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SUMMARY 

Phytochromes are photochromic photoreceptors responsible for a myriad of red/far-red light-

dependent processes in plants and microorganisms.  Interconversion is initially driven by 

photoreversible isomerization of bilin, but how this alteration directs the photostate-dependent 

changes within the protein to actuate signaling is poorly understood.  Here, we describe the 

structure of the Deinococcus phytochrome photosensory module in its near complete far-red 

light-absorbing Pfr state.  In addition to confirming the 180° rotation of the D-pyrrole ring, the 

dimeric structure clearly identifies downstream rearrangements that trigger large-scale 

conformational differences between the dark-adapted and photoactivated states.  Mutational 

analyses verified the importance of residues surrounding the bilin in Pfr stabilization, and 

protease-sensitivity assays corroborated photostate alterations that propagate along the dimeric 

interface.  Collectively, these data support a cooperative ‘toggle’ model for phytochrome 

photoconversion and advance understandings of the allosteric connection between the 

photosensory and output modules.  
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INTRODUCTION 

Phytochromes are a diverse collection of photoreceptors in plants and microorganisms that 

regulate a wide array of light-dependent processes through their unique ability to reversibly 

interconvert between dark-adapted and photoactivated endstates (Auldridge and Forest, 2011; 

Burgie and Vierstra, 2014; Franklin and Quail, 2010).  They are defined by a covalently-bound 

bilin (or open chain tetrapyrrole) chromophore cradled within a signature cGMP 

phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, which is often bracketed by 

Period/Arnt/Sim (PAS) and phytochrome-specific (PHY) domains to generate a photosensing 

module (PSM).  The PSM is followed by an output module (OPM); it typically includes a histidine 

kinase (HK) domain commonly associated with two-component phosphorelays but other OPM 

arrangements exist (Auldridge and Forest, 2011; Karniol et al., 2005), indicating that the PSM is 

a uniquely adapted photoswitch capable of initiating a variety of signaling outcomes.  The 

photoactivated state also slowly transitions back to the dark-adapted state by thermal reversion, 

thus providing a mechanism to dampen the light signal.  In most, if not all, cases, phytochromes 

are arranged as dimers typically in a head-to-head orientation, suggesting that the sister PSMs 

and OPMs work in concert (Burgie and Vierstra, 2014).   

Best known are the phytochromes from higher plants with a canonical PAS-GAF-PHY 

PSM arrangement (Burgie and Vierstra, 2014; Rockwell et al., 2006).  Upon photoexcitation of 

the bilin, they interconvert between a dark-adapted red-light-absorbing Pr state and a 

photoactivated far-red light-absorbing Pfr state to ultimately influence nearly all aspects of plant 

development from seed germination and seedling deetiolation to flowering time and senescence 

(Franklin and Quail, 2010).  Both canonical and variant phytochromes displaying remarkable 

organizational and photochemical diversities pervade the proteobacterial, cyanobacterial, algal, 

and fungal clades (Auldridge and Forest, 2011; Burgie and Vierstra, 2014).  Included are 

members of the cyanobacteriochrome photoreceptor (CBCR) subfamily with distinctive GAF 

domains that can sense other wavelength pairs such as blue/green, blue/orange, and green/red 

by modification of the bilin, and that sometimes contain tandem arrays of these GAF domains to 

enable broad color perception (Rockwell et al., 2014; Rockwell et al., 2012; Ulijasz et al., 2009).  

Also unusual are the proteobacterial bathyphytochromes that use Pfr as the dark-adapted state 

and require far-red light excitation to generate Pr (Bellini and Papiz, 2012; Giraud et al., 2005; 

Karniol and Vierstra, 2003; Yang et al., 2008).   

 How phytochromes allosterically transmit the light signal from the bilin through the PSM 

and ultimately into the OPM to actuate signaling is not yet clear.  The prevailing expectation for 

most phytochromes is that light absorption by the bilin as Pr induces a ZE isomerization of the 
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C15=C16 double bond between the C and D pyrrole rings (Burgie et al., 2013; Cornilescu et al., 

2014; Kneip et al., 1999; Narikawa et al., 2013; Rudiger et al., 1983; Song et al., 2011; Yang et 

al., 2009; Yang et al., 2011) concomitant with deprotonation/reprotonation of the pyrrole 

nitrogens (von Stetten et al., 2007; Wagner et al., 2008).  This isomerization rotates the D 

pyrrole ring, which in turn translates the chromophore within the GAF domain pocket 

(Cornilescu et al., 2014; Yang et al., 2011).  Structural comparisons of the dark-adapted states 

from canonical phytochromes and bathyphytochrome (Anders et al., 2013; Anders et al., 2014; 

Burgie et al., 2014a; Burgie et al., 2014b; Yang et al., 2009), along with a recent informative 

model derived from a mixed Pr/Pfr crystal of the PSM from Deinococcus radiodurans 

bacteriophytochrome (Dr-BphP) (Takala et al., 2014) showed that a unique hairpin (or tongue) 

loop, which extends from the PHY domain to contact the GAF domain, likely rearranges from an 

anti-parallel β-sheet configuration in Pr to partially α-helical character in Pfr.  Reconnection of 

the Pfr-type hairpin with the GAF domain then induces a tug on opposing helical spines along 

the dimer interface to splay the sister PHY domains.  Presumably, this motion is transmitted into 

the OPM to reorient the relative positions of the sister motifs that initiate downstream signaling.   

While multiple studies support the ZE isomerization of the bilin at the C15=C16 

position (at least for canonical Phys), it remains uncertain how this conformational change 

repositions the bilin, impacts the GAF domain pocket, and ultimately rearranges the adjacent 

hairpin/GAF domain interface to induce the β-stranded to α-helical hairpin transformation.  

