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RESEARCH ARTICLE
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Eusociality
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1 Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of
America, 2 Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of
America

☯ These authors contributed equally to this work.
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Abstract
The evolution of sterile worker castes in eusocial insects was a major problem in evolution-

ary theory until Hamilton developed a method called inclusive fitness. He used it to show

that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is fa-

vored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness

theory is well supported empirically and has been applied to many other areas, but a recent

paper argued that the general method of inclusive fitness was wrong and advocated an al-

ternative population genetic method. The claim of these authors was bolstered by a new

model of the evolution of eusociality with novel conclusions that appeared to overturn some

major results from inclusive fitness. Here we report an expanded examination of this kind of

model for the evolution of eusociality and show that all three of its apparently novel conclu-

sions are essentially false. Contrary to their claims, genetic relatedness is important and

causal, workers are agents that can evolve to be in conflict with the queen, and eusociality

is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math

but from overgeneralizing from narrow assumptions or parameter values. For example, all

of their models implicitly assumed high relatedness, but modifying the model to allow lower

relatedness shows that relatedness is essential and causal in the evolution of eusociality.

Their modeling strategy, properly applied, actually confirms major insights of inclusive fit-

ness studies of kin selection. This broad agreement of different models shows that social

evolution theory, rather than being in turmoil, is supported by multiple theoretical ap-

proaches. It also suggests that extensive prior work using inclusive fitness, from microbial

interactions to human evolution, should be considered robust unless shown otherwise.

Author Summary

The evolution of sterile worker castes in social insects has fascinated biologists ever since
Darwin; how can selection favor a trait that decreases reproductive fitness? W. D. Hamil-
ton solved this dilemma in the 1960s with a theory showing that reproductive altruism
could evolve if it increased the worker’s inclusive fitness, which included effects that it had
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on increasing the fitness of its relatives. This solution to a crucial evolutionary problem,
sometimes called kin selection, was challenged in a recent paper. The paper generated
much controversy, but no one has contested its new theoretical model of the evolution of
eusociality, which appeared to overturn much of what was previously thought to be true
from kin selection theory. Here we examine this model in greater depth, showing that its
apparently novel conclusions are overgeneralized from narrow and often inappropriate as-
sumptions. Instead, this modeling strategy yields results that confirm important insights
from kin selection and inclusive fitness, such as the importance of relatedness and the exis-
tence of conflicts in social insect colonies.

Introduction
The eusocial insects have occupied an important place in biology because of their extraordinary
levels of cooperation [1–4]. In ants, termites, some bees, some wasps, and a few other taxa, cer-
tain individuals, called workers, give up their own reproduction in order to help others repro-
duce. Darwin was vexed over the question of how such reproductive altruism evolves or indeed
how any traits of sterile workers evolve, but he believed that such sterility was due to some
form of selection at the family level or at the group level [5]. Hamilton provided the first rigor-
ous treatment of this idea, with a key insight being the importance of genetic relatedness [1]. A
conditional gene causing a worker to give up reproduction could be favored if it provided suffi-
cient help to a relative who would share that gene at above-random levels. He showed that this
process, which became known as kin selection, could be analyzed by summing up an actor’s fit-
ness effects, each multiplied by the actor’s relatedness to the individual receiving the fitness ef-
fect. When this sum, called the inclusive fitness effect, is positive, the trait should be favored by
selection. For giving up one’s reproduction (fitness cost c) to benefit other individuals (total fit-
ness gain b) related by r, the inclusive fitness condition is −c + rb> 0.

Kin selection and inclusive fitness became the dominant modes of thinking about the evolu-
tion of eusocial insects [4,6,7], and their success in this area has led to them being applied to
many other problems in social evolution [8–12]. Recently, this paradigm was criticized by
Nowak et al. [13], who argued that inclusive fitness was an inaccurate and unnecessary method
and that kin selection was not a very useful way to think about social evolution. Both of these
conclusions have in turn been extensively criticized as depending on multiple misconceptions
[14–22]. We concur with many of these criticisms but do not revisit them here. Instead, we
offer a different kind of critique of the Nowak et al. paper. To provide an example that bol-
stered their general arguments, Nowak et al. [13] also developed their own mathematical
model of the evolution of eusociality, presenting it as an example of a modeling approach that
is superior to inclusive fitness modeling. However, as has been recently pointed out [23], this
eusociality model has scarcely been addressed.

