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Running title: Remote sensing of mycorrhizal associations 

 

Abstract 

A central challenge in global ecology is the identification of key functional processes in 

ecosystems that scale, but do not require, data for individual species across landscapes. Given 

that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal 

fungi—arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi—and that AM- and 

ECM-dominated forests often have distinct nutrient economies, the detection and mapping of 

mycorrhizae over large areas could provide valuable insights about fundamental ecosystem 

processes like nutrient cycling, species interactions, and overall forest productivity. We explored 

remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association 

across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance, 

reflectance derivatives, and band differencing across moderate/high-resolution Landsat data 

revealed distinctly unique phenological signals that differentiated AM- and ECM-associations. 

This approach was trained and validated against measurements of tree species and mycorrhizal 

association across 140,000 trees throughout the temperate US. We were able to predict 77% of 

the variation in mycorrhizal association distribution within the forest plots (p<0.001). The 

implications for this work move us towards mapping mycorrhizal association globally and 

advancing our understanding of biogeochemical cycling and other ecosystem processes.  

 

 
Keywords: mycorrhizae; remote sensing; spectral; nutrients; canopy; species; landscape 

 

 

Introduction 

Nearly all tree species form symbiotic relationships with one of two types of mycorrhizal 

fungi—arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi—exchanging carbon from 

trees for nutrients from fungi. Recently, several investigators have hypothesized that the type of 

mycorrhizal fungi with which a tree species forms a symbiosis (i.e., the mycorrhizal association) 

represents an integration of multiple plant and soil microbial functional traits (Read &  Perez-

Moreno, 2003), such that forests dominated by AM or ECM associations exhibit distinct nutrient 

economies (Chapman et al., 2006, Phillips et al., 2013). AM-associated trees generally have 

relatively high foliar phosphorus and leaf mass area (Koele et al., 2012), early leaf out (Key et 

al., 2001, McCormack et al., 2014), and leaf litters that decompose rapidly (Cornelissen et al., 

2001, Hobbie, 2006), resulting in the predominance of inorganic forms of nutrients characterized 

by accelerated carbon and nutrient cycling (Brzostek et al., 2015, Midgley &  Phillips, 2014, 

Phillips et al., 2013, Waring et al., 2015) (but, see also, Koele et al., 2012). In contrast, ECM-

associated trees have relatively low foliar phosphorus and leaf mass area, late leaf out, more 

slowly decomposing leaf litter, a greater proportion of nutrients in organic forms, and tend to 
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slow carbon and nutrient cycling (Averill et al., 2014, Soudzilovskaia et al., 2015, Vesterdal et 

al., 2013). 

 

The relative abundance of AM- and ECM-associated trees in an ecosystem or region may 

provide an index of differences in nutrient economics within and among forests. As such, a broad 

classification approach that considers mycorrhizal associations in forests from the plot scale to 

the regional scale can facilitate improved projections of the biogeochemical cycling and impacts 

of tree species changes. However, detecting and mapping AM- and ECM-associated trees across 

the landscape represents a grand challenge in global ecology. While AM- and ECM-dominated 

forests occur relatively homogeneously across some biome types (e.g., AM-associated trees in 

tropical forests, ECM-associated trees in boreal forests), most forests in temperate regions 

contain highly mixed assemblages of AM- and ECM-associated trees (Allen et al., 1995, Phillips 

et al., 2013, Read &  Perez-Moreno, 2003). Complicating this classification, temperate forests 

have experienced numerous disturbances over the last century, leading to highly heterogeneous 

biogeochemical regimes across disturbance and successional histories (Abrams, 1992, Nowacki 

&  Abrams, 2008). Still, given that mycorrhizal associations of most temperate tree species are 

known (Brundrett et al., 1990, Wang &  Qiu, 2006), unique spectral signatures between AM- and 

ECM-associated trees would enable large-scale remote sensing mapping of the mycorrhizal 

framework with which to track ecosystem functions across landscapes. 

 

Mapping tree species from remote sensing has a long and varied history (Martin et al., 1998, 

Turner et al., 2003). High-resolution hyperspectral and Light Detection And Ranging (LiDAR) 

approaches have demonstrated a high degree of success in accurate classification of multiple 

species across heterogeneous assemblages (Brandtberg et al., 2003, Heinzel &  Koch, 2011, 

Holmgren &  Persson, 2004, Moffiet et al., 2005). However, these studies typically require an 

airborne platform to increase the spatial resolution necessary to detect individual trees, thereby 

limiting the ability to map mycorrhizal associations across large geographic areas.  