Moreover, because the splayed Dr-BphP PSM structure was generated from a near equal Pr/Pfr 

mix (Takala et al., 2014), it is unknown if the more ‘open’ configuration represents the Pfr/Pfr 

homodimer as well as that of the Pr/Pfr heterodimer, both of which could represent unique 

signaling states (Furuya and Schafer, 1996).  It is also unclear how strongly the OPM restricts 

PSM movements in light of recent studies that suggest a crosstalk between the two modules 

(Burgie et al., 2014b; Takala et al., 2015a; Takala et al., 2015b).  A particular challenge to 

resolving these issues by crystallographic approaches is thermal reversion of the photoactivated 

state, which complicates its maintenance during crystallization trials.   

To overcome this hurdle, we exploited here a single amino acid substitution of Dr-BphP 

that greatly attenuates PfrPr thermal reversion (Burgie et al., 2014b) to generate diffraction 

quality PSM crystals of a near homogeneous Pfr:Pfr homodimer.  The X-ray crystallographic 

structure of F469W(PSM) as Pfr when compared to prior structures of the wild-type PSM as Pr 

(Burgie et al., 2014b; Takala et al., 2014) now provides a clear structural view of endstate 

differences for the bilin and surrounding residues that lead to eventual splaying of the sister 

PHY domains within the dimer.  The relative positions of the PHY domains within the Pfr:Pfr 
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homodimer superposed well with those in the presumed Pr:Pfr heterodimer previously reported 

(Takala et al., 2014), implying that the sister subunits work cooperatively in generating the open 

Pfr conformation even when only one subunit is photoexcited.  Together, we clarify the 

mechanical changes surrounding the bilin after photoconversion and how it might induce large-

scale, cooperative movements in the downstream OPMs within the dimeric photoreceptor. 

 

RESULTS 

The F469W Mutant is a Suitable Structural Analog for Wild-Type Dr-BphP.  Our prior 

mutagenic studies of Dr-BphP identified a number of amino acid substitutions that impact the 

thermal stability of Pfr (Burgie et al., 2014b; Wagner et al., 2008).  The most promising for the 

crystallographic analysis of Pfr was the subtle tryptophan substitution of F469 within the 

conserved hairpin PRXSF motif given its ability to form and substantially stabilize the Pfr state 

(Burgie et al., 2014b).  The F469W(PSM) polypeptide expressed well in Escherichia coli, 

assembled efficiently with biliverdin in vitro, and displayed near normal Pr and Pfr absorption 

once purified (Figures 1A and 1B).  The only difference was a slight decrease in the percentage 

of Pfr generated under saturating red light as judged by the accentuated shoulder at ~700 nm 

that represents residual Pr.  The Pr and Pfr conformations of the bound biliverdin were also 

unaffected as judged by near identical circular dichroism (CD) spectra for the mutant versus wild 

type across wavelengths absorbed by the bilin (Figure 1C).  Importantly, PfrPr thermal 

reversion was markedly suppressed by ~10 fold relative to that of the wild-type Dr-BphP PSM 

(Figure 1D).  Crystallization trials of Pfr-enriched samples (generated by a single pulse of 

saturating red light) conducted at 4°C to further slow reversion, identified several conditions that 

eventually generated diffraction quality F469W(PSM) crystals.  Based on their absorption 

spectra, we estimated that 87% of the crystallized chromoproteins were Pfr as compared to the 

92% and 89% maxima possible for the wild-type and mutant PSMs in solution, respectively 

(Figures 1B and 1E).   

From a single F469W(PSM) crystal we collected diffraction data of sufficient quality to 

solve the Pfr structure by molecular replacement, using the prior Pr structures of the wild-type 

PSM from Dr-BphP as search models (Burgie et al., 2014b; Wagner et al., 2005; Wagner et al., 

2007).  To reduce model bias in the region surrounding biliverdin, it and neighboring side chains 

were omitted during molecular replacement and initial refinements.  X-ray diffraction was mildly 

anisotropic which limited overall resolution; consequently, we conducted an ellipsoidal 

truncation of the dataset to 3.4 Å x 3.7 Å x 3.3 Å in the a*, b*, and c* directions, respectively 

(Figures S1A and S1B; see Tables 1 and S1 for refinement statistics).  The asymmetric unit 
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consisted of two head-to-head dimers; the dimer with the clearest electron density features 

around the chromophore was described here with the two subunits designated as A and B.  The 

PAS and GAF domains of subunits C and D in the second less-resolved dimer appear to have 

more conformational freedom, which might have generated the observed anisotropy.  

Surprisingly, the P212121 space group and unit cell size for the F469W(PSM) crystals were 

similar to that reported for a mixed Pr:Pfr crystal of the wild-type PSM despite using different 

crystallization conditions (Takala et al., 2014).  However, whereas the prior study could not 

resolve the conformation(s) of the bilin and surrounding amino acids, nearly all of the PSM was 

reasonably well interpreted here, including the bilin, key side chains abutting the bilin, and the 

hairpin (Figures 2A, 2B, S1C, S1D, S1E and S1F), possibly due to the more homogeneous 

spectral character of the crystallized chromoproteins (87% Pfr/Ptotal here versus 52% estimated 

for the mixed crystal (Figure 1E; Takala et al., 2014)). 