We do not contest this modeling approach. Instead, we accept it as valid and use it to show
that its implementation in Nowak et al. [13] led to errors of interpretation that greatly over-
stated any differences with standard inclusive fitness results. We do not address the exact quan-
titative match of the two approaches but instead focus on large apparent discrepancies of
interest to empiricists. Because their model is claimed to be superior to inclusive fitness, we
focus on three of their conclusions that seem at greatest variance with the conventional inclu-
sive fitness and kin selection view of the evolution of eusociality. In each case, we will show that
the kin selection view is essentially confirmed. Nowak et al. [13] also make other assertions
about eusociality that are consistent with inclusive fitness theory, such as the importance of
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grouping and preadaptations. We ignore these in order to focus on the seemingly novel conclu-
sions of the Nowak et al. model. The first two of these are fundamental qualitative differences
from inclusive fitness, while the last is more a difference in degree.

First, Nowak et al. [13], following earlier work by Wilson [24,25], claimed that relatedness
was not an essential element in the evolution of eusociality. They wrote that “relatedness is bet-
ter explained as a consequence rather than as the cause of sociality,” that “grouping by family
hastens the spread of eusocial alleles but it is not a causative agent,” and that “relatedness does
not drive the evolution of eusociality” [13]. In the same vein, they also contest empirical evi-
dence that relatedness is important [13]. We take causality to mean that variation in related-
ness leads to variation in the likelihood of evolving eusociality. As has previously been pointed
out, the Nowak et al. model could not test this because it was based on groups of relatives, with
no comparable model of unrelated individuals being presented [15,20]. Nowak et al. appear to
have partially accepted this point: “One, we do not argue that relatedness is unimportant. Re-
latedness is an aspect of population structure, which affects evolution” [26]. However, this re-
sponse leaves unanswered exactly how it affects evolution. At least one of the authors [27]
continues to assert that relatedness only hastens the spread of alleles and that it is not causal.
To test these claims, we extend their model to cases in which relatedness can vary.

Second, whereas inclusive fitness theory has emphasized that cooperation occurs in the face
of potential and actual conflicts among colony members with different interests [4,7,28,29],
Nowak et al. [13] assert that the colony as a whole is all that matters. They argue that “the
workers are not independent agents,” that “their properties are determined by the alleles that
are present in the queen (both in her own genome and in that of the sperm she has stored),”
that “the workers can be seen as ‘robots’ that are built by the queen,” and that they “are part of
the queen’s strategy for reproduction” [13]. Nor, contrary to earlier work by Wilson [24,25], do
they brook any conflicts between levels of selection: “there is only one level of selection, the hy-
menopteran colony, which is treated as an extension of the queen, whose genes are the units of
selection” [13]. To test whether workers and queens are independent agents that are selected
differently, we construct parallel models in which the genes determining whether their off-
spring stay and help are expressed in mothers or expressed in offspring.

Finally, Nowak et al. [13] claim that eusociality is harder to evolve than has been appreci-
ated. They write that “a key observation of our model is that it is difficult to evolve eusociality,
because we need very favorable parameters” and that “despite the obvious and intuitive advan-
tages of eusociality, it is very hard for a solitary species to achieve it” [13]. If there is any novelty
in this conclusion, it must be that eusociality is harder to evolve than has been thought previ-
ously; that is, it is harder to evolve than predicted from inclusive fitness effects (–c + rb> 0).
We explore how this conclusion changes with reasonable alterations in the fitness functions
and the worker decision rules.

If the three apparently novel conclusions of Nowak et al. are correct [13], then inclusive fit-
ness theory could be said to have made some serious errors, and we might have to throw out or
rethink important elements of the last 50 years of social evolution theory. If instead our models
reject those apparently novel conclusions in favor of results consistent with those obtained
through inclusive fitness, it would show that different theoretical approaches yield broadly con-
sistent results, as they ought to in a healthy science.

