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A role for mechanosensitive channels
in chloroplast and bacterial fission

Margaret E. Wilson and Elizabeth S. Haswell*

Department of Biology; Washington University in Saint Louis; Saint Louis, MO USA
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Abbreviations: MscS, mechanosensitive channel of small conductance; DAPI, 4',6-diamidino-2-phenylindole; FtsZ, filamentous
temperature sensitive Z; Z-ring, FtsZ ring; IPTG, isopropyl-β-D-1-thiogalactopyranoside; MS, mechanosensitive; MSL, MscS-Like

The division site in both chloroplasts and bacteria is established by the medial placement of the FtsZ ring, a process that
is in part regulated by the evolutionarily conserved components of the Min system. We recently showed that
mechanosensitive ion channels influence FtsZ ring assembly in both Arabidopsis thaliana chloroplasts and in Escherichia
coli; in chloroplasts they do so through the same genetic pathway as the Min system. Here we describe the effect of
heterologous expression of the Arabidopsis MS channel homolog MSL2 on FtsZ ring placement in E. coli. We also discuss
possible molecular mechanisms by which MS channels might influence chloroplast or bacterial division.

Chloroplasts are plant-specific organelles responsible for several
vital metabolic reactions, including photosynthesis,1 and they
undergo many rounds of division during the life of a plant in
order to maintain their population.2 Many of the proteins and
regulatory mechanisms involved in chloroplast division have
evolutionary counterparts in bacterial fission.3,4 For example, in
both plants and bacteria, division site selection is determined
by the placement of the polymer-forming GTPase filamentous
temperature sensitive Z (FtsZ), which associates with the inner
membrane to form a ring-like structure known as the Z-ring.
Medial placement of the Z-ring is regulated in part by the Min
system, which in E. coli is composed of the MinD/MinC complex
and the topological specificity factor MinE.3,5 Normal Z-ring
assembly in Arabidopsis thaliana chloroplasts requires homologs of
MinD and MinE, as well as several proteins of eukaryotic origin,
ARC3, MCD1 and PARC6.4,6,7

Recently we showed that two mechanosensitive (MS) channel
homologs, MscS-Like2 (MSL2) and MSL3, influence Z-ring
assembly in Arabidopsis chloroplasts and that they do so in the
same pathway as the land plant Min system.8 MSL2 and MSL3
are related to a well-studied MS channel from E. coli, the
mechanosensitive channel of Small conductance (MscS) and are
required for normal plastid size and shape.9,10 Furthermore, we
observed that the E. coli strain MJF465, in which the genes
encoding MscS and two other MS channels of the E. coli inner
membrane, MscK and MscL, are disrupted,11 showed inappro-
priate Z-ring placement similar to that observed in msl2 msl3
mutant chloroplasts. Our results thus link membrane tension and
the process of Z-ring assembly in both chloroplasts and bacteria.8

Here we present the surprising effects of heterologous expression

of MSL2 in E. coli, and discuss several possible mechanisms by
which MS channels might influence Z-ring assembly in an
evolutionarily conserved manner.

Expression of MSL2 in E. coli Causes Defects
in Septation and Z-ring Placement

During the course of unrelated experiments, we fortuitously
observed that isopropyl-β-D-1-thiogalactopyranoside (IPTG)-
induced expression of MSL2 in the wild type E. coli strain
Frag-112 caused extreme cellular filamentation (Fig. 1A and B).
The severity of filamentation varied greatly, with cells from the
same sample ranging from 5 mm to over 50 mm in length. This
phenotype, and our previous observation that MS channels are
required for normal Z-ring placement in E. coli, lead us to
investigate Z-ring placement in E. coli cells expressing MSL2. As
shown in Figure 1 C–N, immunoflorescence microscopy using
an anti-FtsZ antibody13 revealed that the filaments generated by
expressing MSL2 contained a high number of Z-rings when
compared with the filaments generated by treatment with the
septation inhibitor cephalexin (compare Fig. 1F and I). The
average distance between Z-rings in cells expressing MSL2
was 1.28 +/− 0.4 mm, while in cephalexin-treated cells it was
6.03 +/− 1.6 mm (n = 55 cells for each condition). In addition to
closely spaced Z-rings (white arrows), polar and double Z-rings
were often observed in cells expressing MSL2 (purple arrows).

Multiple, closely-spaced, and polar-localized Z-rings have been
described in E. coli mutants lacking a functional Min system,14

and, as summarized above, we previously observed a similar
phenotype in the E. coli MJF465 strain.8 Perhaps the most
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parsimonious explanation for the observed
proliferation of FtsZ rings in response to
heterologous expression of MSL2 is that
MSL2 prevents the function of endogenous
MS channels or specific components of the
E. coli Min system. An attractive hypothesis
is that MSL2 inhibits one or more of its six
E. coli homologs15 through the formation
of defective heteromeric channels in the
membrane or by sequestration away from
the membrane. However, this model does
not explain the observed defect in septation,
and we cannot rule out the possibility that
the entire effect of MSL2 expression is
nonspecific, as filamentation and alterations
in FtsZ levels are frequently observed in
bacteria in response to stress.16,17 Future
potentially informative experiments include
examining cell morphology and Z-ring pro-
duction in response to MSL2 expression in
an E. coli strain lacking all seven endogen-
ous MS channels, and in response to over-
expression of these endogenous channels.

How do MS Channels Influence
Z-ring Placement in Chloroplasts

and Bacteria?

