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SUMMARY

Chemical damage to RNA affects its functional prop-
erties and thus may pose a significant hurdle to
the translational apparatus; however, the effects of
damaged mRNA on the speed and accuracy of the
decoding process and their interplay with quality-
control processes are not known. Here, we system-
atically explore the effects of oxidative damage on
the decoding process using a well-defined bacterial
in vitro translation system. We find that the oxidative
lesion 8-oxoguanosine (8-oxoG) reduces the rate of
peptide-bond formation by more than three orders
of magnitude independent of its position within the
codon. Interestingly, 8-oxoG had little effect on the
fidelity of the selection process, suggesting that
the modification stalls the translational machinery.
Consistent with these findings, 8-oxoG mRNAs
were observed to accumulate and associate with
polyribosomes in yeast strains in which no-go decay
is compromised. Our data provide compelling evi-
dence that mRNA-surveillance mechanisms have
evolved to cope with damaged mRNA.

INTRODUCTION

The accurate translation of cellular mRNAs is an integral feature

of the ribosome and translation factors. On intact mRNAs, the

selection of aminoacylated tRNA substrates by the ribosome

has evolved to utilize thermodynamic and kinetic differences be-

tween cognate and noncognate interactions (Zaher and Green,

2009a). On aberrant mRNAs, such as truncated ones and those

either containing premature or lacking stop codons, a number of

ribosome-based-quality-control processes ensure that these

RNAs are not translated and instead are targeted for degradation

(Graille and Séraphin, 2012; Kervestin and Jacobson, 2012;

Shoemaker and Green, 2012). In addition to defects in its

sequence, mRNA is susceptible to chemically induced defects.

Nucleic acids are constantly under assault from both endoge-

nous and exogenous agents that can affect their chemical prop-

erties and hence their function (Wurtmann and Wolin, 2009).

These assaults include reactive oxygen species (ROS), UV light,

and alkylating agents. In contrast to DNA, damaged RNA has

received little attention, presumably due to its transient nature

(Li et al., 2006), even though damaged RNA is known to accumu-

late and has been linked to a number of neurodegenerative dis-

eases (Nunomura et al., 1999; Shan et al., 2003, 2007; Shan and

Lin, 2006; Tanaka et al., 2007). Indeed, in human fibroblast cells,

the median half-life of mRNAs is �10 hr (Yang et al., 2003), indi-

cating that damaged mRNAs may persist and are likely to pose

a challenge to the cell if not corrected. Furthermore, a number

of mRNA-surveillance mechanisms exist to handle aberrant

mRNAs, suggesting that high turnover of RNA alone is not a suf-

ficient means to cope with damaged RNAs.

ROS are present under normal conditions as byproducts of

metabolic reactions (Finkel and Holbrook, 2000), and their levels

increase significantly under stress conditions. The reaction of

ROS with nucleic acids results in a myriad of modifications (Bar-

ciszewski et al., 1999). Among these lesions, modification to

the guanine base resulting in the 8-oxo-7,8-dihydro-guanine

(8-oxoGua) is the quintessential archetype of oxidation adducts

due to its ability to pair with adenosine during DNA replication

(Figure 1A). In agreement with this altered base-pairing property,

RNA damage appears to affect decoding, as crudely oxidized

mRNA has been linked to reduced translational efficiency

and accuracy (Shan et al., 2003, 2007; Tanaka et al., 2007).

To date, mechanistic understanding of this inefficiency (i.e.,

whether it is due to miscoding, stalling, or degradation of the

damaged mRNA) is lacking. This is mainly due to the difficulty

of targeting a specific transcript at an exact location for

oxidation.

Oxidized RNA is known to accumulate in vivo, for which 8-

oxoG is present at �1 in 105 residues in total RNA (the levels

could potentially be higher in the mRNA pool) under normal con-

ditions and increases as much as 10-fold under oxidative stress

(Hofer et al., 2005; Shen et al., 2000), highlighting the potential

risk to cellular homeostasis. Additionally, oxidized RNA appears

to turn over at a faster rate (Hofer et al., 2005), suggesting that it

is selectively degraded; however, the exact details of such a

mechanism are currently unknown. It is conceivable that factors

that recognize lesions on RNA exist and target it for degrada-

tion, but a more appealing model would involve ribosomal ac-

tion. What is attractive about this model is the existence of a

number of ribosome-based mRNA-surveillance mechanisms

(Shoemaker and Green, 2012). Second, as the ribosome is the

only machine that sees all mRNAs, it is not difficult to imagine

how a damaged RNA quality-control mechanism can be built

into the ribosome. The signal for any degradation process,
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however, would have to initiate within the decoding center of the

ribosome as it selects an incoming aminoacyl-tRNA (aa-tRNA)

against the oxidized A-site codon. With this in mind, here we

examine the effect of 8-oxoG on decoding using a high-resolu-

tion approach, providing a comprehensive look at the ribosomal

response to oxidative damage.

