Galina Levitina

University of New South Wales

Witten Index and spectral shift function

Abstract

Let D be a selfadjoint unbounded operator on a Hilbert space and let $\{B(t)\}$ be a one parameter norm continuous family of self-adjoint bounded operators that converges in norm to asymptotes B_{\pm} . Then setting A(t) = D + B(t) one can consider the operator $\mathbf{D}_{\mathbf{A}} = d/dt + A(t)$ on the Hilbert space $L_2(\mathbb{R}, H)$. We present a connection between the theory of spectral shift function for the pair of the asymptotes (A_+, A_-) and index theory for the operator $\mathbf{D}_{\mathbf{A}}$.

Under the condition that the operator B_+ is a *p*-relative trace-class perturbation of A_- and some additional smoothness assumption we prove a heat kernel formula for all t > 0,

$$\operatorname{tr}\left(e^{-t\mathbf{D}_{\mathbf{A}}\mathbf{D}_{\mathbf{A}}^{*}}-e^{-t\mathbf{D}_{\mathbf{A}}^{*}\mathbf{D}_{\mathbf{A}}}\right)=-\left(\frac{t}{\pi}\right)^{1/2}\int_{0}^{1}\operatorname{tr}\left(e^{-tA_{s}^{2}}(A_{+}-A_{-})\right)ds,$$

where $A_s, s \in [0, 1]$ is a straight path joining A_- and A_+ .

Using this heat kernel formula we obtain the description of the Witten index of the operator $\mathbf{D}_{\mathbf{A}}$ in terms of the spectral shift function for the pair (A_+, A_-) .

Theorem. If 0 is a right and a left Lebesgue point of the spectral shift function $\xi(\cdot; A_+, A_-)$ for the pair (A_+, A_-) (denoted by $\xi_L(0_+; A_+, A_-)$ and $\xi_L(0_-; A_+, A_-)$, respectively), then the Witten index $W_s(\mathbf{D}_{\mathbf{A}})$ of the operator $\mathbf{D}_{\mathbf{A}}$ exists and equals

$$W_s(\mathbf{D}_{\mathbf{A}}) = \frac{1}{2} \big(\xi(0+;A_+,A_-) + \xi(0-;A_+,A_-) \big).$$

We note that our assumptions include the cases studied earlier. In particular, we impose no assumption on the spectra of A_{\pm} and we can treat differential operators in any dimension.

As a corollary of this theorem we have the following result.

Corollary. Assume that the asymptotes A_{\pm} are boundedly invertible. Then the operator $\mathbf{D}_{\mathbf{A}}$ is Fredholm and for the Fredholm index index $(\mathbf{D}_{\mathbf{A}})$ of the operator $\mathbf{D}_{\mathbf{A}}$ we have

$$index(\mathbf{D}_{\mathbf{A}}) = \xi(0; A_{+}, A_{-}) = sf\{A(t)\}_{t=-\infty}^{+\infty},$$

where $sf\{A(t)\}_{t=-\infty}^{+\infty}$ denotes the spectral flow along the path $\{A(t)\}_{t=-\infty}^{+\infty}$.

Talk time: 2016-07-18 16:00— 2016-07-18 16:20 Talk location: Cupples I Room 115

Session: Operator theory, singular integral equations, and PDEs. Organized by R. Duduchava, E. Shargorodsky, and J. Lang