MS channels are excellent candidates to
convey information about osmotic stress,
plastid size and shape, or plastid crowding to
division machinery,18 but the molecular
mechanism by which they might do so has
yet to be determined. Below we discuss two
general models for the interaction between
MS channels and known regulators of Z-ring
placement in E. coli cells and Arabidopsis
chloroplasts. These models are also dia-
grammed in Figure 2, using MSC and
MinD to representative MS channels and
plastid division proteins, respectively.

(1) MS channels interact directly with
FtsZ or its regulators. MSL2 and MSL3
co-localize with MinE to distinct foci on the
inner membrane of chloroplasts and their
soluble C-terminal domains are predicted
to localize to the stroma,10,19 where they
could stabilize or localize membrane-bound
components of the division machinery
through direct protein-protein interactions
(Fig. 2, Model 1). FtsZ, MinD, MinE,
ARC3, MCD1, ARC6 and PARC6 all show
peripheral or integral membrane associa-
tion and could be influenced by MSL2 or
MSL3.4,6,7 However, both yeast two-hybrid
and co-immunoprecipitation assays have

Figure 1. Heterologous expression of MSL2 in E. coli causes filamentation and disrupts normal Z-ring
placement. (A and B). Light micrographs of Frag-1 cells harboring the indicated constructs after 1 h
of induction in 0.1 mM IPTG. Cells were immobilized on agarose pads as previously described.26

(C–N). Immunofluorescence micrographs of FtsZ (pseudocolored green) and 4’,6-diamidino-2-
phenylindole (DAPI) staining of nucleoids (pseudocolored red) in Frag-1 cells harboring an empty
vector (C–H) or pCTC-MSL2 (I–N). Immunofluorescence and DAPI staining were performed
as described previously.8 All cells were treated with 0.1 mM IPTG for 20 min; + signs indicate cells
that were further treated with 10mM cephalexin for 1 h prior to fixing. White and purple arrowheads
indicate single and double or polar FtsZ rings, respectively. Size bar = 10 mm.
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failed to support a direct interaction between MSLs and any of
these proteins (unpublished data).

(2) MS channels indirectly influence Z-ring assembly by
altering ion homeostasis or membrane tension. As we have been
unable to obtain evidence for direct interactions between MSL2,
MSL3 and the Arabidopsis Min system, we instead favor an
alternate model (Fig. 2, Model 2). Both membrane tension and
ion homeostasis are likely altered in a bacterium or plastid lacking
MS ion channels, potentially disrupting the membrane localiza-
tion and therefore the function of division machinery components
indirectly.

One component that might be altered by ion homeostasis is
MinD. E. coli MinD is a membrane Mg2+-dependent ATPase;
MinD dimers bind the membrane via their C-terminal amphi-
pathic helices.20,21 ATP-bound MinD recruits MinC to the
membrane where the MinC/D complex acts to inhibit FtsZ ring
assembly. Upon ATP hydrolysis, MinD loses its membrane
association.3,5 How Arabidopsis MinD affects Z-ring assembly is

not clear, though it has been established that its ATPase activity is
stimulated by Ca2+ and MinE.22 Thus, the accumulation of high
levels of cations in the absence of MS channels could favor the
dissociation of MinD from bacterial or chloroplast membranes.
Altered membrane potential has also been recently shown to
disrupt the localization of a number of E. coli proteins including
MinD.23

Alternatively, rather than releasing ions, MS channels might be
required to release membrane tension in the chloroplast or
bacterial envelope for proper Z-ring placement. Membrane
tension affects both the physical and electrical properties of the
membrane and of the proteins embedded within it.24 For
example, tension-induced changes in lipid spacing and bilayer
thickness could interfere with the ability of the amphipathic
helixes of MinD21 to interact with membrane phospholipids.
These indirect models are difficult to test, but measuring
chloroplastidic ion concentrations in msl2 msl3 mutants via
ICP-MS25 may provide some additional insight.

Figure 2. Mechanisms by which MS channels may influence chloroplast or E. coli cell division. The possible effects of mechanosensitive channel (MSC)
activity (represented in blue, using the predicted topology of Arabidopsis MSL2) on the membrane association and/or function of components of the
division machinery (MinD is used as an example and is represented in orange). In Model 1, MSCs directly interact with MinD, stabilizing its association
with the membrane and allowing it to function in the inhibition of FtsZ ring assembly. In the absence of the MSC, MinD is unable to properly associate
with the membrane and FtsZ assembly is no longer appropriately inhibited. In Model 2, MSCs are required to maintain chloroplast ion homeostasis or to
relieve membrane tension in the inner plastid envelope for normal MinD function. Top, in the absence of the MSC, Ca2+ or Mg2+ ions accumulate in the
plastid stroma, enhancing the ATPase activity of MinD and leading to its continual membrane disassociation. Bottom, increased membrane tension alters
the biophysical properties of the membrane, preventing MinD from inserting its amphipathic helix into the lipid bilayer.
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In conclusion, many intriguing mechanisms can be envisioned
by which MS channels may impact Z-ring assembly during
chloroplast and bacterial division, and of course, the mechanism
used does not need to be the same for both chloroplasts and
bacteria. We anticipate that future research into the specific effects
of MS channels on ion homeostasis and membrane tension and
the impact of these parameters on components of the Min system
will identify the precise mechanism by which MS channel
influence Z-ring assembly in both chloroplasts and bacteria.
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