RESULTS

8-oxoG Is Detrimental to the Decoding Process
To explore the effects of RNA damage on the decoding process,

we took advantage of our high-resolution reconstituted bacterial

system (Zaher and Green, 2009b), which can monitor the

Figure 1. 8-oxoG Is Detrimental to the Decoding Process

(A) Chemical structures of G:C, 8-oxoG:C, and 8-oxoG:A base pairs. 8-oxoG adopts a syn conformation, allowing it to base pair with adenosine.

(B) Schematic representation of guanosine and 8-oxoG initiation complexes encoding for the dipeptideMet-Arg. Both complexes carry the initiator fMet-tRNAfMet

in the P site; the G complex displays a CGC codon in the A site, whereas the 8-oxoG complex displays a C8-oxoGC codon in the A site.

(C) Schematic representation of the cognate Arg-tRNAArg and near-cognate Leu-tRNALeu (G:A mismatch at the second position) ternary complexes.

(D) Phosphorimager scan of an electrophoretic TLC showing the reactivities of the initiation complexes with the indicated ternary complexes and release factors.

Green asterisk represents the cognate dipeptide, whereas the red one represents the near-cognate dipeptide resulting from a G:A mismatch.

(E) Quantification of the dipeptide yield in (D); the predicted codon-anticodon interaction is shown below the x axis, and the corresponding dipeptide is shown

above the bars.

(F and G) Time courses of peptide-bond formation between the initiation complexes and the cognate Arg-tRNAArg and near-cognate Leu-tRNALeu ternary

complexes, respectively.

See also Figures S1 and S2.
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efficiency of incorporation of every single amino acid (Figure S1).

Weproduced ribosomal initiation complexes carrying the initiator

tRNA f-[35S]-Met-tRNAfMet in the P site combined with a variety

of intact or site-specifically damaged codons in the A site. We

started our studies with a pair of complexes displaying either

the intact CGC or C8-oxoGC codon in the A site (Figure 1B). Under

normal conditions, this codon is decoded byArg-tRNAArg
ICGwith

canonical Watson-Crick base pairs at the three positions. We

reasoned that the oxidized complex, if 8-oxoG base pairs with

A, should be decoded by Leu-tRNALeu
GAG (Figure 1C). The com-

plexeswere reactedwith different aa-tRNAs isoacceptors aswell

as the two release factors (RF1 and RF2) for 5 s, which should be

sufficient to reach the endpoint of a normal peptidyl-transfer re-

action (Figure 1D). The production of dipeptides or RF-mediated

hydrolysis was visualized using an electrophoretic thin-layer

chromatography (TLC) system (Youngman et al., 2004). At first

glance, the survey appears to agree well with our prediction.

The intact complex efficiently reacts with Arg-tRNAArg and not

with Leu-tRNALeu; the oxidized complex reacts poorly with Arg-

tRNAArg but slightly better with Leu-tRNALeu, relative to the native

one. Furthermore, the data suggest that the adduct affects the

decoding process in a more complicated fashion than we initially

anticipated; there are a set of aa-tRNAs that decode the intact

codon but appear not to decode the modified codon (Figure 1D).

Nonetheless, the reactivity of the damaged complex with the

near-cognate aa-tRNA appears to proceed with an overall poor

efficiency relative to normal peptide-bond formation (Figure 1E),

indicating that the oxidized basemay have a substantial effect on

the speed of the ribosome.

Having established the crude reactivity of the complex

harboring the damaged mRNA, we next determined the effects

of the adduct on the rate of peptide-bond formation with cognate

and near-cognate aa-tRNAs. A comparison of rates for the reac-

tion between theCGC andC8-oxoGC complexes and the cognate

Arg-tRNAArg showed that the complex displaying the modified

nucleotides reacted much slower than the intact one; the

apparent rate was determined to bemore than 1,000-fold slower

(Figure 1F). These findings suggest that 8-oxoG is likely to stall

the ribosome, unless the ratewith the near-cognate ternary com-

plexes is greatly accelerated. In agreement with our endpoint

analysis (Figure 1D), the apparent rate for the 8-oxoG complex

with the near-cognate Leu-tRNALeu ternary complex (where G

mispairs with A in the second position), albeit faster than the

immeasurably slow rate for the intact complex, was very slow

(0.03 s�1)—likely too slow to support efficient protein synthesis

in vivo (Figure 1G). This was unexpected, as our initial prediction

was that 8-oxoGwould lead to incorporation of the near-cognate

aa-tRNA and produce some level of miscoding.

The Effect on Decoding Is Insensitive to the Position of
the Lesion
The first two positions of the codon and anticodon minihelix

require strict Watson-Crick base pairing, whereas the third posi-

tion allows somewobble base pairing. Additionally, the decoding

center of the ribosome utilizes different interactions to recognize

the correct geometry for the different positions (Ogle et al., 2001).