 

Larger-scale, medium-resolution satellite data (e.g., Landsat) have been used successfully to 

create species-level forest classifications (Key et al., 2001, Mickelson et al., 1998, Ohmann et al., 

2011, Saatchi et al., 2008, Schriever &  Congalton, 1995, Walsh, 1980, Wilson et al., 2012, 

Wittmann et al., 2002, Wolter et al., 1995). These approaches are particularly effective for 

homogeneous species assemblages; however, increases in species diversity often lead to 

proportional decreases in accuracy. Refinements to reduce accuracy loss can be obtained through 

integration of aerial photography or spectral mixture analysis (Key et al., 2001, Martin et al., 

1998, Plourde et al., 2007). Still, with these additions/refinements the complexity of processing 

increases by more than an order of magnitude, including rapidly rising poorly constrained 

degrees of freedom, through necessary processing steps such as co-registration, vignetting, 

atmospheric correction, solar orientation, illumination, radiometric aerial triangulation, 

endmember identification and differentiation, and model reliance (Chandelier &  Martinoty, 

2009, Key et al., 2001, Plourde et al., 2007, Tuominen &  Pekkarinen, 2004, Underwood et al., 

2003). Therefore, large-scale mapping of individual tree species, especially in mixed-species 

environments, is highly labor intensive with inconsistent accuracies. Thus, the grand challenge of 

large-scale mapping of mycorrhizal association would seem to remain a grand challenge. That is, 

if we remained within the paradigm of “tree species equals mycorrhizal association”. 
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Here, we present a paradigm shift in understanding how to map and detect the distribution of 

mycorrhizal associations. We extend the large body of work in remote sensing of individual tree 

species to mapping mycorrhizal associations among groups of species. We ask, are tree species 

that associate with one type of mycorrhizal fungi more similar, in terms of their spectral 

characteristics, than tree species that associate with the other type of mycorrhizal fungi? For 

instance, maples, tulip poplars, and white ashes may all be unique species with unique spectral 

signatures, but they all associate with AM fungi only; oaks, American beeches, and hickories 

likewise all associate with ECM fungi only, again each with unique spectral signatures. But, are 

there spectral signatures that are both in common with the first group that differ from spectral 

signatures that may be in common with the second group? Like individual fingers with unique 

fingerprints—i.e., tree species—acting in concert as part of the left or right hand (AM or ECM), 

actions of the respective hand may be detectable and distinguishable. We test a new paradigm in 

mapping mycorrhizal association on large scales that does not require mapping of individual 

species. This framework can both circumvent problems of individual tree identification 

requirements in moderate-scale satellite data, and provide direct and consistent measures of 

mixed pixel—and mixed belowground associations—information. 

 

Our objectives were to: 

1. Identify spectral and phenological characteristics in 30 m resolution Landsat multi-band 

data across a gradient of AM to ECM dominant association ecosystems (Figure 1); 

2. Develop and test a statistical model to predict AM versus ECM dominance, as well as 

mixed-dominance areas; 

3. Classify and map mycorrhizal associations over large areas based on spaceborne 

observations. 

 

 

Materials and methods 

Study Area 

Forest plot data were collected from long-term research sites throughout the temperate US that 

are part of the Smithsonian Institution’s Center for Tropical Forest Science-Forest Global Earth 

Observatory (CTFS-ForestGEO) network of forest dynamics plots (Anderson‐Teixeira et al., 

2015): south-central Indiana (39.2361˚N, -86.2204˚W; 0.25 km
2
), northwest Virginia (38.8935˚N, 

-78.1454˚W; 0.25 km
2
), northeast Wisconsin (45.5508˚N, -88.7964˚W; 0.25 km

2
), and east-

central Missouri (38.5178˚N, -90.5575˚W; 0.20 km
2
) (Figure 1). The Indiana site is the Lilly-

Dickey Woods (LDW) forest dynamics plot, which is a part of Indiana University’s Research 

and Teaching Preserves. The Virginia site is part of the Smithsonian Conservation Biology 

Institute (SCBI) forest dynamics plot at the Smithsonian National Zoological Park’s 

Conservation Biology Institute. The Wisconsin site includes the Wabikon Forest Dynamics 

(WFD) plot, and is situated within the Chequamegon-Nicolet Forest. The Missouri site includes 

the Tyson Research Center Plot (TRCP), located at Washington University in St. Louis’ Tyson 

Research Center.  

 

Elevations range from 172 – 233 m at TRCP, 192 – 311 m at LDW, 233 – 301 m at SCBI, and 

488 – 512 m at WFD. Topography varies between sites with slopes averaging 4.3˚ at WFD, 9.3˚ 

at LDW, 11.3˚ at SCBI, and 16.5˚ at TRCP. The climates are similar—temperate continental 
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with minimum temperatures occurring in January, and maximum temperatures in July. Total 

precipitation averages 78 cm at WFD, 94 cm at SCBI, 98 cm at TRCP, and 104 cm at LDW with 

May generally the wettest month and January/February the driest.  