Results
Wemodify the Nowak et al. [13] haploid model, which is simpler than their haplodiploid one
but sufficient to demonstrate the important points. Our goal is not to exactly model eusociality
in any particular organism but to examine the logic and truth of three general claims in Nowak
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et al. [13], claims that pertain to both the haploid and haplodiploid models. The basic model
includes solitary and eusocial genotypes expressed in offspring, where solitaries always leave to
reproduce, while eusocials stay and help their mother with probability q and leave to reproduce
with probability 1 – q. Mothers and offspring are genetically identical. Differential equations
describe changes in the numbers of solitary individuals and eusocial colonies based on colony-
size–specific queen birthrates (bi) and death rates (di), as well as worker death rates (α) and
density dependence (η) (see Methods, Equation 1). If larger colony size (more workers) suffi-
ciently increases the queen’s birthrate and/or decreases her death rate, the eusocial type can be
favored over solitary reproduction under some probabilities of staying q. Using these equa-
tions, we recovered results indistinguishable from those of Nowak et al. [13] (e.g., their Fig-
ure 4). We then explored the effects of various assumptions by changing them one by one.

First, the models of Nowak et al. [13] assumed eusocial offspring stay with their mother so
that there was always genetic relatedness among participants. In the haploid model, this meant
that helpers were genetically identical (r = 1) to their mother and to the siblings they raised. To
vary genetic relatedness in the haploid model, we allowed some offspring mixing between
mothers before implementing their genetic helping rules. Each offspring has a probability r of
being with her own mother before deciding whether to help her or leave to reproduce and a
probability 1 – r of being with a random mother. This could result from offspring movement
between nests, from mothers laying a fraction of their eggs in other nests, or from nest usurpa-
tion [30,31]. r is equivalent to relatedness to the new mother (after movement) because it repre-
sents identity to that mother above chance levels; a fraction r is identical to the head of their
colony and her offspring (r = 1), while the remainder are randomly associated with colonies
(r = 0). After this temporary mixing, offspring execute the original Nowak et al. strategies: off-
spring with the solitary genotype always leave to reproduce alone, and offspring with the euso-
cial genotype stay and help their colony with probability q. Differential equations
implementing this model are given in the Methods (Equation 2).

The filled circles in Fig. 1 show when selection on offspring favors eusociality under varying
relatedness r, worker-assisted queen birthrate b, and probability of staying q (other parameters
continue to match the standard Nowak et al. Figure 4 parameter values). Lowering relatedness
clearly makes it more difficult for eusociality to evolve; with lower r, a higher b is required to
favor eusociality. In the extreme, when offspring are randomly associated with colonies so that
relatedness is zero, even b = 500 (a 1,000-fold increase in the queen’s birthrate due to helpers)
is insufficient to favor eusociality. As expected from inclusive fitness theory, relatedness is caus-
al in the sense that some relatedness is necessary for eusociality and increasing relatedness in-
creases the range of conditions allowing eusociality to evolve.

Second, to address the issue of whether worker offspring are independent agents or simply
robots carrying out the queen’s interests, we need to compare models of control by different
agents. This means comparing models in which the decision to stay and help is made by genes
in offspring bodies to models in which it is made by genes in the resident queens’ bodies.
Though Nowak et al. [13] seem to argue for queen control, their models are for offspring con-
trol because they generally assume that genes expressed in worker bodies determine the deci-
sion to stay or leave.

However, inclusive fitness theory predicts that when queen control is possible, it will gener-
ally be more favorable for evolving eusociality [7] unless relatedness is one, in which case no
conflict is expected. To model queen control under varying relatedness in the haploid model,
we allowed offspring to mix exactly as in the offspring control model above but then allowed
the resident queen’s genotype to determine if her mixed offspring pool helps or not. If the
mother has the solitary genotype, all of her mixed pool disperses to become reproductives; if
the mother has the eusocial genotype, she causes a fraction q of her offspring pool to stay and
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help her, independent of offspring genotype. Differential equations governing this system are
given in the Methods (Equation 3). As predicted by inclusive fitness theory, eusociality evolves
much more easily under queen control (Fig. 1, all circles). The only exception, as expected
under inclusive fitness theory, is when there is no mixing between nests so r = 1 and the two de-
cision rules are selected identically. In fact, assuming that queens can control the trait, we see
the expected opposite relationship with relatedness; the less related the queen is to the offspring
in her colony, the more the queen is selected to cause them to be workers.