As a result, we reasoned that the position of the modification

within the codon might have differential effects on tRNA selec-

tion by the ribosome. In particular, we expected the decoding

process to be normal in the presence of damage at the third po-

sition of the codon. To address this hypothesis, we generated

three new sets of complexes, placing the 8-oxoG at the first, sec-

ond, or third position of the codon (see Figure S2). In each case,

the 8-oxoG complex reacted much less efficiently with the

cognate aa-tRNA than its intact counterpart. The complexes

with 8-oxoG in the first or second position instead reacted

more efficiently with the predicted (if 8-oxoG pairs with A, or G

at the wobble position) near-cognate aa-tRNA, but again with

an overall poor yield. Lastly, the third set of complexes, carrying

the 8-oxoG at the wobble position, reacted poorly with its

cognate aa-tRNA, in direct contrast to our prediction that the

third position is insensitive to damage. Furthermore, the complex

reactivity with near-cognate aa-tRNAs displayed a distinct pro-

file relative to its intact counterpart, highlighting the detrimental

effect of the adduct on the decoding process even at the third

position of the codon (Figure S2). Taken together, the data reveal

a comprehensive overview of the potential havoc caused by

oxidative damage to mRNA on the translation machinery.

We next tested if modification of other positions would elicit

a less profound effect on the rate of peptide-bond formation.

We measured the rate of peptide-bond formation for the same

set of complexes described earlier with their respective cognate

and near-cognate aa-tRNAs. Cognate aa-tRNA incorporation

was three to four orders of magnitude slower for 8-oxoG codons

than for undamaged controls (Figure 2A). Conversely, 8-oxoG

codons incorporated near-cognate aa-tRNAs nearly 10-fold

faster than intact codons, although the observed rates (0.002–

0.03 s�1) remained dramatically slower than that measured for

normal peptide-bond formation (20–40 s�1) (Figure 2A). These

observations collectively argue that 8-oxoG likely stalls the elon-

gation phase of translation regardless of its location within the

anticodon. Furthermore the drastic inhibitory effect of 8-oxoG

on the decoding process was confirmed under competitive con-

ditions. In particular, in contrast to the native GGC complex,

which produced the expected full-length peptide when incu-

bated in the presence of the full complement of aa-tRNAs,

elongation factors and release factors (PURE system, NEB),

the oxidized G8-oxoGC complex failed to produce any detectable

peptide products (Figure 2B).

To provide mechanistic insight into the deleterious effects of

oxidized mRNA on the decoding process, we set out to explore

if the effects of 8-oxoG on peptidyl transfer result from inhibition

of conformational changes known to be important for the

decoding process (Ogle et al., 2002). In particular, we added

the aminoglycoside paromomycin to our reaction, which binds

the decoding center and induces a conformation in the 30S sub-

unit similar to that observed when cognate tRNA is bound; in do-

ing so, it allows the ribosome to accept near-cognate tRNAs as if

they were cognate ones (Carter et al., 2000). As expected (Pape

et al., 2000), the addition of paromomycin to a reaction between

the GGC complex and its cognate Gly-tRNAGly ternary complex

had no effect on the observed rate of peptide-bond formation

(Figure 2C, left panel). In contrast, addition of the antibiotic to

the oxidized G8oxoGC complex accelerated the rate of peptide-

bond formation more than 100-fold (Figure 2C, right panel).

These observations strongly argue that 8-oxoG prevents the
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small subunit from adopting the active conformation required for

proper tRNA selection.

Peptide Release Is Only Marginally Affected in the
Presence of 8-oxoG
Two of the three stop codons contain a guanosine: UAG and

UGA. In E. coli, these are recognized by RF1 and RF2, respec-

tively. Stop-codon recognition by RFs is inherently different

than sense-codon recognition by aa-tRNAdue to the intrinsic dif-

ferences in the polymer (protein versus RNA) carrying out the

recognition (Zaher and Green, 2009a). Unlike aa-tRNA selection,

which requires many residues of the decoding center to adopt a

distinct conformation from the ground state, RF selection in-

volves fewer and dissimilar conformational changes within the

decoding center (Korostelev et al., 2008; Laurberg et al., 2008;

Weixlbaumer et al., 2008). As a result, we reasoned that the ef-

fects of 8-oxoG on sense-codon recognition could be different

than those determined for RF-recognition on stop codons. Since

weexpected8-oxoG tohave thegreatest effect at thesecondpo-

sition, we programmed ribosomes with f-[35S]-Met-tRNAfMet in

the P site and either a UGAor U8-oxoGA in the A site and assessed

their reactivity with RF2. In direct contrast to peptide bond forma-

tion, the presence of 8-oxoG only marginally affected the rate

of peptide release (0.7 s�1 and 0.1 s�1 for control and 8-oxoG,

respectively) (Figure 2D). Together, these results suggest

that 8-oxoG prevents conformational changes associated with

RNA-RNA interactions (i.e., codon-anticodon), but not protein-

RNA interactions (i.e., RF-stop codon), in the decoding center.

8-oxoG Inhibits Protein Synthesis in Cell Extracts
So far, our characterization of the effects of 8-oxoG on the de-

coding process has focused on initiation complexes in a bacte-

rial reconstituted system, and the effects of adducts on authentic

elongation during protein synthesis were not discerned. Never-

theless, a number of studies have looked at the consequences

of oxidative RNA damage on its function, and all hinted at a pro-

found correlation between oxidized mRNA and reduced transla-

tional efficiency and accuracy (Shan et al., 2003, 2007; Tanaka

et al., 2007). However, in all of these studies, the identities of

the adducts formed from the crude hydrogen peroxide treatment

and their relative abundance were not quantified. Furthermore,

the effect of the treatment on the yield of full-length protein prod-

ucts was only marginal at best (Tanaka et al., 2007), presumably

due to the inefficiency of the hydrogen peroxide treatment.

