mechanism, compiled
code (such as the standard Java APIs) can be called from
dynamic classes and issue callbacks (Swing events, for
instance) to the dynamic class instances.

4. Using JPie/qt

This section illustrates the programming experience
supported by JPie/qt, concentrating on how programmers
interact with a database while constructing an object-
oriented application.

4.1. Example program: SmartMail

SmartMail is a system for automating multicast email
requests and managing responses. For example, a survey
may be sent to many people. SmartMail would be used to
collect and tabulate the replies instead of the sender doing
so manually. SmartMail is being developed by our
research group in order to test and evaluate JPie (including
JPie/qt) as a development environment for medium-sized
software applications.

SmartMail messages originate in the author’s standard
email client. An interceptor component acts as an SMTP
proxy and begins the process of turning a regular message
into SmartMail. The SmartMail contains HTML form
fields for recipients to fill in. Before being sent, it is
handed off to a register component which records
information about the SmartMail in a relational database.
The SmartMail is then sent to each recipient as an HTML
message with an embedded form.

Recipients read SmartMail with any standard HTML-
enabled email client. Once they have filled out the form
fields and press the “Submit” button, the form contents are
sent to the accumulator component via HTTP. The
accumulator tabulates the results in the relational database.
The originating author can then query the database for the
results.

The accumulator component’s design and
implementation are described in this section as an example
of a JPie/qt client application. A Java Servlet written
entirely in JPie, the accumulator is responsible for
receiving replies and storing them in the central database.

4.2. Initial setup: database and JPie/qt

For the SmartMail prototype, we chose the free
database MySQL [4] as the relational database engine.
We designed a schema (Figure 4) for the SmartMail
system and using the MySQL tools. Arrows in the
diagram indicate N-to-one relationships.

Figure 4. SmartMail database schema

6 of 10

4.2.1. Opening the database in JPie. With the schema in
place, JPie’s “Open Database” command is executed.
This brings up a wizard that prompts the user for the
JDBC connection string, user name, and password,
followed by a selection box listing the available database
tables. Selecting all tables causes each one to be brought
in to JPie. Next, a folder in the user’s classpath is chosen
to store the database-connected classes. When the
operation completes, JPie makes available the classes
corresponding to each table.

4.2.2. Establishing table relationships. When JPie/qt
generates the database-connected classes, it includes both
declarations for the fields mirroring the fields of the
database table and accessor/mutator methods (get and set).
What’s missing is a way to deal with inter-table
relationships. Since JDBC doesn’t provide a widely-
supported method to retrieve this information from the
database itself (some databases do not even keep track of
table relationships), the user needs to indicate these
relationships to JPie/qt. To do so, the programmer drags
the related type onto the “links to” area of the field
declaration for the foreign key field. In the example of
Figure 4, to associate the Session table’s field “authorId”
with the User table, the programmer drags the User class
to the “links to” area of the declaration of authorId inside
the Session class.

4.3. Developing the example program

Only one class is needed to implement the accumulator
component. The Accumulator class extends the J2EE
provided class javax.servlet.http.HttpServlet. The Servlet
methods init() and destroy() are called at the beginning
and end of the object’s lifetime, respectively. The
doPost() method is called to process each HTTP request
(we’re using the POST request verb).

The algorithm for doPost() is simple. First we must
look up the response object from the database that
corresponds to this response. A cookie (Also known as an
“Asynchronous Completion Token”) [12] is used to
uniquely identify responses (it is embedded in a hidden
form field in the HTML). This ensures that the response is
valid. Next we need to iterate over the Fields (from the
Field1 table -- so named because “Field” caused naming
conflicts with JPie and/or java.lang.reflect.Field) for this
session and create corresponding Values for this response.

This operation comprises multiple updates to the
database. In order for it to appear to be one atomic
change, we use the transaction feature of JPie/qt. JPie/qt
provides a method modifier named “transaction” right
alongside “synchronized,” “static,” and “final.” Just as
“synchronized” prevents multiple threads from entering a
critical section, “transaction” protects multiple threads or
processes (possibly outside of JPie) from race conditions

or seeing incomplete data in the database.