The final claim that we examine is that eusociality is hard to evolve [13]. This depends on
what is meant by “hard,” but we can usefully ask whether eusociality is as difficult to evolve as
is implied in the Nowak et al. [13] paper. Their claim seems based on particular and odd
choices for fitness functions and worker decision rules. The fitness function that they generally
explored was a threshold function in which workers add no fitness gains to the queen below a
colony of sizem and add a fixed gain (increasing queen b or decreasing d) in colonies at or
above sizem, regardless of how many workers are added. This means that workers in colonies
below that threshold contribute nothing until enough further workers join and that workers
above the threshold also add nothing extra unless other workers die, returning the colony to
the threshold. If most workers are contributing nothing, then it is not surprising that eusociali-
ty would be hard to evolve. In the example most explored, the threshold colony sizem was set
at 3 (their Figure 4), such that two workers were needed to raise the queen’s birthrate from b0 =
0.5 to b = 4 and to lower her death rate from d0 = 0.1 to d = 0.01 (they also let α = 0.1 and η =
0.01) [13]. This 8-fold increase in the queen’s birthrate allowed eusociality to evolve for some
values of q, but lower values of b did not allow eusociality to evolve. Not surprisingly, requiring

Fig 1. Relatedness (r) and the evolution of eusociality. The worker-assisted birthrate b and the probability of staying q are allowed to vary, while other
parameters are as in Figure 4 of Nowak et al. [13] (m = 3, b0 = 0.5, d0 = 0.1, d = 0.01, α = 0.1, η = 0.01). Filled circles show values of relatedness r and worker-
assisted queen birthrate b that select for eusociality (for at least one value of q) if the decision is made by offspring (Equation 2). Reducing relatedness makes
eusociality harder to evolve (requires higher b). When the decision is made by genes acting in mothers (Equation 3), eusociality evolves under much broader
conditions (open and filled circles), and lowering relatedness make eusociality easier to evolve. The open circles represent the zone of potential conflict, in
which mothers but not offspring favor eusociality. The data used to make this figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002098.g001
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more workers before the queen increased fitness (higherm thresholds) made eusociality even
more difficult to evolve.

As noted above, the assumption that workers must stay with probability q, regardless of the
state of the colony, means they may be maladaptively staying in colonies that are too large to
gain further benefits. It should be easy for workers to avoid this problem. For example, they
might instead implement the rule to stay when the colony is below some threshold size w and
leave when it is at or above that size. We implemented differential equations to model this
change of assumption (see Methods, Equation 4) in the original Nowak et al. model with work-
er control and r = 1 (i.e., independently of the other changes explored above). Eusociality does
evolve more readily. For example, for the same parameter values as in Figure 4 of Nowak et al.,
eusociality can now be favored under a somewhat lower benefits threshold (b = 3), that is,
when helped queens get a 6-fold advantage.

In addition, the threshold fitness function assumed by Nowak et al. [13] prevents the earliest
workers from contributing anything. However, it is easy to envision advantages that would
come from having only a single worker [25,32]. To view this effect in isolation, we return to the
Nowak et al. [13] decision rule (stay with probability q) and to their parameter values given
above but allow a single worker to add half the contribution to the queen that two workers add
(for both birthrate and death rate) (m = 3, b0 = 0.5, d0 = 0.1, d = 0.01, α = 0.1, η = 0.01). This
simple change (implemented in Equation 1) makes it much easier to evolve eusociality, with
b = 1.5 or only a 3-fold increase required (Fig. 2) versus 8-fold with the threshold model. This
analysis does not resolve what actual fitness functions and decision rules apply in nature, but
we note that evolution tends to take the easiest paths available and eschew the difficult ones.

This result appears very close to what is expected under inclusive fitness when r = 1: if two
workers increase queen birthrate from 0.5 to 1.5, each raises it by 0.5, exactly the amount that
the worker gives up by helping. However, the comparison is not accurate for two reasons. First,
this comparison of birthrates neglects the workers’ effect on queen death rate in the model.
Second, having gone back to the stay-with probability q decision rule, some workers waste
their efforts by joining large colonies. In order to compare more closely with inclusive fitness,
we altered both of these: the queen death rate is now unchanged by workers, and the stepwise
birthrate function is implemented together with the stay-below-colony-size-w decision rule.
For w = 3, eusociality is not favored at b = 1.5 (where inclusive fitness predicts it to be neutral
[workers giving up 0.5 and adding 0.5 to the queen]) but is favored to evolve at b = 1.6. It is still
possible to argue that eusociality is hard to evolve, depending upon one’s standard for what is
hard, but it is considerably easier to evolve than implied by the initial Nowak et al. model and,
not surprisingly hard relative to inclusive fitness predictions.