 

Each site contains a rich assemblage of hardwood tree species colonized by both AM and ECM 

fungi. All tree stems equal to or larger than 1 cm diameter at breast height (DBH) were measured, 

mapped, and identified for species (27,004 in LDW, 30,301 in TRCP, 39,026 in SCBI, and 

43,647 in WFD) (Bourg et al., 2013, Johnson et al., 2014, Spasojevic et al., 2014). Tree species 

were then classified as either AM- or ECM-associated based on known fungal associations (also 

referred to as ‘mycorrhizal composition’) (Brundrett et al., 1990, Wang &  Qiu, 2006). These 

data provided the ground truth data with which to compare our model. Our study included 77 

tree species, 43 of which were AM-associated and 34 of which were ECM-associated 

(Supplementary Table 1). The LDW and TRCP sites are predominantly ECM-associated species, 

72.3% and 86.3% of total basal area, respectively. Conversely, AM-associated species comprise 

the majority at the more mixed SCBI and WFD sites, 54.9% and 55.2% of total basal area, 

respectively. 

 

High-precision GPS coordinates were collected at all 20 m sub-plot corners and subsequently 

converted to polygon shapefiles with attributed plot data. To minimize geolocation error between 

field data and satellite data, a 3 x 3 aggregation was applied to each site’s matrix of polygon cells, 

combining adjacent features into new 60 x 60 m polygons without overlap. For example, in the 

20 x 20 m LDW plot matrix, the aggregated cells i,j were centered at  for i = 

0…7 and j = 0…7. Total tree basal area, total AM-associated tree basal area, and total ECM-

associated tree basal area were updated for the enlarged areas of the aggregated polygons by 

 for i = 0…7 and j=0…7, 

expressed as  for i = 0,1…7, and j = 0,1…7. Our study encompassed 64 of 

these 60 m subplots at the LDW site, 60 at SCBI, 70 at WFD, and 56 at TRCP. At SCBI, 12 plots 

encompassed a deer enclosure, and were thus excluded from this analysis (and grayed out in 

figures). High-resolution topographic data were available for each study location from which we 

generated topographic characteristics, including elevation, slope, and aspect.  

 

We analyzed the carbon and nitrogen content of green leaves, leaf litter, and soil from ECM- and 

AM-dominated plots (12 m x 12 m) at the LDW site (15 plots total). During the peak of the 

growing season in 2012, leaves were collected from the top of the canopy from four dominant 

trees in each plot. In 2012, soils were collected from the top 15 cm of mineral soil at four times 

across the growing season. Litterfall was collected during the fall of 2013 using litter traps in 

each plot. The litter was sorted to mycorrhizal-association. All samples were dried at 60
°
C, 

ground, and run on an elemental analyzer for C and N content (ECS 4010; Costech Analytics, 

Valencia California). For the green leaves only, we estimated specific leaf area from the area 

(LI-3100C; LiCor Biosciences; Lincoln, NE) and the mass. For the soils only, we measured pH 

after preparing soil/DI water slurries for each sample. To test for differences between 

mycorrhizal type for all response variables, we performed a one-way ANOVA using the “aov” 

function in the R statistical package. 
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Image Processing 

Landsat 5 Thematic Mapper (TM) data were downloaded from the USGS Global Visualization 

Viewer (GLOVIS; glovis.usgs.gov) over each site from 2008 – 2011. The total of cloud-free 

images available for each site included: 14 for LDW, 15 for SCBI, 19 for TRCP, and 11 for 

WFD. Nominal scene center locations are as follows: LDW (Path: 021/Row: 033), SCBI (Path: 

016/Row: 033), TRCP (Path: 024/Row: 033), and WFD (Path: 024/Row: 028). Quantized 

calibrated pixel values were converted to at-sensor radiance based on the minimum and 

maximum spectral radiance for each band (Markham &  Barker, 1987). At-sensor radiance 

values were then converted to top of atmosphere (TOA) reflectance using the Apparent 

Reflectance Model (Chavez, 1989): , where Rλ = 

surface reflectance, D = distance between Earth and sun (AU), Lλsensor  = apparent at-sensor 

radiance, ESunλ = exo-atmospheric solar irradiance, and θ = solar zenith angle.  

 

Statistical Model 

We constructed an ordinary least squares (OLS) model to predict the proportion of AM-

associated (Perc_AM) or ECM-associated (Perc_ECM) tree species (dependent variable) within 

the 60 x 60 m plots. Either percent AM or ECM can be assigned the dependent variable because 

they sum to unity; the difference in model output would simply be a change in sign of the 

regression coefficients. Seasonal near-infrared (TM4) reflectance profiles were constructed for 

each site using the library of acquired images. Six periods were identified that matched 

phenological events across sites: leaf flush (T1), green-up (T2), peak green (T3), early leaf 

senescence (T4), late leaf senescence (T5), and leaf abscission (T6) (Figure 2). 