To improve upon this and provide a better understanding of

the effects of the adduct on translation, we generated synthetic

reporter mRNAs containing the lesion at a specific location

within the coding sequence. We used in vitro transcription to

synthesize a �300 nt transcript and ligated this to an 8-oxoG-

containing synthetic RNA oligonucleotide (Figure S3). We note

that the final construct has the modification on the first position

of a GAC codon. We also constructed three control reporters

(one with the equivalent native codon, a second with a stop

codon and a third shorter transcript with no stop codon) (Figures

3A and S3). Using these reporters, we could assess how detri-

mental the 8-oxoG adduct is to translational speed and whether

our reconstituted system recapitulates what happens during

Figure 2. 8-oxoG Inhibits Peptide-Bond Formation

(A) Observed rates for peptidyl transfer (kPT) measured on native (GUU, GGC, CGC, GAG) and 8-oxoG complexes (8-oxoGUU, G8-oxoGC, C8-oxoGC, GA8-oxoG) with

cognate (left two bars in each graph) and near-cognate (A:G mismatches at the 8-oxoG position) (right two bars in each graph) tRNAs. The codon-anticodon

interaction is shown below the x axis, and the corresponding dipeptide is shown above the bars. Clear bars represent rates observed with native complexes;

black ones represent those observed with 8-oxoG complexes. Reactions were carried out at least in duplicate ±SEM

(B) Phosphorimager scan of an electrophoretic TLC of reactions between native complex (GGC) or 8-oxoG complex (G8-oxoGC), which encode MGLYK peptide,

and the full complement of aa-tRNAs, elongation and release factors (PURE system, NEB). Reactions were allowed to proceed for 30 s before the addition of

100 mM KOH.

(C) Time-courses of peptide-bond formation between the native GGC complex and Gly-tRNAGly (left) or oxidized G8oxoGC complex and Gly-tRNAGly (right) in the

absence (blue circles) and presence of paromomycin (red squares).

(D) Time courses of RF2-mediated release on native UGA (blue circles) and U8-oxoGA (red squares) initiation complexes.
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bona fide translation in bacterial and eukaryotic extracts. We

initially analyzed the translation of these reporters in an S30 bac-

terial extract. In agreement with the reconstituted system, the

8-oxoG transcript produced a protein product of a size similar

to that of the stop transcript (Figure 3B). A priori, one would

expect the incubation of 8-oxoG and no-stop transcripts in the

S30 extract to result in the accumulation of peptidyl-tRNA, as

these transcripts are expected to stall the ribosome, unless a

ribosomal rescue system is operational in these extracts. Inter-

estingly, we observe no peptidyl-tRNA accumulation with either

reporter, even though the products were resolved on bis-Tris

gels (Figure 3B), which are known to maintain the integrity of

peptidyl-tRNA.

We next asked whether the inhibitory effects of 8-oxoG

on translation were evident in eukaryotic extracts. For efficient

translation in eukaryotes, the transcripts were capped using

vaccinia capping enzyme and poly(A)denylated (except for the

no stop reporter) using E. coli poly(A) polymerase. Consistent

with our bacterial studies, 8-oxoG prevented the translation of

full-length protein. The 8-oxoG reporter, when incubated in

wheat germ extracts or rabbit reticulocyte lysates, failed to pro-

duce the full-length protein product and instead generated a

product of similar length to that of the stop codon reporter (Fig-

ures 3C, 3D, and S3). However, in contrast to the bacterial

extract results, we could detect accumulation of peptidyl tRNA

in the presence of the 8-oxoG and no-stop transcripts, suggest-

ing that the ribosomal rescue system in the wheat germ extract is

not efficient at clearing a stalled ribosome on the oxidized RNA.

Additionally, the yield of the truncated protein products is much

less than those produced in the presence of the control and stop

mRNA, suggesting that 8-oxoG indeed inhibits the progress of

translation. To gain an improved resolution of the products being

produced from these reactions, we utilized Tris-Tricine gels to

resolve the peptide products. With this gel system, we noted

the appearance of several smaller protein bands in the presence

of 8-oxoG mRNA (Figure 3D), likely resulting from ribosomes

stacked behind the ribosome that stalls on the adduct. Further-

more, we observed no improvement in the yield of the truncated

protein products upon addition of the proteasome inhibitor

MG132 (Figure 3D), suggesting that the diminished yield of the

truncated product is likely due to slowed translation and not to

turnover of the protein products. We also note that incubation

of labeled RNA in extracts did not reveal significant degradation

of the RNA during the course of the reaction (Figure S3). These

observations strongly suggest that, similar to what we observe

in the bacterial reconstituted system, 8-oxoG halts translational

elongation in eukaryotes.