5. Implementation

The Java classes that make up the implementation of
JPie/qt connect the core JPie extended reflection system
(see Section 3.3) to JDBC. This is shown in Figure 3.

5.1. Metadata inspection and dynamic class
generation

The user begins the first session with the JPie/qt API by
invoking the “Open Database” menu command, as
described in Section 4.2.1. Internally, the system then
creates a dynamic class for each selected table. These
dynamic classes are each represented in the JPie system
with objects of the class DynamicDatabaseClass. JPie/qt
adds fields to the class corresponding to the columns of
the table. These fields are DatabaseField objects in JPie.
JDBC metadata and type mapping features are used to
retrieve the table names and types. Metadata inspection
and dynamic class generation is not repeated in subsequent
sessions; the user need only open or refer to the generated
dynamic classes.

5.1.1. The primary key. When the system needs to know
which column holds the primary key for a table, it uses the
following algorithm. First the metadata is queried through
JDBC. However, not all JDBC drivers support this
method. If the metadata key information is unavailable,
the first integer column is considered the primary key.
This is a reasonable heuristic because conventional
database design positions the primary key first. Clustered
primary keys (those that span multiple fields) are not
currently supported.

5.1.2. Related tables. After the dynamic classes are
created and populated with fields, they appear in JPie with
all of the other dynamic classes. Database-generated
classes, however, have augmented views in JPie. The
field declaration view has an additional area called “links
to.” A class name (another dynamic database class) can be
dragged into this area. This establishes a relationship
between the two tables with the field as the foreign key.
Note that the foreign key field still has a primitive type,
but it also has a related type (another dynamic database
class). When a relationship between tables is established,
two methods are generated, with natural application-
specific method names built from the table and field
names in the database. These two methods allow the
programmer to navigate the N-to-1 table relationship using
the Java objects.

One is a method on the foreign key’s table class that
returns the corresponding object of the related table class.
Object-oriented programmers will find this to be a natural

7 of 10

operation, since it mirrors following an object reference.
This is known internally as the Foreign Key Closure (since
it is implemented as a closure in the JPie system, as
explained in Section 5.1.3). An example of such a closure
is “getAuthorIdAsUser” in the Session class, generated
from the relationship between the Session and User tables
in Figure 4.

The other is a method on the related table that returns a
set of objects (using java.util.Collection) representing the
set of rows in the foreign key table related to the current
object (this) in the related table. This is the Primary Key
Closure. An example of such a closure is
“getSessionSetForAuthorID” in the User class, generated
from the relationship between the Session and User tables
in Figure 4. This closure can be thought of as the dual of
“getAuthorIdAsUser.”

5.1.3. Classes in the JPie/qt implementation. Instances
of the ConnectionManager class wrap JDBC Connection
objects. This class provides the main point of interface
between JPie/qt and JDBC. Along with the wrapped
JDBC Connection object, the ConnectionManager
instance stores connection-specific data such as the URL,
username, and password, as well as the per-thread
transaction information. Because the other JPie/qt classes
use the ConnectionManager to perform their functions, a
convenient way to access the ConnectionManager objects
is needed. To this end, a static hash map from Strings to
ConnectionManagers is kept, where the strings are the
fully-qualified class names of the dynamic database
classes.

So that the classes corresponding to database tables can
be dynamically modified in JPie, they are represented as
instances of DynamicDatabaseClass, which extends JPie’s
DynamicClass. Instances of DynamicDatabaseClass
represent classes whose objects have the ability to be
database-bound. This class’s sole responsibility is to
distinguish DynamicDatabaseClasses from other
DynamicClasses so that its fields are DatabaseFields
(Section 5.2.1), and the correct GUI views are created by
JPie. (As of this writing, the JPie and JPie/qt
implementations are being changed so that any
DynamicClass can be a database class. This will permit
dynamic changes to the database status of any
DynamicClass.)