 

The pool of candidate predictor variables included temporal reflectance of Landsat bands 1-5 and 

7 (herein referred to as TMn), seasonal normalized difference vegetation index (NDVI), intra-

band differencing of temporal reflectance, and topographic characteristics of elevation and slope 

(Table 1). Mean predictor values were extracted for each 60 x 60 m plot, where the reflectance 

contribution of each pixel was weighted by the area of intersection between the pixel and the 60 

m plot. 

 

Candidate predictors were categorized into three groups: I) TMn reflectance during the growth 

phase (t1 through t3); II) TMn reflectance during the senescence phase (t4 through t6); and, III) 

NDVI and the TM4:TM5 ratio for the entire year, mean TM4 reflectance, elevation, and slope. A 

total of 18 variables comprised the first group, 18 in the second in the second group, and 15 in 

the third group. Each group of candidate variables was separately entered into a linear regression 

model with bootstrap aggregation, where information was aggregated across iterations and the 

predictors scored, retaining the five highest-ranking predictors from each model ensemble. The 

15 retained predictors were used in a stepwise regression model producing a final model of 10 

predictors (Table 2). 

 

The OLS regression equation was initially computed using all variables. The least significant 

variables were iteratively eliminated using backwards exclusion, evaluating the partial F-statistic 

of each remaining variable against F = 0.10, until all remaining variables significantly 

contributed to the prediction of Perc_AM or Perc_ECM. The partial F-statistic (F to remove) was 

calculated as: Partial F-statistic = (RSS1 – RSS2) / MSE1, where RSS1 is the residual sum of 

squares for all variables currently in the equation, RSS2 is the residual sum of squares with one 
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variable removed from the equation, and MSE1 is the mean squared error for all variables 

remaining in the equation. Ten explanatory variables were selected from the subset pool of 

candidate predictors. 

 

For statistical independence and robustness, we also performed multiple iterations of the model 

construction by splitting the training dataset into calibration and independent validation sets, 

holding all predictors constant. In total, five additional sets were constructed: the model 

calibrated to each site individually then tested against the other three sites (a total of four sets), 

and 50% of the data randomly across all sites used for calibration with the other half of the data 

used for validation. 

 

 

Results 

Seasonal reflectance patterns varied by site both in terms of reflectance magnitude and 

phenological timing (Figure 2). The overall duration and magnitude of the growth and decline 

phases (t1 – t3) were similar among the lower latitude sites, and much longer in duration than in 

the higher latitude Wisconsin site (WFD). Timing and duration of the growth and decline phases 

were similar in the Indiana (LDW) and Missouri (TRCP) sites, but near-infrared reflectance 

magnitudes were markedly different, particularly during the growth phase. The temporal window 

from leaf flush (t1) to peak green (t3) was most narrow (i.e., rapid green-up) in the Virginia 

(SCBI) and Wisconsin (WFD) sites, though the duration of the decline phase (t3 – t6) was longer 

in SCBI. The magnitude of peak green reflectance was also least in SCBI. 

 

Using a unified predictive model across all sites, 77% of the variation in mycorrhizal association 

was explained (r
2

adj = 0.76; est = 11.35; F(10, 226) = 75.5; p < 0.05) (Figure 3). Predicted per-

plot percent AM- or ECM-association ranged from 4% to 97%, while measured percent AM- or 

ECM-association ranged from 3% to 98%, indicating that both the data and the methodological 

approach can capture nearly a full range. The amount of common variance in the model shared 

by all predictors with the dependent variable was found by examining the semi-partial 

correlations by subtracting the sum of squared semi-partial correlations from the overall r
2
, equal 

to 0.22. Variance inflation factors (VIFs) were greater than 2 for all predictors, indicating 

collinearity among the variables. Collinearity diagnostics revealed four variable eigenvalues 

approaching 0 with condition index values exceeding 30. However, collinearity does not 

adversely affect the overall fit of the regression model, and its presence does not impact the 

predictions made by the model so long as the sample is representative of the area to which the 

model is being applied. Residuals versus predicted values indicated no systematic deviation from 

the reference line that would suggest non-linearity in one or more variables. No serial correlation 

was detected in residuals; Durbin-Watson (d) = 1.8. The data exhibited homoscedasticity with 

error variance constant, while varying values in the predicted variable. Finally, the normal 

probability plot of the residuals revealed minimal departure from normality, but not significant to 

warrant modification to the model. The statistics for the unified model are shown in Table 2. 

 

The model was also tested by splitting the dataset into multiple sets for calibration and validation. 