8-oxoG mRNAs Accumulate In Vivo in the Absence of
No-Go Decay
Three mRNA quality-control processes are known to exist in eu-

karyotes: nonsense-mediated decay, no-go decay (NGD), and

nonstop decay. In NGD, transcripts containing secondary struc-

tures such as hairpins or stretches of rare codons are cleaved

just upstream of the ribosome (Doma and Parker, 2006; Tsuboi

et al., 2012). In yeast, the process involves the proteins

Figure 3. 8-oxoG Stalls Translation in Cell

Extracts

(A) Schematic of the mRNA reporters used in

eukaryotic extracts. The full-length mRNA en-

codes a peptide that has a molecular weight of

�9 kDa, whereas the stop mRNA, which has a

stop codon at the position of the 8-oxoG codon in

the 8-oxoG mRNA, encodes a peptide that has a

molecular weight of �8.4 kDa. Reporters used in

S30 reactions were identical minus the cap and

polyadenylation.

(B) Autoradiograph of a bis-Tris gel of translation

assays using bacterial S30 extracts. The 8-oxoG

transcript yields a peptide of a size similar to the

stop reporter. Asterisk (*) indicates a nonspecific

band.

(C and D) Autoradiograph of bis-Tris and Tris-

Tricine gels of in vitro translation assays in wheat

germ extracts. Proteins were labeled by the

addition of [35S]-Methionine to the reactions. The

8-oxoG mRNA and no-stop mRNA both accu-

mulate peptidyl-tRNA, visible on the bis-Tris gel,

which disappear upon the addition of RNase A

(C). Reactions separated on Tris-Tricine were

incubated with and without MG132. The 8-oxoG

mRNA produces truncated protein products

(marked by arrows); the largest of these has a size

similar to that observed in the presence of stop

mRNA (D).

See also Figure S3.
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Dom34, Hbs1, and Rli1 that together are responsible for recog-

nizing and subsequent recycling of the stalled ribosome (Pisar-

eva et al., 2011; Shoemaker et al., 2010; Shoemaker and Green,

2011). The process results in an endonucleolytic cleavage of the

mRNA; the 30 end piece is then degraded by the 50-30 exonu-
clease Xrn1, and the 50 end piece is degraded by the exosome

(Tsuboi et al., 2012). The exact role of these various quality-con-

trol processes in recognizing damaged RNA (e.g., oxidized RNA)

has not been studied. Intriguingly, however, quality-control pro-

cesses have been linked to damaged RNA where enzymatic

depurination at specific sites within a transcript was found to stall

the ribosome and is likely to elicit NGD (Gandhi et al., 2008).

Our observation that the 8-oxoG modification stalls protein

synthesis suggests that 8-oxoG-containing mRNAs might be

subject to degradation through NGD. To address this possibility,

we quantified 8-oxoG levels in total and poly(A)-enriched RNA

from different yeast strains using a competitive ELISA protocol

(Yin et al., 1995) that specifically recognizes the oxidized base

(Figure S4). Interestingly, the levels of the adduct in wild-type

cells under normal conditions were approximately 5-fold higher

in poly(A)-enriched RNA than in total RNA (�0.03 ng 8-oxoG/

mg total RNA versus �0.15 8-oxoG/mg poly(A)-enriched RNA),

suggesting that mRNAs aremore susceptible to oxidative stress,

perhaps due to their naked nature and reduced secondary

structure relative to rRNA or tRNA. Furthermore, we observe little

to no change in the level of 8-oxoG adducts in total RNA in

the absence of quality-control or mRNA-decay pathways. In

contrast, the levels of 8-oxoG in poly(A)-enriched RNA increase

significantly by almost 2-fold (1.85-fold ± 0.17, p = 0.028) in the

absence of Dom34 (Figure 4A), suggesting that 8-oxoG-contain-

ing mRNA is subject to NGD and is stabilized in the absence of

Dom34. Additionally, Xrn1-deficient cells show a significant

accumulation of 8-oxoG (2.18-fold ± 0.25, p = 0.011), whereas

abrogating exosome function had no effect (Figure S4). We

next sought to confirm that the changes in 8-oxoG levels are

not the result of strain to strain variation by complementing the

dom34D and xrn1D strains and measuring the levels of 8-oxoG

in these rescued strains (dom34D comp. and xrn1D comp.,

respectively). These strains were complemented by integrating

the native genes at the his3 locus of chromosome XV (under

the control of the endogenous promoter and carrying the endog-

enousUTR), resulting in transcript levels that were similar towild-

type (Figure S4). Consistent with our proposal, 8-oxoG levels

were restored to wild-type upon reintroduction of Dom34 and

Xrn1 (Figure 4A). It is worth noting that our measurements of

8-oxoG levels are likely an underrepresentation, since our

poly(A)-enriched samples still contain some rRNA (Figure S4).

Furthermore, the 2-fold increase in the steady-state levels of 8-

oxoG in the absence of Dom34 and Xrn1 is consistent with the

effects of these factors on the steady-state levels of typical

NGD reporters (Tsuboi et al., 2012).