 

Chromophore Conformation and Configuration of the Bilin-Binding Pocket as Pfr.  The 

Pfr bilin from canonical phytochromes was predicted to have a 5Zsyn10Zsyn15Eanti (ZZEssa) 

configuration generated from the ZZZssa Pr configuration by photoisomerization of the 

C15=C16 double bond and rotation of the D pyrrole ring (Kneip et al., 1999; Rudiger et al., 

1983; Song et al., 2011).  We definitively confirmed this conformational switch for Dr-BphP 

based on both the electron density of biliverdin and the positions of neighboring amino acid side 

chains for the Pfr model described here as compared with prior Pr models (Figures 2C and 2D; 

Burgie et al., 2014b; Wagner et al., 2005; Wagner et al., 2007)).  The overall configuration of the 

bilin, including the upward tilt of the D pyrrole ring relative to the more planar A-C rings and the 

positioning of the propionate side chains, was remarkably congruent with prior structures 

generated for the Pfr ground states from the bathyphytochromes Pseudomonas aeruginosa 

BphP (Yang et al., 2009) and Rhodopseudomonas palustris BphP1 (Bellini and Papiz, 2012), 

thus reinforcing the notion that canonical and bathyphytochromes employ similar 

photointerconversion mechanisms (Figure S2A).   

Detailed comparisons of the bilin electron densities within the unit cell detected greater 

structural heterogeneity for the B Subunit.  Whereas the biliverdin moiety in Subunit A could be 

modeled with a single ZZEssa Pfr conformation, modeling it into Subunit B generated 

substantial Fo-Fc difference density features (Figure S3).  The major Pfr conformer in Subunit 

B, exhibits a different C-ring propionate position than that seen for Subunit A.  Here, it acquires 

a more ‘Pr-like’ position, which includes contacts of the carboxylate with S272 and S274 (Figure 

S3).  Moreover, the difference electron density for the Subunit B chromophore suggests a 
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second conformation that matches C-ring propionate position in Subunit A (Figure S3). 

Together, these observations revealed structural asymmetry in the conformation of the bilin and 

surrounding amino acids across Pfr-enriched homodimers and might even imply the detection of 

residual Pr species in the crystal. 

Close inspection of the bilin-binding pocket for the paired Pr and Pfr endstates now 

allows a detailed proposal for the initial steps in PrPfr photoconversion.  The D ring flip 

produces a high energy binding state for the bilin, originating from the amphipathic nature of the 

D pyrrole ring and its immediate environment within the binding pocket.  This unfavorable 

situation is rectified as the suite of hydrogen bonds tethering biliverdin within the GAF domain 

pocket ruptures to permit a new set of contacts, many of which are encouraged as the bilin 

slides through a rotary motion with the thioether linkage between cysteine-24 and the C32 

carbon acting as a hinge (Figures 2C and 2D).  For Subunit A, the two biliverdin propionates 

retain much of their overall conformations, but completely exchange interaction partners within 

the GAF domain.  The B pyrrole ring propionate hydrogen bonds with R254 and Y216 as Pr but 

switches to R222 as Pfr, whereas the C pyrrole ring propionate hydrogen bonds with S272 and 

S274 as Pr but switches in part to S272, H290, and Y176 as Pfr (Figures 2A and 2C).   

To achieve this new configuration, the R222 side chain undergoes a large rotameric 

change, and the Y176 sidechain swivels 120°, a motion that is coincident with rotation of the 

F203 and H201 sidechains (Figure 2C).  Rotation of H201 appears especially critical as it 

enables a switch of the hydrogen bond between the D pyrrole ring carbonyl and H290 in Pr to 

one with H201, which then anchors its Pfr position.  The importance of both Y176 and H201 in 

maintaining the Pfr conformation is vividly illustrated by several site-directed PSM mutants, 

which compromise full PrPfr photoconversion and either dramatically suppress or accelerate 

PfrPr thermal reversion, respectively (Figures 2E and 2F).  H290 is also central to the stability 

of both photostates; it binds the D-ring carbonyl as Pr and subsequently anchors the Pfr bilin 

position by interacting with the C-ring propionate (Figures 2A and 2C).  As described above, the 

C-ring propionate in Subunit B appears to assume two alternate conformations as Pfr, one that 

mimics that of Subunit A and a second in which it extends backward to interact with S272 and 

S274 (Figures 2B and S3).  As with the bilin, substantial Fo-Fc difference density was detected 

in Subunit B surrounding side chains of R222, Y176, F203, and H201, consistent with Pfr 

heterogeneity and the possible presence of Pr in the crystal lattice.   

Contacts between the GAF domain and PHY domain hairpin were also altered upon 

photoconversion.  In Pr, the carboxylate of D207 is doubly hydrogen bonded with R466 in the 

hairpin PRXSF motif, whereas this contact is replaced in Pfr by hydrogen bonds between D207 
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and S468 in the same hairpin motif, and Y263 in the GAF domain, which moves closer to the 

hairpin as the D ring flips and slides (Figure 2C).  Through all these reconfigurations, the 

hydrogen bonding lattice involving the A-C ring pyrrole nitrogens, the imidazole of H260, the 

main chain carbonyl of D207, and the pyrrole water appears to be maintained (Figure 2C).  

 

Large Scale Conformational Changes in the PSM.  With the exception of a few residues (1-6, 

454-459 of Subunit A; 1-6, 346-347, 452-459 of Subunit B), the F469W(PSM) model provides a 

complete snapshot of the Dr-BphP PSM as Pfr, including a head-to-head dimer arrangement, a 

figure-of-eight knot connecting the PAS and GAF domains, and a well resolved α-helical hairpin 

extending from the PHY domain (Figure 3A).  This structure is strikingly similar to the mixed 

Pr:Pfr structure we estimated to contain ~52% Pfr (Takala et al., 2014); in fact, the two dimeric 

models superpose reasonably well with a RMSD of 1.1 Å over 905 Cα atoms (Figure S2C).  

Unlike the anti-parallel β-sheet conformation of the hairpin stem that abuts the GAF domain 

surface as Pr (Burgie et al., 2014b; Takala et al., 2014), the two stem segments of the Pfr 

hairpin rotate to generate a new complement of hairpin/GAF domain interactions, with the exit 

strand of the hairpin assuming a helical conformation and the entrance strand adopting random 

coil (Figures 3A, S1E and S1F).  The hairpin contacts the GAF domain through A450 and W451 

in the hairpin entrance strand and the predominantly hydrophobic side of the hairpin helix 

(includes P465, F469W and Y472) associating at or near strand β3 and helix α4, and through 

hydrogen bonds between S468 in the hairpin helix and D207 and Y263 in the GAF domain.  It 

also appears that P465 contacts the vinyl side group in the D pyrrole ring of biliverdin (Figure 

S1F).   