In the test whereby we withheld half of the data across all sites for calibration and the other half 

for validation, holding the unified model (all sites, all data) predictors constant, 75% of the 

variation in mycorrhizal association was explained across the validation set (76% across the 
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calibration set; 2% degradation in predictive power from the unified model) (Supplementary 

Figure 1). Nine of the ten predictor variables remained statistically significant; however, T1B3 

was no longer significant. We also tested the robustness of each individual site to predict the 

patterns of all of the other sites. No individual site’s variability was able to robustly capture the 

variability in the other sites (10-31% predictive power), though the within-site predictive power 

(68-79%) was similar to the half-data and unified models. 

 

The predicted (unified model) and observed surfaces of percent AM are shown spatially for all 

four sites in Figure 4. At the ECM-dominated LDW and TRCP sites, the model tended to 

overestimate the percent AM by 1.5% on average for sub-plots mostly comprised of ECM-

associated trees (<50% AM), and underestimate the percent AM in the few sub-plots that were 

mostly AM-dominated (>50% AM) by 19% on average. At the AM-dominated SCBI and WFD 

sites, the model tended to underestimate the percent AM by 5% on average for sub-plots mostly 

comprised by AM-associated trees (>50% AM), and overestimate the percent AM by 7% on 

average for sub-plots mostly comprised by ECM-associated trees (<50% AM). 

 

We show the predicted mycorrhizal association regional coverage for the entire Landsat scenes 

over the Indiana, Virginia, Missouri, and Wisconsin sites overlaid on thematic land cover images 

in Figure 5. The LDW and TRCP sites are surrounded primarily by ECM-weighted mixed forests, 

increasing in ECM dominance closer to the sites. Forests surrounding the SCBI and WFD are 

very heterogeneous, with multiple areas of strong AM or ECM dominance near SCBI; the areas 

closest to the sites are relatively mixed and AM-dominant. The entire Landsat scenes are not 

fully populated by mycorrhizal designation due to exclusion of non-forest pixels and clouds. 

 

 

Discussion 

Temperate forests have experienced dramatic changes in species composition and spatial 

distribution over the past century due to land use change (Hurtt et al., 2006), timber harvesting 

(Schuler, 2004), invasive insects (Twery &  Patterson III, 1984), and altered disturbance regimes 

(Abrams, 1992). Predicting the biogeochemical consequences of these shifts is challenging, as 

tree species differ widely in their aboveground and belowground functional traits (Binkley &  

Menyailo, 2005). Hence, an important priority for understanding how shifts in forest 

composition influence ecosystem functioning is to develop a classification scheme that integrates 

the functional traits of tree species at the plot, stand, and landscape scales. However, given that 

species-specific approaches are not generalizable, an alternative approach is to classify forests 

based on the functional traits of the dominant trees, such as mycorrhizal association, an approach 

that strikes the balance between abstraction and detail to facilitate “scalability” in considering the 

biogeochemical attributes of the system. 

 

Mapping forest mycorrhizal composition at large scales has substantial practical and science 

applications. New global terrestrial biosphere model developments of plant–nutrient dynamics 

are actively being developed (Fisher et al., 2014, Fisher et al., 2010, Gerber et al., 2010, Shi et 

al., 2016, Sokolov et al., 2008, Thornton et al., 2007, Wang et al., 2007, Xu-Ri &  Prentice, 

2008, Zaehle et al., 2010), as their impact on global climate trajectories is large due to reductions 

in biospheric carbon uptake (Fisher et al., 2012, Hungate et al., 2003). The impact of 

mycorrhizae on nutrient cycling is significant (Averill et al., 2014, Chapman et al., 2006, 
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Cornelissen et al., 2001, Phillips et al., 2013, Read &  Perez-Moreno, 2003), though only 

recently have mycorrhizae been incorporated into such models (Brzostek et al., 2014, Shi et al., 

2016). For these models to succeed, boundary conditions of mycorrhizal distribution are required, 

yet none exist beyond broad biome groupings (Allen et al., 1995, Read, 1991).  

 

The Fixation & Uptake of Nitrogen (FUN) model (Fisher et al., 2010), for instance, is a cutting-

edge plant nitrogen uptake model based on carbon economics and resource optimization; 

recently, Brzostek et al. (2014) incorporated mycorrhizal-based nutrient uptake into FUN with 

different carbon costs assigned to AM versus ECM associations. FUN is now coupled into larger 

terrestrial biosphere / land surface models, including the Community Land Model (CLM) (Shi et 

al., 2016), the Noah Multi-Parameterization model (Noah-MP) (Cai et al., 2016), and the Joint 

UK Land Environment Simulator (JULES) (Fisher et al., 2013); CLM and JULES are coupled to 

larger Earth System Models used in assessments of future climate changes (IPCC, 2007). Shi et 

al. (2016) showed that including carbon costs to nitrogen uptake in CLM reduced annual net 

primary production by 13% globally; 1238.5 Tg C y
-1

 was allocated to mycorrhizae, representing 

52% of total global C used for nitrogen uptake. But, Shi et al. (2016) acknowledge that their 

spatial distribution of AM- versus ECM-associations by plant functional types was very coarse 

(Allen et al., 1995, Read, 1991), and did not capture heterogeneity across landscapes. Thus, 

incorporation of a remote sensing/observational-based large-scale boundary condition map of 

mycorrhizal associations into these large-scale models will improve the accuracy and 

representation of mycorrhizal and nutrient feedbacks to carbon cycling and climate impacts. The 

results described here present the first step towards closing that gap. 