Each class generated by JPie/qt extends DatabaseTable.
Therefore instances of DatabaseTable represent the rows
of a given table. This is where per-object information is
stored, such as whether or not the object is currently
database-bound. DatabaseTable also provides methods
that can be called on any JPie/qt object, such as insert.
The insert method, when called on an unbound object,
inserts a row in the database with the field values of the
object, and binds the object to the row.

Closure is a JPie class that extends DynamicMethod.

The subclasses of Closure are regular compiled Java
classes that override an “invoke” method. Closures are
added to DynamicClasses and appear in the list of declared
methods for that class. When the closure methods are
executed in dynamic classes, the compiled “invoke”
method is called. Closures are used here because the
system needs a way to create methods at run-time that
execute boilerplate code that is parameterized by (and
bound up with) precomputed run-time data, such as which
tables and fields to operate on.

ForeignKeyClosure and PrimaryKeyClosure each
extend Closure to allow traversal of database relationships.
ForeignKeyClosures, such as getAuthorIdAsUser (see
Section 5.1.2), traverse the relationship from foreign key
to primary key. For example, calling the closure method
on a given Session object results in the related User object
being returned. This is implemented by calling the
getInstance method on the related table (User), passing in
the value of the foreign key. PrimaryKeyClosures, such as
getSessionSetForAuthorId (see Section 5.1.2), traverse the
relationship in the opposite direction. Given a User object,
a set of Session objects are related by the AuthorId field in
the Session table. When the PrimaryKeyClosure returns a
set as an object implementing java.util.Collection is
returned, the RecordCollection class (Section 5.3.3) is
used internally to implement this functionality.

5.2. Field access and update

Fields belonging to dynamic classes that are generated
to mirror the database schema have overridden behavior
for both reading and writing, so that these operations
affect the appropriate data in the database. Therefore all
expressions using or assigning these fields (not just
accessor and mutator methods) will result in underlying
calls to the database. For either a read or a write of a
specific value, a JDBC ResultSet object is generated. The
ResultSet will have exactly one row because only the row
corresponding to “this” object is queried. This ResultSet
is cached for future use and also used to complete the
requested operation.

5.2.1. Class in the JPie/qt implementation:
DatabaseField. DatabaseField extends JPie’s
DynamicField class. DatabaseFields add a field for the
related class. Besides tracking table relationships, the
purpose of DatabaseField is to override get and set so that
access to fields of database-bound objects results in
reading or writing data in the database.

5.3. Table iteration

User programs need to iterate through the objects
representing the rows in a table. JPie/qt provides the
programmer with ways to iterate through all of the rows of

8 of 10

the table (complete iteration) or through a subset of rows
(filtered iteration).

5.3.1. Complete iteration. Each dynamic database class
is generated with a static method “getAllRecords().” This
method returns a java.util.Collection to the caller that
represents all objects in the table. Calling this method
causes one query to be run against the database (internally
creating a JDBC ResultSet as the backing store for the
collection) to get the primary key values for each row.
These keys are not loaded into the system at once. Instead
the iterator class for this collection steps through the
ResultSet, getting one key at a time and returning a
reference to the corresponding Java object.

5.3.2. Filtered iteration. Iterating over a complete table
may be undesirable when only a limited number of rows
are really needed and the table extent is large. Therefore a
“getSomeRecords(String where)” static method is
provided in each generated class. This method allows the
user to input a textual WHERE clause to be passed
directly to the JDBC layer in order to select only certain
rows to be iterated over. This allows programmers with
some knowledge of SQL to apply that knowledge to
JPie/qt. This is the part of JPie/qt that, for efficiency
reasons, exposes SQL to the programmer. However,
programmers without knowledge of SQL syntax do not
need to use this mechanism. They can use complete
iteration combined with “if” statements to achieve the
same results, albeit with a decrease in performance.