These observations are in full agreement with our current un-

derstanding of the NGD process, wherein (1) translation arrest

results in an endonucleolytic cleavage upstream of the stall

sequence (in this case, 8-oxoG); (2) ribosomes are recycled by

Dom34:Hbs1; and (3) the 30 fragment, i.e., 8-oxoG containing,

is degraded by Xrn1, whereas the 50 fragment is degraded by

the exosome (Doma and Parker, 2006; Tsuboi et al., 2012). It is

worth noting that while endonucleolytic cleavage is not directly

mediated by Dom34:Hbs1, it is significantly stimulated in the

presence of these factors (Tsuboi et al., 2012). Two key predic-

tions emerge from this model: (1) in the absence of Dom34, 8-

oxoG-containing mRNA is more likely to associate with the ribo-

somes; (2) in the absence of Xrn1, 8-oxoG-containing mRNA is

stabilized but would not be associated with the ribosomes. We

set out to test these predictions by performing polysome anal-

ysis of the different yeast strains and quantifying the distribution

of 8-oxoG among the different fractions of ribonucleoproteins

(Figures 4B–4E). xrn1D strains have been shown to accumulate

poly(A) mRNAs in the light fraction of the polysome due to stabi-

lization of uncapped mRNA that cannot be translated (Hu et al.,

2009). To correct for this, we normalized the levels of 8-oxoG

to the total amount of RNA during our polysomes analysis

of poly(A)-enriched RNA, which should adjust for variation in

poly(A)-RNA occupancy across the sucrose gradient. As ex-

pected, for all strains, we observed very similar distributions of

8-oxoG in total RNA (Figure 4D), consistent with our measure-

ments from whole cells (Figure S4). However, in the absence of

Dom34, 8-oxoG levels in poly(A)-enriched RNA are significantly

higher in the 80S and polysome fractions (Figure 4E), demon-

strating that Dom34p plays a role in clearing stalled ribosomes

on damaged mRNA. Additionally, in the absence of Xrn1,

8-oxoG levels were elevated in the light fractions, containing

non-ribosome-bound RNAs, and unaltered in the 80S and poly-

some fractions. Supporting the model that Dom34 acts up-

stream of Xrn1 in NGD, Xrn1/Dom34 double-mutant 8-oxoG

levels were similar to those of Dom34 (Figure 4E).

We next hypothesized that if NGD is important in rescuing ri-

bosomes stalled on damaged mRNA, then deleting dom34 and

xrn1 should make yeast cells sensitive to nucleic-acid-damaging

agents. In particular, we were interested in determining the

sensitivity of the different yeast strains to the carcinogen 4-nitro-

quinoline-1-oxide (4NQO), which is known to react with RNA to

form the 8-oxoguanine lesion (Tada and Kohda, 1993). We uti-

lized a zone of inhibition (halo) assay to compare the growth of

the deletion strains in the presence of 4NQO (Figure 4F). Consis-

tent with a role for NGD in clearing damaged mRNA, deletion of

dom34 and xrn1 rendered yeast cells significantly more sensitive

to 4NQO (1.5-fold ± 0.05, p < 0.0001 and 1.8-fold ± 0.06, p <

0.0001, respectively), and reintroduction of the genes restored

normal growth relative to the wild-type strain (Figure 4G). Finally,

the dom34D xrn1D double mutant was found to exhibit dramatic

sensitivity to 4NQO compared to the single mutants (3.0-fold ±

0.18, p < 0.0001) (Figure 4G). These observations strongly sug-

gest that Dom34 and Xrn1 protect the cell from the effects of

RNA-damaging agents.

DISCUSSION

Here, we demonstrated that mRNA containing the oxidized

nucleotide 8-oxoG stalls the ribosome and that NGD may have

evolved to clear these and other aberrant mRNAs. A priori,

we expected the adduct, based on its chemical properties,

to increase miscoding by allowing G:A mismatches between

the codon and anticodon. In contrast to this prediction, 8-

oxoG was found to inhibit tRNA selection in a well-defined
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Figure 4. 8-OxoG mRNA Is Stabilized in Yeast in the Absence of No-Go-Decay Factors and Associates with Polysomes in the Absence of

Dom34

(A) Bar graph showing the levels of 8-oxoG, relative toWT, in poly(A)-enriched RNAs isolated from the indicated yeast strains. The values shown are the means of

at least three measurements ± SEM. *p < 0.05

(B) Polysomes profiles of the indicated strains.

(C) Denaturing agarose electrophoresis of the RNA samples isolated from the different fractions in the sucrose gradient.

(D and E) Distribution of 8-oxoG levels across the gradients in total RNA and poly(A)-enriched RNA samples, respectively. Levels of 8-oxoG in (D) were normalized

to the total amount of 8-oxoG across the gradient, whereas in (E), they were divided by the amount of poly(A)-enriched RNA.

(F) Representative images of zone of inhibition assays on the indicated yeast strains using 4-nitroquinoline-1-oxide (4NQO).

(G) Quantification of 4NQO sensitivity for the indicated strains, relative to WT. Data are mean ± SEM, from results of at least three biological replicates.