 

We were able to predict 77% of the variation in mycorrhizal composition across 140,000 trees 

with wide variation in mycorrhizal associations and species assemblages using equivalent 

predictor variables from moderate resolution canopy spectral signatures. This is a significant 

advancement towards gleaning biophysical understanding in how belowground processes 

influence canopy characteristics. Nonetheless, more work is necessary to pinpoint the underlying 

mechanisms controlling these properties. While there is evidence in the literature that AM and 

ECM forests vary in nutrient status (Brzostek et al., 2015, Midgley &  Phillips, 2014, Phillips et 

al., 2013, Rosling et al., 2016, Waring et al., 2015), evidence on phenological differences is 

limited to few tree species (Key et al., 2001, McCormack et al., 2014), making it difficult to 

identify the mechanisms that underlie the phenological patterns across landscapes. Spring leaf 

out generally relates to a tree species’ stem anatomy: diffuse porous trees often leaf out earlier 

than ring porous trees owing to their reduced susceptibility of early season cavitation (Polgar &  

Primack, 2011). Interestingly, most of the dominant AM tree species at our sites (e.g., sugar 

maple, tulip poplar, red maple, black tupelo) are diffuse porous. In contrast, most of the 

dominant ECM trees at our sites (e.g., white oak, red oak, pignut hickory) are ring porous. 

However, there are some exceptions, particularly at the WFD site. Ash, which is one of the most 

dominant AM trees at WFD, is ring porous, and leafs out significantly later than the other AM 

trees. Similarly, basswood and birch, which are common ECM trees at WFD, are diffuse porous; 

these species leaf out earlier than the other ECM trees. Thus, while there is some evidence that 

AM and ECM trees differ in stem anatomy, more research is needed to determine the generality 

of this pattern. 
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Soil characteristics and leaf traits could also help elucidate canopy patterns, though such 

information may not be readily available from moderate resolution remotely sensed observations. 

Leaf size, morphology, longevity, color, nutrients, and structure are traits likely to be influenced 

by mycorrhizal association, with some being more easily detectable from moderate resolution 

remote sensing than others. We gathered available soil and leaf data at the LDW site to probe 

this question further (Supplementary Table 2). Within LDW, there was little difference in the 

carbon and nitrogen content or structure of green leaves between AM- and ECM-associated trees. 

By contrast, the leaf litter of AM-associated trees had greater nitrogen content and lower C:N 

ratios than ECM-associated tree litter. This suggests that ECM-associated trees retranslocate 

more nitrogen from their litter than AM-associated trees (Brzostek et al., 2014, Cornelissen et al., 

2001); this is a plausible mechanism to explain differences in the spectral signatures that we 

observed during leaf abscission. The differences in litter chemistry coupled with the primary 

pathways of soil decomposition (i.e., scavenging in AM soils vs. priming in ECM soils) has been 

hypothesized to promote the greater carbon storage per unit nitrogen in ECM soils than AM soils 

observed here (Averill et al., 2014, Phillips et al., 2013). However, given the marginal 

differences in peak foliar nitrogen, it appears that soil properties may only indirectly influence 

the spectral signatures we observed through their impact on retranslocation. We acknowledge 

that further investigation is needed to understand how differences in soil properties vs. 

retranslocation of nutrients contribute to the linkages between belowground processes and 

canopy traits. Regardless, this work sets up a hypothesis-testing framework to assess the 

predictive or explanatory power of mycorrhizal association versus other plant and soil traits on 

canopy spectral characteristics. 

 

The prediction of mycorrhizal composition may be improved by incorporating more information 

in our model. Major areas of statistical improvement should focus on the characteristics of over- 

and underestimation described in the Results. The model consistently overestimated percent AM 

in plots with low percent AM, and underestimated percent AM in plots with high percent AM; 

factors underlying these patterns are likely to provide an important source of model 

improvements. Additional exploration of instruments with additional finer spectral resolution 

may be fruitful. New NASA missions being developed for the International Space Station will 

capture ecosystem functioning and structure at relatively high spatial resolutions and over the 

diurnal cycle (land surface temperature and evapotranspiration from ECOSTRESS; chlorophyll 

fluorescence from OCO-3; and 3-D structure and biomass from GEDI), potentially revealing 

even greater distinctions between AM- and ECM-associated trees (Dubayah, 2015, Eldering et 

al., 2015, Fisher et al., 2015). 