5.3.3. RecordCollection. The RecordCollection class
implements java.util.Collection and represents a set of
rows from a database table. RecordCollection objects can
be constructed in three ways to support sets representing
all rows in a table, a subset of rows using the “where”
clause, and a subset of rows using the primary key
traversal. In each of these cases, an SQL statement is
constructed by the middleware and run against the
database. The ResultSet from JDBC is used internally by
the iterator. The iterator’s hasNext method maps to the
ResultSet’s isLast method (negated). The iterator’s next
method maps to ResultSet’s next method. The
ConnectionManager iterator translates the current database
row into objects to be returned.

5.4. Transactions, Abort, and Exceptions

Methods in JPie have an optional extra modifier (like
“final” or “static”) called “transaction.” The normal
transaction mode in JDBC is known as auto-commit.
Each operation is committed to the database upon
completion. Any method defined as a transaction will
cause database operations to not be auto-committed (when
the JDBC driver supports this). Instead, the commit will

be done when the method exits by returning. The JPie/qt
design further unifies the transaction and method
execution semantics by causing a database abort (rollback)
to occur if the method terminates by throwing an
exception. Commit-mode information is stored per-thread

since different threads may be executing different database
operations, some in transactions and some not. (This is an
example of thread-specific storage [12].)

Transactions have nesting semantics, much like
recursive locks. If a thread is in the course of executing a
transaction method and it calls another transaction method,
the transaction doesn’t commit when the nested method
exits. Instead, a save-point is defined when the nested
method begins. If the nested method exits by throwing, a
partial rollback (to this save-point) is done. If the nested
method exits without throwing, execution continues as
normal in the caller.

5.5. Browsing tables

Within the context of an executing program, instances
of DynamicDatabaseClass classes are in one of two states:
bound or unbound. Bound instances have a corresponding
row in the database table. Reads or writes to fields of
these instances have direct and immediate effect on the
database. Unbound instances reside on the Java heap with
no connection to the database. The binding state is kept in
a Boolean instance variable by the system.

Similarly, each row of the database table is also in one

Figure 5. Highlighted instances and table browsing

9 of 10

of two states with respect to the JPie/qt system: resident or
nonresident. Resident rows have a corresponding Java
heap object (which is a bound instance) whereas
nonresident rows do not.

In JPie, users view and interact with instances of
dynamic classes in the instances panel. The instances
panel consists of a list of instances on the left, and a panel
for the graphical view of the currently selected instance on
the right. JPie/qt enhances the instances list in two ways.
First, bound instances are highlighted in green. Second,
table browsing can be enabled. Table browsing adds an
entry to the instance list corresponding to each row in the
database table. See Figure 5.

6. Performance

JPie/qt adds a layer between the programmer’s code
and JDBC. Therefore it is expected that programs using
JPie/qt will have somewhat greater memory and execution
time requirements. To test the worst-case execution time
overhead, a database table was filled with 25,000 rows,
each containing a random integer. Procedures were
written to compute the sum of the 25,000 integers using
four different methods: JPie/qt iteration, JDBC iteration in
JPie, JDBC iteration in Java and an SQL aggregate
function (“SELECT SUM(X)…”). The first three
procedures brought the data into the program’s address
space in order to compute the sum, whereas the last
procedure instructed the database to compute the sum on
behalf of the program. The platform used for these tests
was an IBM Thinkpad T40 with the Intel Pentium M
processor at 1400 MHz and 512 MB of RAM. The
database used was a local instance of MySQL [4]. The
JVM running JPie was started with an initial heap size of 1
billion bytes. Results from averaging five runs are shown
in Table 1.