***p < 0.001, ****p < 0.0001.

See also Figure S4.
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reconstituted system, with rates of peptide-bond formation

that are three to four orders of magnitude slower than those

measured on intact complexes. Remarkably, the effects of the

modifications on the accuracy of tRNA selection appear to be

minimal; the rates with near-cognate ternary complexes in the

presence of 8-oxoG are slightly faster (<10-fold) relative to intact

complexes. Furthermore, the position of the adduct, even at the

wobble position, resulted in a similar effect on the decoding pro-

cess, highlighting the severity of mRNA oxidation on the pro-

tein synthesis machinery. In agreement with observations from

the reconstituted systems, we find near-complete inhibition of

protein synthesis in the presence of 8-oxoG during authentic

elongation in eukaryotic extracts. The effects of 8-oxoG on the

decoding process appear to be a direct result of impaired

RNA-RNA interaction between the codon and anticodon, as

recognition of stop codons by protein factors was only margin-

ally affected.

How can a small change to the nucleobase result in such

drastic effects on the decoding process? One could imagine

that the addition of the carbonyl oxygen to the non-Watson-Crick

face of the base introduces a polar group that needs to be hy-

drated. The introduction of this energetic penalty is likely to be

inhibitory to the decoding process. On the other hand, in solu-

tion, 8-oxoG exists in equilibrium between the anti and syn

conformation, but on the ribosome, the adduct might favor the

anti conformation, which is detrimental to proper A-minor inter-

action in the decoding center. Regardless of the conformation

of 8-oxoG in the decoding center, the modification appears to

prevent the decoding center from adopting an active conforma-

tion. This is supported by our data showing that the addition of

paromomycin alleviates most of the inhibitory effects observed

in the presence of 8-oxoG. These observations highlight the

sensitive nature of the decoding center, which is reinforced by

recent reports demonstrating a uridine to pseudouridine change

(a small change that does not affect the base-pairing properties)

has a dramatic affect on the decoding process and increases

stop-codon readthrough (Fernández et al., 2013; Karijolich and

Yu, 2011).

Our in vitro studies suggested that oxidized RNA is subject

to NGD. NGD was initially characterized by Doma and Parker

(Doma and Parker, 2006), who showed that mRNAs with strong

secondary structure or stretches of rare codons are targeted for

degradation in a process that is dependent on translation. While

mRNAs with hairpins for the most part are not biologically

relevant, this study established a direct relationship between

translational speed and rapid degradation of the corresponding

mRNA. Consistent with this, we find 8-oxoG mRNA to be stabi-

lized in the absence of Dom34 (a key component in NGD) and

associated with polysomes. These observations strongly sug-

gest oxidized mRNA is a primary target of ribosome-based

mRNA quality-control processes. We note that NGD and in

particular Dom34 has been implicated in a number of processes;

for example, Inada and colleagues have shown the factor to be

important in rescuing ribosomes trapped on truncated mRNA

(Tsuboi et al., 2012). Recently, Guydosh and Green used ribo-

somal profiling to show that in the absence of the factor, ribo-

somes venture into the 30 UTR (Guydosh and Green, 2014).

Furthermore, the factor is critical for nonfunctional rRNA decay

(LaRiviere et al., 2006; Soudet et al., 2010) and ribosomal assem-

bly (Strunk et al., 2012). Interestingly, all of these processes

share a common feature whereby the target for the factors is a

stalled ribosome with an empty A site (van den Elzen et al.,

2014). It is highly likely that the list of NGD targets is long and

may include other modified mRNAs such as those resulting

from alkylative and UV damage.

Oxidative damage to RNA appears to be correlated with a

number of age-related neurodegenerative diseases and is likely

to be a contributing factor to their pathogenicity. As an example,

Shan et al. showed that in Alzheimer patients, greater than 50%

of mRNA isolated from cerebral cortex were oxidized (Shan and

Lin, 2006). Our results indicate that RNA damage represents a

real and serious threat to the cell and RNA surveillance pathways

such as NGDmay have evolved to provide a mechanism to cope

with these damages. RNA metabolism could be a useful target

for delaying or eliminating the onset of age-related neurodegen-

erative diseases.

EXPERIMENTAL PROCEDURES

Dipeptide Formation Survey and Rates of Peptide-Bond Formation

For survey reactions, equal volume of purified initiation complexes (2 mM), pre-

incubated at 37�C, was added to ternary complex. The mixture was incubated

at 37�C for 5 s before the reaction was quenched by the addition of 100 mM

KOH. Peptide release was carried out in a similar manner, except initiation

complexes were combined with RF1 or RF2 at 10 mMand the reaction stopped

using 20 mM EDTA (pH 6.0). To determine rates of peptide-bond formation,

equal volumes of initiation and ternary complexes were mixed on a quench-

flow instrument (RQF-3 quench-flow, KinTek Corporation). For all reactions,

dipeptides were resolved from unreacted fMet using cellulose TLCs electro-

phoresis in pyridine-acetate buffer (pH 2.7) (Youngman et al., 2004).