As seen previously with the mixed Pr/Pfr crystal (Takala et al., 2014), the sister PHY 

domains are substantially splayed relative to those in Pr, which appears to be generated by the 

β-strand to α-helical transition of the hairpin stem, novel hairpin/GAF domain contact points, and 

straightening of the helical spine bow centered at A326 (Figures 3A and 3B).  The two subunits 

still retain some of the left-handed helical twist seen for Pr but now with significant outward 

displacement such that the distance between sister Cα atoms of H334 and T499 is extended by 

10.5 Å and 22 Å, respectively.  The α-helical character for the Dr-BphP hairpin stem and its 

contacts to the GAF domain are remarkably similar to those from P. aeruginosa BphP and R. 

palustris BphP1 (Figure S2B (Bellini and Papiz, 2012; Yang et al., 2009)), thus reinforcing the 

conserved feature of this Pfr conformation.  However, when the complete PSM dimer of Dr-

BphP as Pfr was overlaid with that from P. aeruginosa BphP as Pfr (Yang et al., 2009), the 

relative orientation of the sister PSMs differed substantially, suggesting either inherent 
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variations in the dimerization interface or artifactual alterations induced by crystal packing of 

these likely flexible regions (Figure S2D).    

 

The Helical Spine is Perturbed by Photoconversion.  Current models for phytochrome 

photoconversion posit that bilin-driven reorganization of the hairpin induces an outward splay of 

the sister PHY domains, which is transmitted into the OPMs along the helical spine that 

presumably spans the length of each subunit (Figures 4B and 4E; Anders et al., 2013; Burgie 

and Vierstra, 2014; Burgie et al., 2014b; Takala et al., 2014; Yang et al., 2009).  To probe the 

extent of these photo-state induced perturbations, we replaced informative sections of the spine 

with tobacco etch virus (TEV) protease recognition sites (Figure 4A), and assayed for their 

susceptibility to TEV protease cleavage in either the Pr state or following saturating red-light 

irradiation (mostly Pfr).  Included were positions examining the GAF/GAF helical dimerization 

contact (TEV-150), and accessibility of the helical spine either connecting the GAF and PHY 

domains (TEV-328), within the PHY domain (TEV-341), at the junction between the PHY and 

HK domains (TEV-501), or at a previously studied site proximal to the phosphoacceptor 

histidine (H532) in the HK region (TEV-518) (Li et al., 2010) (Figures 4A and 4C).  Whereas the 

sites within the PSM could be accurately positioned into current PSM models (Burgie et al., 

2014b; Takala et al., 2014; Wagner et al., 2007), the TEV-501 and TEV-518 sites were 

predicted from a PSM/OPM chimera generated by connecting the helical spine from the Dr-

BphP PSM as Pr to the DHp helical bundle in the dimeric HK domain from Thermotoga maritima 

HK853 (Casino et al., 2009).  As shown in Figures 4B and 4C, the left-hand twisted 

pseudomolecule was remarkably similar in shape to that determined from single particle EM 

images of full-length Dr-BphP (Burgie et al., 2014b; Li et al., 2010).   

All five TEV-site mutants expressed well recombinantly, assembled with biliverdin, and 

generated absorption spectra nearly indistinguishable from unmodified full-length Dr-BphP as Pr 

or Pfr (Figure S4A).  Only the rates of thermal reversion showed substantial variations (Figure 

S4B), which were negated by conducting the TEV protease assays for Pfr under continuous 

red-light irradiation.  We note that the kinetics for most of the cleavage reactions were described 

by the sum of two exponentials that could reflect conformational heterogeneity, and/or 

differential protease susceptibility of either the Pr:Pfr heterodimers versus Pfr:Pfr homodimers or 

between the initial uncleaved dimer and its singly cleaved product.  

Collectively, the TEV protease assays confirmed substantial reorganization of the sister 

PSMs during photoconversion, much of which agreed with single particle EM images of Pr and 

Pfr (Figure 4B; Burgie et al., 2014b).  The TEV-150 site was highly resistant to cleavage in 
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either spectral state when introduced into either the PSM alone or into the full-length 

chromoprotein (Figure 4D), consistent with this site being buried within the six-helix bundle 

dimerization contact between GAF domains, and the predicted rigid nature of this connection 

(Burgie et al., 2014b; Takala et al., 2014; Wagner et al., 2007).  As expected, the TEV-328 site 

was strongly susceptible to cleavage given the separation of the sister PHY domains in this 

region (Burgie et al., 2014b; Li et al., 2010; Takala et al., 2014).  However, whereas the PSM 

construction as Pfr was slightly less sensitive to TEV protease cleavage than Pr (0.31 fold), 

more comparable rates between Pr and Pfr were seen in the full-length chomoprotein, implying 

that the OPM influences the conformation of this section of the helical spine.   

The TEV-341 and TEV-518 sites within the PHY domain and adjacent to the 

phosphoacceptor histidine, respectively, showed robust changes in TEV protease sensitivity 

with the Pfr form being digested 9.5 and 40 times faster, respectively, consistent with strong 

increases in solvent accessibility around these regions upon photoconversion.  However, the 

TEV-501 site, although still susceptible to cleavage, showed little difference between Pr and Pfr, 

suggesting that while the helical spine below and above this region are substantially impacted 

by photoconversion, this TEV-501 segment is not (Figure 4D).  Collectively, it appears that the 

OPM modifies the amplitude of the splay that is presented by the Pr and Pfr crystal structures 

and X-ray scattering analyses of the PSM (Figures 3A and 3B; Takala et al., 2014), and 

suggests that some positions along the helical spine might remain tethered as shown by the 

single particle EM images of full-length Pfr dimers (Figure 4B; Li et al., 2010).  For example, the 

helical spine near residue 501 could remain in contact with that of its sister subunit, whereas 

positions not too far proximal or distal separate (e.g., position 341 and 518) (Figure 4E).  