Table 1. Execution time for 25,000 records (ms)
JPie/qt JPie/JDBC JDBC SQL Aggregate
10,100 2,490 376 68.2

The experiment shows that within the current

implementation of JPie/qt, the approximate time to fetch a
record is 0.4 milliseconds, which is acceptable for
development work but not for sizable batch processing.
We observe an order of magnitude cost increase using
JPie/qt over JDBC for batch-processing operations. This
can be attributed to the fact that JPie and JPie/qt create an
instance of a dynamic class for each row. To provide
interoperability between compiled and dynamic classes,
the JPie run-time system allocates two “peer” objects to
represent each instance of a dynamic class and uses
synchronized method calls (with the related locking
overhead) to make the two peers mutually referential. In

addition, JPie/qt incurs overhead for cache management.
Exporting completed JPie/qt programs as standard Java
applications, as discussed in Section 8, could alleviate
much of this overhead and still provide the benefits of live
development and model unification.

7. User Experience

The students of Washington University CS123 in the
Spring 2003 semester completed a project using an early
version of JPie/qt. The project involved constructing
software that ran on multiple hosts, each connected to a
central database. The database described the state of a
multiplayer adventure game. Tables included Player,
Room, ItemDescription, and ItemPlacement. The students
implemented methods that displayed the current state and
allowed players to move through the virtual world.

This experience didn’t uncover any performance
problems, in contrast to the experiments in Section 6. The
discrepancy between the two scenarios can be explained
by the differences between the two applications. While
the experiments in Section 6 were data-intensive batch-
processing tasks, the CS123 project was interactive. At
each button click (a request to move rooms, pick up an
item, or “tag” another player) the application has a very
limited amount of database-related work to do.

JPie/qt is suitable for development and interactive
applications, but in its current form it has a high
performance overhead for batch-processing applications.

8. Future work

Several additional features are being considered for
inclusion in the JPie/qt system. These features would
extend the system’s performance and its scope of
applicability.

Programs using JPie/qt currently must run within the
JPie environment. Code generation features are available
in JPie to automatically generate and compile Java source
code from JPie applications. However, these features
currently do not support JPie/qt programs. To allow
exported programs to use JPie/qt, parts of the JPie/qt
system could be factored out as a runtime library. Then,
during code generation, accesses of database fields would
result in calls into this library. This runtime library and
the JDBC driver code would be combined with the
programmer’s exported code to form a complete program.

Even with code generation, performance could suffer
when computations that the database engine could do are
instead carried out in the user process. Unfortunately,
JPie/qt programs can easily suffer from this problem. As a
simple example, a user might call getAllRecords() to
iterate over a table and then within the loop compare a
field of each row to a constant value. By doing this the
user has inefficiently implemented the “select” operation

10 of 10

of the relational algebra [5], instead of relying on the
relational database. Programs executing in the JPie
environment are not optimized, allowing for live
debugging and modification. As a future extension, code
generated from JPie/qt programs could be, when possible,
converted to SQL queries.

JPie/qt maps schemas from databases to class and
object relationships in and object-oriented program. The
converse operation is also useful in many cases.
Sometimes an object-oriented design describes objects that
the programmer wishes to make persistent in the database.
Work is underway to enable JPie/qt to transform any
DynamicClass into a database-connected class, and in so
doing create a corresponding table in the relational
database. Additionally, design changes made to the
dynamic class (adding, removing, renaming fields) will be
reflected in the database schema.

JPie/qt allows programmers to pass a String argument
to getSomeRecords(String where) in order to select a
subset of rows from the table to iterate over. Writing a
well-formed WHERE clause string is up to the
programmer. If the string is rejected by JDBC, an
exception is thrown at runtime. This mechanism doesn’t
fall within the JPie philosophy of making programming
easier by elevating the level of discourse. In fact it can be
seen as an “escape hatch,” as described in [12]. Ideally
JPie/qt, could provide a visual expression builder tool for
where clauses, relieving the programmer of the need to
know SQL syntax and constructs.