Discussion
The controversy over the Nowak et al. paper has mostly been conducted at rather abstract lev-
els; different researchers prefer different modeling strategies and may also interpret the evi-
dence differently [13–20,26]. We take a different and more concrete approach by investigating
their model for the evolution of eusociality more deeply. If their methods are superior and raise
novel insights, we should welcome them and perhaps question our older theories. If instead
their methods lead to no novel insights, it undermines the larger claims that the model is used
to buttress, specifically that inclusive fitness has not been useful.

We have therefore followed the recommendation of Nowak et al. [13] for modeling social
evolution, and in particular eusociality, using deterministic evolutionary dynamics described
by ordinary differential equations. However, stimulated by inclusive fitness thinking, we have
sought to understand apparent differences between their results compared to previous models.
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In every case, we find that their rejection of accepted results is incorrect and that in fact the in-
sights known from inclusive fitness theory also emerge using their method.

The claims that relatedness only hastens the spread of eusocial alleles and that relatedness is
not causal [13,27] are shown by our models to be false. The proposition could not be tested in
the Nowak et al. [13] models because they did not examine any low-relatedness case [15,20].
We have modeled variable relatedness and shown that, under offspring control, high related-
ness broadens the range of conditions allowing eusociality to evolve. Relatedness affects not
just speed of selection but whether it is favored at all; when relatedness is zero, eusociality does
not evolve even with very high benefits (increasing queen birthrate 1,000-fold). This shows
that relatedness plays an essential and causal role. Of course, these are not surprising findings
because the importance of relatedness was previously well understood from many kinds of
models using inclusive fitness [1,7], population genetics [33–35], quantitative genetics [36–38],
and game theory [39,40], as well as being supported by much empirical evidence [7,9,41,42].

An alternative interpretation of Nowak et al.’s [13] views is that relatedness is not causal be-
cause high relatedness does not always drive the evolution of eusociality. However, this is a
rather empty view since no one has ever asserted the contrary and Hamilton’s rule explicitly in-
cludes other factors that interact with relatedness. In addition, this view would negate most bio-
logical causality of any kind, as no single factor ever completely determines outcomes. Finally,
if Nowak et al. agreed that variation in relatedness is an important determinant of eusociality,
which is widely regarded as the most important contribution to the topic in 50 years, why did
they not say so, instead consistently arguing against its significance? This pattern extends be-
yond the Nowak et al. [13] paper to Wilson’s earlier and later papers [24,25,27] and to work
from Nowak’s group purporting to show new pathways to cooperation [43,44] that in fact de-
pended critically on relatedness and could be interpreted via inclusive fitness [45–47].

Fig 2. Eusociality evolvesmore readily under a step model (both open and closed circles) than under the thresholdmodel (closed circles only).
The threshold model is that assumed in Figure 4 of Nowak et al. [13] (m = 3, b0 = 0.5, d0 = 0.1, d = 0.01, α = 0.1, η = 0.01), with no benefits of working below
colony size 3 (two workers). The step model is identical except one worker benefits the queen half as much as two workers do. The data used to make this
figure can be found in S1 Dataset.

doi:10.1371/journal.pbio.1002098.g002
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Whatever view of causality is taken, it is important to be clear that the Nowak et al. [13] model-
ing strategy is just like others in showing that higher relatedness is an important factor promot-
ing higher cooperation.

A second claim of Nowak et al. [13], that workers are robots and simply part of the queen’s
reproductive success, cannot be made without testing and contrasting queen and worker deci-
sion rules. Nowak et al. [13] tested only offspring control models because the decisions are con-
trolled by genes expressed in workers. It is a longstanding result of inclusive fitness theory that
parents and offspring are agents with different interests that can be in conflict [28,48]. In par-
ticular, in the eusociality context, inclusive fitness predicts that offspring will be selected to
help their mothers under a narrower range of conditions than the mothers would favor (eusoci-
ality evolves more readily if mothers control the helping of their offspring) (pp. 58–63 of [7]).
This follows from differences in relatedness. Workers should gain less from helping less-related
kin, but queen inclusive fitness improves if she is less related to the workers who pay the fitness
cost.