 

DISCUSSION 

Recent advances in the structure and photochemistry of phytochromes have greatly improved 

our understanding of these photosensors and point to a ‘toggle’ model for photoconversion in 

which ZE isomerization of the C15=C16 double bond in the bilin triggers its sliding within the 

binding pocket and concomitant reorientation of adjacent residues (Anders et al., 2013; Burgie 

and Vierstra, 2014; Yang et al., 2009).  The combined motions are followed by structural 

remodeling of the hairpin and its contact with the GAF domain to eventually splay the helical 

spine of sister PHY domains, the motion of which is ultimately translated further up the helical 

spine to allosterically induce OPM activation/deactivation (Burgie et al., 2014b; Takala et al., 

2014).  Our paired Pr and Pfr structures of the Dr-BphP PSM enhanced the resolution of this 

model by now permitting visualization of most, if not all, critical features.  Here, we exploited the 
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F469W mutation to enable crystallization of near homogeneous Pfr:Pfr dimers, which appeared 

to have little impact on the bilin and GAF-domain/hairpin interactions despite substantially 

stabilizing the Pfr state.  An unanticipated outcome was the detection of chromophore 

asymmetry within the Pfr dimer, which is consistent with prior spectroscopic studies on bacterial 

phytochromes that noticed multiple conformations for the Pfr bilin (Salewski et al., 2013).  At 

least with respect to Dr-BphP, there appears to be sufficient local mobility within the GAF 

domain pocket to accommodate at least two Pfr conformations of biliverdin that differ with 

respect to the C-pyrrole ring propionate.  The extent to which such subtle plasticity might impact 

bilin photochemistry is unknown.   

In addition to confirming the ZZZssa to ZZEssa isomerization of the bilin, the paired 

structures also clarified the importance of the hydrogen bond network tethering biliverdin within 

the GAF domain.  This network tracks with bilin movement to eventually instigate remodeling of 

the adjacent hairpin.  This is especially evident for Y263, which is pushed toward the hairpin 

through these movements and by the D-ring itself.  H290 and H201 are also key to 

photoconversion and the stability of both photostates by anchoring the Pr and Pfr bilin 

configurations, respectively.  Substitutions of H290 generate highly fluorescent, photochemically 

crippled Pr (Wagner et al., 2008), whereas substitutions of H201 attenuate PrPfr 

photoconversion and destabilizes the Pfr endstate (this report).  The comparable 201 position 

among phytochromes with Pr dark-adapted states is typically reserved for hydrophobic 

residues, whereas bathyphytochromes often have hydrophilic residues such as glutamine (P. 

aeruginosa BphP) or asparagine (R. palustris BphP1) that potentially act as hydrogen bond 

donors for the D-ring carbonyl.  The importance of residue 201 might explain why Dr-BphP with 

H201 has an unusually stable Pfr state, and why the Q188L substitution at the same site in the 

P. aeruginosa bathyphytochrome BphP yields a more stable Pr state after PfrPr 

photoconversion (Yang et al., 2009).  With the exception of a slight displacement of D207, the 

hydrogen bond lattice anchoring the pyrrole water is unaffected by photoconversion, suggesting 

that its main function is to position this water as a suitable proton acceptor/donor during the 

early deprotonation/protonation cycle of the bilin (Velazquez Escobar et al., 2015; von Stetten et 

al., 2007; Wagner et al., 2008).  

The hydrophobic residues surrounding the D pyrrole ring (Y176, F203, and Y263) were 

long regarded as important to photoconversion likely by providing an adjustable hydrophobic 

environment to support the amphiphatic D pyrrole ring as both Pr and Pfr (Wagner et al., 2005).  

Our paired structures now help explain their influence by showing that all three swivel during 

photoconversion, with Y176 and F203 displaying substantial side chain rotation that 
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concomitantly permits H201 to rotate and engage the D-ring carbonyl as Pfr.  The importance of 

Y176 was previously shown by histidine substitutions that generate Pr-locked, highly fluorescent 

variants in several Phys (Fischer and Lagarias, 2004; Wagner et al., 2005).  Roles for R254, 

R222, S274 and S272 during photoconversion were also clarified here as they collectively 

maintain contact with the propionate side chains of the B and C pyrrole rings as the bilin slides 

during photoconversion.   

Based on an assemblage of Pr and Pfr structures (Anders et al., 2013; Burgie et al., 

2014b) along with the mixed Pr:Pfr structure of Dr-BphP(PSM) (Takala et al., 2014), it was 

expected that the GAF domain/hairpin connection reorganizes during photoconversion as a 

result of a β-stranded to α-helical hairpin stem transformation.  Our Pfr structure confirms the 

impetus for this change that includes the transitions described above around the D-pyrrole ring 

to promote the swap of GAF/hairpin hydrogen bond partners from D207/R466 to 

D207+Y263/S468.  