 

A representative time series of cloud-free imagery is necessary for our approach to be successful, 

particularly in detection of nuances in phenology. An abundance of medium-resolution data is 

available, particularly Landsat, and is easily accessible, particularly historical data beyond the 

timeframe analyzed here that can help refine our approach, including characteristics of 

interannual variability. There may be potential for such analyses by normalizing reflectance 

using pseudo-invariant features and applying the model coefficients to the normalized 

reflectance values of the historical data.  

 

Understanding the factors that control species responses to global changes is a central challenge 

in the field of ecosystem science, and the use of functional categorizations—particularly ones 
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that can be remotely sensed—can simplify this challenge. Characterizing forests based on the 

type of tree-fungal associations provides an integrative index of both plant and microbial traits, 

and should enable the mapping of biogeochemical syndromes across diverse landscapes. 

Differences in AM- and ECM-dominated forests have recently been used to make predictions 

about ecosystem services such as soil carbon storage (Averill et al., 2014, Soudzilovskaia et al., 

2015, Waring et al., 2015) and nitrogen retention (Midgley &  Phillips, 2014, Phillips et al., 

2013). Moreover, there is increasing evidence that AM- and ECM-associated trees respond 

differently to global change drivers such as water availability (Querejeta et al., 2009), N 

deposition (Midgley &  Phillips, 2014, Thomas et al., 2008), and elevated atmospheric CO2 

(Drake et al., 2011, Norby et al., 2010). The ability to detect tree mycorrhizal associations using 

remotely sensed data will enable researchers to generate maps of mycorrhizal distributions, 

ecosystem services, and putative biogeochemical syndromes that can be validated at regional 

scales (e.g., US Forest Service’s Forest Inventory and Analysis Program) or globally (e.g., the 

Smithsonian Institution's CTFS-ForestGEO; Anderson‐Teixeira et al., 2015). This detection 

ability with mapping capability may provide a valuable resource to track the impacts of the 

ongoing increase in the dominance of AM-associated trees, particularly in temperate forests due 

to management and global change (Nowacki &  Abrams, 2008, Nowacki &  Abrams, 2015). At 

the global scale, this would facilitate the development of new plant functional types to improve 

the predictive power of terrestrial biosphere models, and enable forecasting the biogeochemical 

consequences of species gains and losses, as well as shifts in mycorrhizal association and forest 

composition as a result of global change. 
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Figure Legends 

Figure 1. Study sites spanned mycorrhizal dominance throughout the temperate US, 

encompassing ~140,000 trees. Site locations included Wabikon Forest Dynamics Plot (WFD) in 

Wisconsin, Tyson Research Center Plot (TRCP) in Missouri, Lilly-Dickey Woods (LDW) in 

Indiana, and Smithsonian Conservation Biology Institute (SCBI) in Virginia. Arbuscular 

mycorrhizal (AM)-associated trees comprise the majority of basal area in WFD and SCBI; 

whereas, ectomycorhizal (ECM)-associated trees are predominantly prevalent in TRCP and 

LDW. 

Figure 2. Near-infrared (NIR) reflectance at the top of atmosphere from Landsat TM4 time series 

shows phenological evolution as a function of both climate and ecosystem properties for each of 

the four sites: Lilly-Dickey Woods (LDW), Smithsonian Conservation Biology Institute (SCBI), 

Tyson Research Center Plot (TRCP), and Wabikon Forest Dynamics (WFD); the legend also 

includes the latitude/longitude and the overall site proportion between arbuscular mycorrhizal 

(AM)- and ectomycorrhizal (ECM)-associated trees. 3
rd

-order polynomials are fit for 

visualization. Six periods are highlighted with black outline for individual points that correspond 

to phenological events: leaf flush (T1), green-up (T2), peak green (T3), early leaf senescence (T4), 

late leaf senescence (T5), and leaf abscission (T6). 

Figure 3. Predicted versus observed mycorrhizal association forest composition across 140,000 

trees (aggregated to 60 m plots). Four mega-plots are color-differentiated: Lilly-Dickey Woods 

(LDW; red), Smithsonian Conservation Biology Institute (SCBI; orange), Tyson Research 

Center Plot (TRCP; green), and Wabikon Forest Dynamics (WFD; blue). Arbuscular 

mycorrhizal (AM)-associated trees comprise the majority of basal area in WFD and SCBI; 

whereas, ectomycorrhizal (ECM)-associated trees are predominantly prevalent in TRCP and 

LDW. The plot is given in percentage AM-association composition (or, inversely, ECM-

association composition). The black best-fit line is across all sites with statistics shown in lower 

right; the gray line is the 1:1 line. 