To examine this question, one must compare selection of offspring agency (genes expressed
in the offspring determine whether she becomes a worker) versus maternal agency (genes ex-
pressed in the mother determine whether her offspring become workers). We therefore con-
structed haploid models for maternal control to compare with the results under offspring
control. As predicted by inclusive fitness theory, the two cases evolve differently and can be in
conflict: mothers favor helping by their offspring under a much broader range of conditions
than the offspring themselves favor, except when mothers and offspring are genetically identi-
cal (Fig. 1, all circles). And as predicted, when relatedness is low and eusociality is very difficult
to evolve under worker control, it is very easy to evolve if the queen has control, because the
queen is unrelated to most of the workers who pay the fitness cost. If queens really were in con-
trol from the origin of eusociality, and if they could exert that control on unrelated offspring,
that would be the easiest path to eusociality. However, this is contradicted by phylogenetic
studies showing that relatedness was always high at the various origins of eusociality [41]. In
contrast, the standard kin selection model of worker control predicts this observation.

Finally, the claim that eusociality is difficult to evolve [13] is less fundamental than the
other two claims and also less wrong because its truth necessarily depends on how one defines
“hard to evolve.” Eusociality has evolved a modest number of times and therefore could be
viewed as hard to evolve, but their model does make it appear that eusociality is harder to
evolve than has been believed. We show that this result hinges on assumptions that are heavily
biased towards that conclusion. Little justification was given for why we should accept these
particular assumptions. In particular, assumptions are made that imply that many workers
waste their efforts. First, their model assumed that offspring stay with probability q, indepen-
dent of any information that might be available about the need for workers. One advantage of
inclusive fitness thinking is that it induces researchers to think of workers as agents being se-
lected to get better outcomes (higher inclusive fitness) using whatever information is available
to them. One such piece of information is the number of workers already present on the nest.
In the threshold fitness model, there is no inclusive fitness gain to be had from staying above
that threshold, unless some workers die, so we asked if there was some obvious better decision
rule than stay with probability q. We therefore tested decision rules that have workers staying
when the colony is below a threshold size (not necessarily the same as the fitness threshold)
and leaving when the colony is above that size. Not surprisingly, we find that this class of deci-
sion rules makes it easier to evolve eusociality, because fewer workers are making wasteful deci-
sions to stay in large colonies. Such a rule seems well within the capabilities of workers. They
need not count adults. They simply need to be able to assess some reasonable correlate of the
count, something that even microbes do when using quorum sensing to change their behavior.
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For social insects, the mechanism might involve the degree of comfort with contacting other
adults or the hunger demands of offspring.

Similarly, the threshold fitness model assumed by Nowak et al. devalues worker behavior at
the other, low, end of colony sizes. In most of their model examples (though not their general
model), it was assumed that it was necessary to have two workers to provide any benefit at all
to the queen (m = 3). That means that the first worker to join a colony provides nothing. How-
ever, it is easy to envision situations in which the first worker to join would provide real bene-
fits [32]. The simplest is that at this point one individual can guard the nest while the other
forages [25]. Empirical evidence suggests that first helpers do provide benefits [49–54]. If we
modify the Nowak et al. threshold model to a step model in which each worker below the
threshold adds an additional fixed benefit up to the maximum at colony sizem, so that the ef-
forts of unjoined first workers are not wasted, eusociality evolves much more easily. Thus, two
modifications—the stepped fitness function and the altered worker decision rule—indepen-
dently make it easier for eusociality to evolve. When we implemented these two rules together
so that no workers waste their efforts and assumed workers affect only queen birthrates, eusoci-
ality evolved when predicted by inclusive fitness effects on birthrates. We do not know if this is
general; the exact correspondence of the two methods may deserve additional study, but our
goal here is to address the apparent major discrepancies.