Comparisons of the GAF domain pocket of Dr-BphP in its photoactivated Pfr state to that 

from the two bathyphytochromes in their dark-adapted Pfr state revealed remarkable similarities 

in chromophore conformation (particularly for Subunit A), positioning and amino acid contacts, 

and α-helical hairpin architecture (this report (Anders et al., 2013; Bellini and Papiz, 2012; Yang 

et al., 2008, 2009; Yang et al., 2011)), strongly implying that these distinct phytochrome 

subfamilies employ analogous photointerconversion mechanisms despite starting from opposite 

dark-adapted states.  In fact, mutant analyses suggest that only a few amino acid replacements 

are required to switch the preferred spectral state of a dark-adapted chromoprotein.  Possible 

residues include A288 and R254 where substitutions in A. thaliana PhyB (Burgie et al., 2014a) 

and Dr-BphP (Wagner et al., 2008) generate highly stable Pfr states, and the Q188L substitution 

in P. aeruginosa bathyphytochrome BphP which slows thermal reversion of Pr back to Pfr (Yang 

et al., 2009).  Further structural comparisons of Dr-BphP to the Thermosynechococcus 

elongatus blue/green-light photointerconvertible CBCR PixJ also suggest that at least some 

CBCRs employ a similar photoconversion mechanism, which includes D-ring rotation and bilin 

sliding, despite lacking both the PAS and PHY domains (Burgie et al., 2013; Cornilescu et al., 

2014; Narikawa et al., 2013). 

A surprising observation was that our Dr-BphP PSM structure at near full Pfr occupancy 

superposed well with that for a possibly equimolar Pr:Pfr mix (Takala et al., 2014).  Both 

structures resolved matching helical hairpins within the dimer despite the likelihood that one 

subunit in the Pr:Pfr mix still retained the Pr bilin conformation.  The most parsimonious 

explanation is that the Dr-BphP subunits work cooperatively; i.e., when one transitions to the Pfr 
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bilin and protein conformations, the sister subunit follows spontaneously without photoactivation 

to assume a ‘Pfr’-type protein fold even though it contains a Pr bilin.  As such, each 

phytochrome subunit could be delicately balanced between Pr and Pfr thus allowing the paired 

subunits to strongly influence each other’s folds as they switch between endstates either by 

photoactivation or thermal reversion.  Hints of this cooperativity can be found in PfrPr thermal 

reversion assays, which often require at least two exponentials to describe their rates (Burgie et 

al., 2014b; Hennig and Schafer, 2001; Takala et al., 2015a; Takala et al., 2015b), and in 

previous spectral studies on several canonical bacterial phytochromes that only reach 50% 

photoconversion under saturating red-light (Burgie et al., 2014b; Shah et al., 2012).  With 

respect to signaling, such cooperativity might explain why some phytochrome responses can be 

driven by very low light fluences theoretically capable of photoactivating only one subunit in the 

dimer (Possart et al., 2014).  A disconnection between the ‘Pfr’ protein fold and the spectral 

state of the bilin might also explain the phenotypic effect of the Y276H mutant of A. thaliana 

PhyB that is able to activate photomophorgenesis in the absence of light (Rausenberger et al., 

2011; Su and Lagarias, 2007).  Despite the bilin being locked in Pr, the mutant presumably 

assumes a Pfr-like state with respect to signaling.  

Finally, we confirm predictions that the helical spine extending into the OPM is 

influenced by photoconversion but found that positions along the spine might be impacted 

differentially.  The PAS/GAF dimer interface, which appears unaffected by photoconversion, 

likely provides a strong foundation to direct the conformational signal toward the PSM, which is 

also made more rigid by the PAS/GAF knot link.  The helix connecting the GAF and PHY 

domains is perturbed as predicted by the splaying of PHY domains in the crystal structures (this 

work; Takala et al., 2014).  The exposed TEV-328 site exhibits only small changes in protease 

sensitivity upon photoconversion of the full-length photoreceptor, but these changes are 

enhanced in the PSM construction, showing that the OPM has a non-trivial effect on PSM 

conformation/function. The putative helical region just downstream of the PHY domain, which is 

exemplified by TEV-501, shows little to no light-dependent changes in protease sensitivity, while 

the region approaching the HK OPM proper (TEV-518) shows massive change.  Together with 

the single particle EM models of full-length Dr-BphP and analyses of PSM dimerization with and 

without the OPM (Burgie et al., 2014b; Li et al., 2010; Takala et al., 2015b), the data argue for 

some retention of the sister OPM contacts along the helical spine as opposed to complete 

dissociation.  One possibility is that the OPM reorients in a scissors-like motion centered around 

residue 501 to generate large-scale disturbances of the sister HK domains, which is detected as 

a complete splay if only the PSM is analyzed (Figure 4E).  Clearly, the now available Pr and Pfr 
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structures of the Dr-BphP PSM should help identify residues whose modification could enhance 

or discourage various aspects of phytochrome dynamics (e.g., photoconversion, thermal 

reversion, and fluorescence) and OPM activation for gains in agriculture, cell biology and 

optogenetics. 

 

EXPERIMENTAL PROCEDURES 

Dr-BphP Protein Expression and Purification 

Full-length D. radiodurans BphP (Dr-BphP) chromoproteins (755 residues), and PSM (residues 

1-501) constructions bearing a TEV recognition site bore an N-terminal T7 tag 

(MASMTGGQQMGRGS) and a C-terminal FLAG/hexahistidine tag 

(GGGDYKDDDDKLEHHHHHH) (Burgie et al., 2014b; Wagner et al., 2008).  All other 

constructions included an N-terminal T7 tag, the PSM, and a C-terminal hexahistidine tag 

(LEHHHHHH).  For TEV-protease sensitivity assays (Li et al., 2010), the TEV-protease 

recognition site (ENLYFQG) replaced the wild-type amino acid sequence such that the scissile 

Q-G sequence was at position 150-151, 328-329, 341-342, 501-502, or 518-519.  Protein 

expression and purification were conducted as described previously (Burgie et al., 2014b) with 

slight modifications as described in the Supplemental Experimental Procedures.  