9. Conclusion

Object-oriented middleware is typically thought of as a
fixed library of classes. JPie/qt is an example of how
database-access middleware can be more than just an
object-oriented API. JPie/qt unifies the relational and
object-oriented models using dynamically generated
classes. Method calls and exceptions are tied to database
transactions, and objects whose instance variables can be
database-bound. In this way the database features are
tightly-integrated into the programming and execution
environment.

As a result, the programmer no longer need be
concerned with the details of the relational database
model. The notion of traversing an object graph is
certainly more intuitive to object-oriented programmers
than constructing table joins. Having to deal directly with
relational algebra is added complexity from which the
middleware can shield the programmer.

Designers of programming systems should not ignore
the fact that the programmer will want to store data
persistently, most likely in a relational database. Libraries
such as JDO [13] can help integrate the database aspects
into the language. Tools such as Aspect-Oriented
Programming [3] “weavers” may lead to systems that

transparently add persistence to traditional programming
the way JPie/qt adds it to live object-oriented software
development.

Acknowledgements

We thank the entire JPie research group at Washington
University in St. Louis, as well as the students and
teaching assistants from CS123. We also thank Chris Gill
and David Butler for useful discussions and comments on
an earlier version of this paper.

This research was supported in part by the National
Science Foundation under CISE Educational Innovation
Grant 0305954.

References

[1] Boggs, Wendy and Boggs, Michael. 2002. Mastering UML
with Rational Rose 2002. Sybex.
[2] Coplien, James and Schmidt, Douglas, eds. 1995. Pattern
Languages of Program Design. Addison-Wesley.
[3] Crawford, Diane, ed. 2001. Communications of the ACM:
Special Issue on Aspect-Oriented Programming. Volume 44,
Issue 10. ACM Press.
[4] DuBois, Paul. 2003. MySQL. 2nd ed. SAMS.
[5] Elmasri, Ramez and Navathe, Shamkant B. 2000.
Fundamentals of Database Systems. 3rd ed. Addison-Wesley.
[6] Gamma, Erich, et al. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.
[7] Goldman, Kenneth J., et al. 2003. JPie: Programming is
Easy. http://jpie.cse.wustl.edu/
[8] Goldman, Kenneth J. 2004. Live Software Development
with Dynamic Classes. (submitted for publication)
[9] Hamilton, Graham, et al. 1997. JDBC Database Access with
Java. Addison-Wesley.
[10] Pallemulle, Clark, and Goldman. 2004. Supporting Live
Development of SOAP and CORBA Clients.
http://jpie.cse.wustl.edu/sub_sections/publications/cde.htm
[11] Rumbaugh, James, et al. 1991. Object-Oriented Modeling
and Design. Prentice Hall.
[12] Schmidt, Douglas, et al. 2000. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects
(Volume 2). John Wiley & Sons.
[13] Sun Microsystems. 2003. Java Data Objects (JDO).
http://java.sun.com/products/jdo/
[14] Vlissides, John, et. al, eds. 1996. Pattern Languages of
Program Design 2. Addison-Wesley.

	The Design and Implementation of Database-Access Middleware for Live Object-Oriented Programming
	Recommended Citation
	The Design and Implementation of Database-Access Middleware for Live Object-Oriented Programming

	tmp.1470340445.pdf.ARss_

	Abstract: Abstract: We describe middleware and programming environment tools (JPie/qt) that allow programmers to access relational databases in an object-oriented way. Building on top of the JDBC API and leveraging live dynamic class creation and modification in JPie, the JPie/qt middleware presents the user with a simple interactive mechanism for creating object-oriented applications that access databases. Classes are generated mirroring the database schema and programmers deal directly with these classes. Objects of these classes can be database-bound, so reads and writes to their fields are reflected in the relational database immediately. Database transactions are supported by connecting commit and rollback to Java exception semantics.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: September 1, 2004
	Author: Authors: Mitz, Adam H.; Goldman, Kenneth J.
	Title: The Design and Implementation of Database-Access Middleware for Live Object-Oriented Programming
	ReportNumber: 2004-76
	DepartmentName: Department of Computer Science & Engineering