The method advocated by Nowak et al. [13] offers the advantage of specifying parameters
like birth and death rates explicitly and following their effects over time while allowing some
features, like colony size, to change. We expect that these methods can be used to generate in-
teresting results. However, they are more complex and less intuitive than inclusive fitness
thinking, so considerable care is needed to fully understand them. The common thread in the
three errors pointed out in this paper is overgeneralization from narrow assumptions or partic-
ular parameter values. Relatedness was said to be unimportant even though the models did not
vary relatedness. The assertion that workers are not independent agents was made in the ab-
sence of models that compared decision rules of different agents. Eusociality was said to be dif-
ficult to evolve based on specific and questionable assumptions about the fitness function and
offspring decision rules. The more complex the model, the easier it is to be misled by particular
results that are not general. In this case, the initial Nowak et al. model [13] missed not just
minor details but perhaps the most important generalizations known from the last five decades
of theory and empirical study: the importance of relatedness and conflict. Apparent lack of
agreement with prior results should have triggered more than a quick rejection of inclusive fit-
ness and kin selection; it should have led to a questioning of why the results were, or seemed to
be, different. When examined more closely, models of the type advocated by Nowak et al. [13]
do not overturn but instead reaffirm principles of social evolution discovered through inclusive
fitness. To have multiple theoretical approaches converging on similar results attests to the ro-
bustness of social evolution theory.

Methods
Our models are all based on the haploid model of Nowak et al. [13]. They modeled the evolu-
tion of eusociality with systems of differential equations tracking the number of solitary queens
(x0) and eusocial colonies of size i (xi). We use a modified notation because our low-relatedness
models require us to also keep track of colonies headed by solitary-genotype queens. We there-
fore let ei be the number of colonies of size i headed by a eusocial queen (that is with i – 1 work-
ers) and si be the number of colonies of size i headed by a solitary queen. With this modified
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notation, equation set 58 of Nowak et al. [13] can be written as:

_s1 ¼ ðb1�� d1Þs1
_e1 ¼

X1
i¼1

bi�ð1� qÞei � b1�qe1 � d1e1 þ ae2

_ei ¼ bi�1�qei�1 � bi�qei � diei � aði� 1Þei þ aieiþ1 for i > 1;

ð1Þ

where bi and di are the birth and death rates of colonies of size i, q is the probability that an off-
spring of a eusocial colony stays as a worker (offspring of solitary colonies never stay), α is the
worker mortality rate, and ϕ is a density-dependent correction factor equal to 1/(1 + ηX), with
X being the total population size including workers and η scaling the size of the system.

For specific examples, Nowak et al. [13] usually assumed birthrates and death rates were
governed by a simple threshold function: below some threshold colony sizem, bi = b0 and di =
d0 and at or above colony sizem, bi = b and di = d. Using two numerical methods (see below),
we used Equation 1 to reproduce the results of Figure 4 in Nowak et al. [13] (see S1 Code).

The Nowak et al. models all assumed high and fixed relatedness. We modify their haploid
model to incorporate a parameterized mixing step, which allows us to vary the degree of relat-
edness between queens and workers. The mixing occurs before offspring decide to be workers
or reproductive queens. We allowed offspring to move to other mothers, eusocial or solitary,
with probability 1 – r. Each moving offspring is replaced by a eusocial or a solitary offspring
with probabilities fe and fs, which are simply the proportions of such offspring produced in the
population:

fe ¼
X

i

biei

�X
i

biðsi þ eiÞ

fs ¼
X

i

bisi

�X
i

biðsi þ eiÞ:

After mixing, offspring execute their staying rule (leave for solitaries and stay with probability
q for eusocials). r is relatedness to the mother they help because r of the time she is identical,
and 1 – r of the time she is genetically random or unrelated. For this offspring decision model,
the equations describing changes in colony types are as follows:

_s1 ¼
X

i

ðbi�ð1� rÞfseiÞ þ
X

i

ðbi�ðr þ ð1� rÞfsÞsiÞ � d1s1 þ as2

_si ¼ bi�1�ð1� rÞfeqsi�1 � bi�ð1� rÞfeqsi � disi � aði� 1Þsi þ aisiþ1

_e1 ¼
X

i

ðbi�ðr þ ð1� rÞfeÞð1� qÞeiÞ þ
X

i

ðbi�ð1� rÞfeð1� qÞsiÞ

�b1�ðr þ ð1� rÞfeÞqe1 � d1e1 þ ae2

_ei ¼ bi�1�ðr þ ð1� rÞfeÞqei�1 � bi�ðr þ ð1� rÞfeÞqei � diei � aði� 1Þei þ aieiþ1:

Here ei and si still represent numbers after decision rules are executed and do not reflect num-
bers in the transient mixing stage. The equations were numerically solved using S3 Code.