Buffer exchanges were conducted with 30 kDa MWCO centrifugal filters (Merck 

Millipore).  Dr-BphP samples destined for assays were exchanged into 50 mM HEPES-KOH (pH 

7.8 at 25 °C) and 150 mM KCl, while Dr-BphP(F469W) chromoproteins used for crystallography 

were exchanged into 150 mM NaCl, and 20 mM MOPS-NaOH (pH 7.0).  Samples were frozen 

as 30-μl droplets in liquid nitrogen, and stored at −80 °C.  Covalent binding of BV to the Dr-

BphP apoproteins was monitored by zinc-induced fluorescence of the chromoproteins following 

SDS-PAGE (Davis et al., 1999). 

 

Crystallization of the Dr-BphP(F469W) PSM in the Pfr conformer 

Crystals of the F469W mutant as Pfr were grown by sitting drop vapor diffusion at 4°C after 

mixing 200 nl of F469W at 30 mg/ml with 200 nl of reservoir solution (12% polyethylene glycol 

3350, 200 mM ammonium acetate, 5% fructose, 5% glucose, and 100 mM sodium citrate (pH 

5.6)), and irradiating samples with a single red LED pulse (635 nm maximum, Super Bright 

LEDs) for 30 min.  Thereafter, samples were incubated in darkness, and all sample or crystal 

manipulations were conducted under a green LED light source (525 nm maximum, Super 

Bright LEDs, Inc.).  Before flash-cooling in liquid nitrogen, the crystals were soaked with 13% 
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polyethylene glycol 3350, 200 mM ammonium acetate, 5% fructose, 5% glucose, 18% ethylene 

glycol, and 100 mM sodium citrate (pH 5.6). 

 

X-ray Crystallography and Structure Refinement 

X-ray diffraction data for the Pfr state of F469W(PSM) were collected at the Advanced Photon 

Source, Life Sciences Collaborative Access Team 21-ID-F beamline at Argonne National 

Laboratory.  Datasets were indexed, integrated, and scaled with XDS (Kabsch, 2010).  The 

data were then truncated via the UCLA-DOE Laboratory Diffraction Anisotropy Server using 

default parameters (F/sigma>3) and B-factor sharpening (Strong et al., 2006).  Molecular 

replacement was conducted with PHASER (McCoy et al., 2007) using as search models 

residues 6-328 and residues 328-506 from the PAS-GAF and PSM models, respectively, of Dr-

BphP as Pr (PDB ID codes 2O9C (Wagner et al., 2007) and 4Q0J (Burgie et al., 2014b)).  The 

search model excluded residues 446-477 of the hairpin and biliverdin, while 24 residues 

flanking biliverdin were modeled as alanines.  Data refinement included standard 

methodologies as described in Supplemental Experimental Procedures. 

 

Spectroscopic and Thermal Reversion Measurements 

Spectral and thermal reversion data were collected as described previously (Burgie et al., 

2014b).  See Supplemental Experimental Procedures for details.  CD spectra of samples at 

25°C were recorded in 1 nm steps with an averaging time of 0.5 sec using a AVIV Model 420 

circular dichroism spectrometer (Aviv Biomedical).  

 

Tobacco Etch Virus Protease Sensitivity Assays 

Dr-BphP-TEV constructions were assayed for TEV protease cleavage at 25°C in 150 mM KCl, 

1 mM TCEP, and 50 mM HEPES-KOH (pH 7.8 at 25°C) (Li et al., 2010).  Each assay 

contained the chromoprotein at a final absorbance of 0.9 for the Q band, and 0.4 mg/ml TEV 

protease expressed recombinantly (Burgie et al., 2014a).  Reactions were conducted in 

darkness (Pr) or under constant red-light irradiation (635 nm peak output, Super Bright LEDs), 

and was quenched by mixing equal volumes of sample with SDS-PAGE sample buffer (4% 

sodium dodecyl sulfate, 20% (v/v) glycerol 0.2 mg/ml bromophenol blue, 10% 2-

mercaptoethanol, and 125 mM Tris-HCl (pH 6.7)), followed by heating to 100°C for 3 min.  

Following SDS-PAGE, the relative levels of the substrate Dr-BphP and products were imaged 

using an Epson Perfection 3170 Photo scanner (Epson America) and quantified with Quantity 

One, version 4.6.9 (Bio-Rad). 
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Figure 1.  The PSM of the Dr-BphP F469W mutant is photochemically and structurally 

similar to wild type, but has enhanced Pfr stability 

(A) SDS-PAGE of wild-type (WT) and the F469W PSMs either stained for protein with 

Coomassie blue (Protein) or for the bound biliverdin by zinc-induced fluorescence (Zn).   

(B) UV-visible absorption and difference spectra of the samples in the dark-adapted Pr state or 

following saturating red-light irradiation (RL, mostly Pfr).  Difference spectra (dashed lines at 

70% amplitude) were generated by subtracting the RL absorption spectra from those for Pr.  

Absorption maxima and difference maxima/minima are indicated.  

(C) Circular dichroism spectra for the Pr or RL-irradiated samples of WT (blue) or F469W PSMs 

(orange). 

(D) PfrPr thermal reversion at 25°C of the RL-irradiated WT and F469W PSMs as measured 

by absorption at 750 nm. 

(E) UV-visible absorption spectrum of diffraction quality crystals produced with the F469W(PSM) 

chromoprotein following saturating RL irradiation (87% Pfr).   
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Figure 2.  Photoconversion of Dr-BphP from Pr to Pfr includes a ZE D-ring flip and 

sliding of the bilin within the GAF domain pocket concomitant with rearrangement of 

surrounding residues 

Carbons are colored by domain/motif: PAS, blue; GAF, green; knot-lasso, yellow; hairpin, red; 

biliverdin (BV), cyan.  Important amino acid contacts and the four pyrrole rings (A-D) in BV are 

labeled. 

(A and B) Structural arrangement of BV as Pfr within the GAF domain pocket of (A) of Subunit 

A, or (B) Subunit B.  Simulated-annealing omit maps (2Fo-Fc) are shown at 1 σ around BV 

(magenta) and selected residues (grey).   