Figure 4. Predicted and observed mycorrhizal association forest composition across 139,978 

trees, aggregated and mapped to 60 m plots, at four mega-plot sites: Lilly-Dickey Woods (LDW; 

Indiana), Smithsonian Conservation Biology Institute (SCBI; Virginia), Tyson Research Center 

Plot (TRCP; Missouri), and Wabikon Forest Dynamics (WFD; Wisconsin). Arbuscular 

mycorrhizal (AM)-associated trees (warm colors) comprise the majority of basal area in WFD 

and SCBI; whereas, ectomycorrhizal (ECM)-associated trees (cool colors) are predominantly 

prevalent in TRCP and LDW. 

Figure 5. Full Landsat scene coverage of mycorrhizal composition across the larger regions 

surrounding each of our four study sites illustrates the diversity and heterogeneity of 

belowground dynamics. Site locations included Wabikon Forest Dynamics Plot (WFD) in 
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Wisconsin, Tyson Research Center Plot (TRCP) in Missouri, Lilly-Dickey Woods (LDW) in 

Indiana, and Smithsonian Conservation Biology Institute (SCBI) in Virginia. Arbuscular 

mycorrhizal (AM)-associated trees (warm colors) comprise the majority of basal area in WFD 

and SCBI; whereas, ectomycorrhizal (ECM)-associated trees (cool colors) are predominantly 

prevalent in TRCP and LDW. 

 

 

 

 
Predictor 

Spectral  
Window (μm) 

 
Description 

Elevation n/a (meters) Height above sea level  
Slope n/a (degrees) Slope 
TiTM1 0.45 – 0.52 Visible blue 
TiTM2 0.52 – 0.60 Visible green 
TiTM3 0.63 – 0.69 Visible red (related to chlorophyll absorption) 
TiTM4 0.76 – 0.90 Near-infrared (related to plant health) 
T1,3,5,6TM4 0.76 – 0.90 Average reflectance of band 4 over T1, T3, T5, T6 
TiTM5 1.55 – 1.75 Mid-infrared (related to turgidity) 
TiTM7 2.08 – 2.35 Mid-infrared  
TiTM4/TiTM5 TM4, TM5 Ratio of band 4 and band 5 (related to moisture content) 
TiNDVI TM3, TM4 Normalized Difference Vegetation Index (related to canopy density) 

Table 1. Candidate predictors for the unified model to predict percentage of arbuscular 

mycorrhizal (AM)- versus ectomycorrhizal (ECM)-associated tree occurrence typically used 

different reflectance signals weighted by phenological events. Ti is temporal acquisition point 

(see Figure 2). TMn is the Landsat Thematic Mapper band number. 

 

 

Model 
Variable 

Unstandardized 
Coefficients 

Std. 
Coeff 

t Sig. 

Correlations 
Collinearity 

Statistics 

B 
Std. 

Error Beta 
Zero-
Order Partial Part 

Toler-
ance VIF 

(constant) -992.6 126.1  -7.9 0.000      
Slope 0.3 0.2 0.20 2.2 0.026 -0.38 0.15 0.07 0.14 7.16 
T5TM2 -622.7 189.7 -0.97 -3.3 0.001 0.24 -0.21 -0.11 0.01 75.00 
T6TM2 1589.4 177.8 1.34 8.9 0.000 0.06 0.51 0.29 0.05 21.96 
T1TM3 120.5 30.1 0.25 4.0 0.000 0.21 0.26 0.13 0.25 3.94 
T3TM3 3804.7 769.4 1.67 5.0 0.000 -0.11 0.31 0.16 0.01 92.14 

T1,3,5,6TM4 -687.9 64.3 -0.66 -10.7 0.000 -0.34 -0.58 -0.34 0.27 3.71 

T3TM4/T3TM5 -109.8 11.3 -0.66 -9.8 0.000 -0.01 -0.54 -0.31 0.22 4.46 
T4TM4/T4TM5 65.1 9.6 0.41 6.8 0.000 0.19 0.41 0.22 0.27 3.65 
T1NDVI -96.3 25.3 -0.77 -3.8 0.000 -0.36 -0.25 -0.12 0.03 40.19 
T3NDVI 1366.9 127.7 2.63 10.7 0.000 0.20 0.58 0.34 0.02 59.25 

Table 2. Statistical influence of the 10 most significant predictor variables on estimation of 

percent arbuscular mycorrhizal (AM) association for the unified model. See Table 1 for 

descriptions of the variables. All predictor variables contributed significantly to the model at  = 

0.05. Normalized Difference Vegetation Index (NDVI) measured during peak green (T3NDVI) 

resulted in the greatest change in percent AM-association by unit increase, followed by T3TM3 

and T6TM2. Six of ten variables were positively correlated with percent AM-association, and 

four were negatively correlated. 
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