For maternal control, we implemented the same offspring mixing model but allowed the
mother’s genotype to determine whether the offspring in her colony (some of them resulting
from mixing from other colonies) stay and help. Thus, if the queen is eusocial, her (mixed) off-
spring will become new workers with probability q or new queens with probability 1 – q. If the
queen is solitary, then all offspring will become new queens. The equations now become the

(2)
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following:

_s1 ¼ b1�ðr þ ð1� rÞfsÞs1 þ
X

i

ðbi�ð1� rÞfsÞð1� qÞeiÞ � d1s1

_e1 ¼
X

i

ðbi�ðr þ ð1� rÞfeÞð1� qÞeiÞ þ b1�ð1� rÞfes1 � b1�qe1 � d1e1 þ ae2

_ei ¼ bi�1�qei�1 � bi�qei � diei � aði� 1Þei þ aieiþ1:

ð3Þ

Note that, unlike the worker model, there are no solitary colonies larger than one (after the
transient mixing stage) because a solitary queen always causes her offspring pool to disperse
and become reproductive. The equations were numerically solved using S4 Code.

To examine if eusociality is easier to evolve than suggested in Nowak et al. [13], we tested al-
ternative worker decision rule and fitness functions. First, instead of staying with probability q,
eusocial offspring always stay when colony size i< w and always leave when i� w. The equa-
tions are as follows:

_s1 ¼ ð�b1 � d1Þs1
_e1 ¼

X1
i¼w

�biei � �b1e1 � d1e1 þ ae2

_ei ¼ �bi�1ei�1 � �biei � diei � aði� 1Þei þ aieiþ1 for 1 < i < w

_ei ¼ �bi�1ei�1 � diei � aði� 1Þei þ aieiþ1 for i ¼ w

_ei ¼ �diei � aði� 1Þei þ aieiþ1 for i > w:

ð4Þ

These equations were numerically solved using S5 Code.
We also altered the fitness functions from single thresholds to step functions. Now each

added worker adds the same amount, up to the maximum b attained at colony sizem. The
maximum gain in both models is the same, but now each worker up to sizem adds something.
We can model this with Equation 1: if b0 is the birthrate of a solitary queen and b is the birth-
rate of a eusocial queen in colony sizem, then we let the birthrate of queens in smaller colony
sizes 1< i<m be b0 + (i −1)(b − b0)/(m −1). Similarly, we let the queen death rate for colony
sizes 1< i<m be d0 + (i −1)(d − d0)/(m −1). This implementation of the Nowak et al. model
was numerically solved using S2 Code.

To solve the ordinary differential equations, we used two numerical methods. For Equations
1–4, Euler's method was used in R to numerically determine the equilibrium population of the
system, using a time step of h = 0.1 and a maximum colony size of n = 50 and terminating
when either E or S population/number of individuals was less than ε = 0.1 or after a maximum
of 50,000 time steps. Equation 1 was also solved with a first-order numerical procedure with
the step size 0.1 implemented in MATLAB. The procedure was started with equal numbers of
solitary females and eusocial queens (n = 100) and was terminated when either the solitary or
eusocial populations were extinct (defined as less than 0.05) or both the solitary and eusocial
populations stabilized at a maximum of 200,000 time steps. Both numerical methods success-
fully reproduced Figure 4 of Nowak et al. [13].

Supporting Information
S1 Code. R code for the threshold model in Fig. 2.
(ZIP)

S2 Code. R code for the step model in Fig. 2.
(ZIP)
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S3 Code. R code for worker control under variable relatedness, Fig. 1.
(ZIP)

S4 Code. R code for queen control under variable relatedness, Fig. 1.
(ZIP)

S5 Code. MATLAB code for the stay-below-colony-size-w decision rule.
(ZIP)

S1 Dataset. The data points used in Figs. 1 and 2.
(XLSX)
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