(C) The relative positions of selected residues surrounding BV in Pr (top) and Pfr (bottom).  

Dashed lines locate predicted hydrogen bonds.  Pyrrole water, pw. 

(D) Structural changes/movements in BV induced by PrPfr photoconversion.  Shown are the 

relative positions of BV in the Pr (grey) and Pfr states (cyan) as revealed following superposition 

of the GAF domains for Pr (PDB code: 4Q0J (Burgie et al., 2014b)) and Pfr (this work). 

(E and F) Y176 and H201 contacting the D pyrrole ring impact Dr-BphP photoconversion and 

Pfr stability.  (E) UV-visible absorption spectra of the wild type (WT) and mutant PSMs in the 

dark-adapted Pr state or following red-light irradiation (RL, mostly Pfr).  Absorption 

maxima/minima are indicated.  Difference spectra (dashed lines at 70% amplitude) were 
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generated by subtracting the RL absorption spectra from those for Pr.  (F) PfrPr thermal 

reversion at 25°C for the RL-irradiated WT or mutant PSMs as measured by absorption at 750 

nm.  

See also Figures S1 and S3 
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Figure 3  Molecular architecture of the Dr-BphP PSM as Pr or Pfr 

(A) Two ribbon views of the F469W(PSM) dimer as Pfr.  The PAS (blue), GAF (green) and PHY 

(orange) domains, and the ‘knot-lasso’ (yellow) and hairpin (red) motifs are colored in the more 

homogeneous A subunit whereas the sister B subunit is colored in gray.  Biliverdin (BV) is 

colored in cyan.  C, carboxy-terminus.  N, amino-terminus. 

(B) Ribbon view of the PSM from wild-type Dr-BphP as Pr (PDB code: 4Q0J (Burgie et al., 

2014b)) in the same orientation as the right panel of (A). 

See also Figure S2. 
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Figure 4  PfrPr photoconversion perturbs the helical spine of Dr-BphP as probed by 

tobacco etched virus (TEV) protease sensitivity 

(A) Domain arrangement of Dr-BphP mutants engineered with TEV cleavage sites along the 

helical spine.  The positions of PAS, GAF, PHY and HK domains, the TEV-recognition sites, the 

terminal T7 and FLAG/6His tags, and the phosphoacceptor hidistine (H532) in the HK domain 

are indicated. 

(B) Single particle EM images of the full-length Dr-BphP dimer in the Pr (top) and Pfr or Pfr’ 

states (bottom) as described previously (Burgie et al., 2014b). 

(C) Reconstructed surface (left) and ribbon views (right) of the full-length Dr-BphP dimer as Pr.  

The structures were generated by appending the crystal structure of the HK module from 

Thermotoga maritima HK853 (PDB code 3DGE (Casino et al., 2009)) onto the PSM Pr crystal 

structure (PDB code 4Q0J (Burgie et al., 2014b)), using the Pr EM image shown in (B) as a 

scaffold (Burgie et al., 2014b).  The dimerization/histidine phosphorylation (DHp) and catalytic 

ATP-binding (CA) domains in the HK module are indicated.  The locations of TEV-recognition 

sites were colored yellow and magenta; the transition from yellow to magenta locates the 

scissile bond. 

(D) Sensitivity of the TEV mutants to TEV protease cleavage as Pr or during continuous red 

light irradiation (mostly Pfr).  Sensitivity of full-length Dr-BphP variants as well as the PSMs for 
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the TEV-150 and TEV-328 constructions (bottom right) are shown.  Each time course 

represents the average of three independent reactions.  Relative initial cleavage rates for Pfr as 

compared to Pr are indicated. 

(E) Possible cooperative ‘toggle’ models for the conformational changes induced by PrPfr 

photoconverion of Dr-BphP.  The dimeric architecture of Pr rearranges upon photoconversion 

via β-strand to α-helical contraction of the hairpin stem concomitant with helical spine splaying 

to either completely separate the sister OPMs or to force their repositioning through a scissor-

like pivot near residue 501 in the helical spine.  The end result is to alter the relative position of 

the sister HK domains to either discourage or promote a light-regulated HK phosphorelay. 

See also Figure S4.  
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Table 1.  X-ray Diffraction Data Collection and Refinement Statistics for the PSM 

Structure of Dr-BphP(F469W) as Pfr. 

Data collectiona  

Space group P212121 

Cell dimensions 

a, b, c (Å) 

α, β, γ (°) 

 

89.4, 192.7, 225.1 

90, 90, 90 

Resolution (Å) 58.8-3.31 (3.43-3.31) 

Rmerge  0.120 (1.50) 

CC1/2 0.998 (0.440) 

I/σ(I) 11.9 (1.7) 

Completeness (%)  88 (23) 

Redundancy 8.1 (7.1) 

Wilson B-factor 123.7 

Refinement  

Resolution (Å)  48.8-3.31 (3.43-3.31) 

No. reflections  51,712 (1,381) 

Rwork / Rfree 0.196 / 0.232b 

No. atoms 

Protein 

Ligandc 

Water 

 

14,739 

192 

20 

B factors 

Overall 

Protein 

Ligand 

Water 

 

153.8 

154.0 

140.8 

128.4 

Geometry  

R.M.S deviations 

Bond lengths (Å) 

Bond angles (°) 

 

0.002 

0.58 

Ramachandran  
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Favored (%) 

Outliers (%) 

98.5 

0.0 

Clash score 7.0 

aOuter shell values are in parentheses. 

bTest set for Rfree calculation was chosen randomly and comprised 3.6% of the total number of 

reflections 

cThis includes atoms from 4 BV, 2 acetate, 2 ethylene glycol, and 5 glucose molecules. 
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