To determine the observed rates of peptide-bond formation or peptide

release, dipeptide yield (PT rates) or fraction of released fMet (peptide release)

was plotted against time and the curve fit to a first-order rate equation using

GraphPad prism software. Observed rates reported were calculated by multi-

plying the fit rate with the endpoint and then divided by the maximal endpoint

(observed with the native complexes).

ELISA

8-oxoG was quantified using a competitive ELISA assay. Each experiment

included a set of standards (8-oxoG in 0.1% BSA), enabling quantification

by a standard curve (Abs = (Absmax)/(1 + ([8-OHG]/IC50)).

Zone of Inhibition Assay

Yeast cultures were grown to mid-log phase and plated in triplicate at 0.5

optical density per plate. After drying thoroughly, 25 mg of 4-nitroquinoline-

1-oxide in DMSO was spotted on a 0.5 cm filter paper disc and placed in

the center of the plate. Plates were incubated at 30�C for �48 hr before imag-

ing. The area of inhibition was measured using ImageJ. Data were normalized

to wild-type and analyzed using the Student’s t test.

Detailed methods are provided in Supplemental Experimental Procedures.
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Graille, M., and Séraphin, B. (2012). Surveillance pathways rescuing eukary-

otic ribosomes lost in translation. Nat. Rev. Mol. Cell Biol. 13, 727–735.

Guydosh, N.R., and Green, R. (2014). Dom34 rescues ribosomes in 30 untrans-
lated regions. Cell 156, 950–962.

Hofer, T., Badouard, C., Bajak, E., Ravanat, J.L., Mattsson, A., and Cotgreave,

I.A. (2005). Hydrogen peroxide causes greater oxidation in cellular RNA than in

DNA. Biol. Chem. 386, 333–337.

Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E., and Coller, J. (2009). Co-

translational mRNAdecay in Saccharomyces cerevisiae. Nature 461, 225–229.

Karijolich, J., and Yu, Y.T. (2011). Converting nonsense codons into sense

codons by targeted pseudouridylation. Nature 474, 395–398.

Kervestin, S., and Jacobson, A. (2012). NMD: a multifaceted response to pre-

mature translational termination. Nat. Rev. Mol. Cell Biol. 13, 700–712.

Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J.,

Trakhanov, S., Scott,W.G., and Noller, H.F. (2008). Crystal structure of a trans-

lation termination complex formed with release factor RF2. Proc. Natl. Acad.

Sci. USA 105, 19684–19689.

LaRiviere, F.J., Cole, S.E., Ferullo, D.J., and Moore, M.J. (2006). A late-acting

quality control process for mature eukaryotic rRNAs. Mol. Cell 24, 619–626.

Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S., and Noller,

H.F. (2008). Structural basis for translation termination on the 70S ribosome.

Nature 454, 852–857.

Li, Z., Wu, J., and Deleo, C.J. (2006). RNA damage and surveillance under

oxidative stress. IUBMB Life 58, 581–588.

Nunomura, A., Perry, G., Pappolla, M.A., Wade, R., Hirai, K., Chiba, S., and

Smith, M.A. (1999). RNA oxidation is a prominent feature of vulnerable neurons

in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

Ogle, J.M., Brodersen, D.E., Clemons, W.M., Jr., Tarry, M.J., Carter, A.P., and

Ramakrishnan, V. (2001). Recognition of cognate transfer RNA by the 30S

ribosomal subunit. Science 292, 897–902.

Ogle, J.M., Murphy, F.V., Tarry, M.J., and Ramakrishnan, V. (2002). Selection

of tRNA by the ribosome requires a transition from an open to a closed form.

Cell 111, 721–732.

Pape, T.,Wintermeyer,W., andRodnina, M.V. (2000). Conformational switch in

the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribo-

some. Nat. Struct. Biol. 7, 104–107.

Pisareva, V.P., Skabkin, M.A., Hellen, C.U., Pestova, T.V., and Pisarev, A.V.

(2011). Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S

ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817.

Shan, X., and Lin, C.L. (2006). Quantification of oxidized RNAs in Alzheimer’s

disease. Neurobiol. Aging 27, 657–662.

Shan, X., Tashiro, H., and Lin, C.L. (2003). The identification and characteriza-

tion of oxidized RNAs in Alzheimer’s disease. J. Neurosci. 23, 4913–4921.

Shan, X., Chang, Y., and Lin, C.L. (2007). Messenger RNA oxidation is an early

event preceding cell death and causes reduced protein expression. FASEB J.

21, 2753–2764.

Shen, Z., Wu, W., and Hazen, S.L. (2000). Activated leukocytes oxidatively

damage DNA, RNA, and the nucleotide pool through halide-dependent forma-

tion of hydroxyl radical. Biochemistry 39, 5474–5482.

Shoemaker, C.J., and Green, R. (2011). Kinetic analysis reveals the ordered

coupling of translation termination and ribosome recycling in yeast. Proc.

Natl. Acad. Sci. USA 108, E1392–E1398.

Shoemaker, C.J., and Green, R. (2012). Translation drives mRNA quality con-

trol. Nat. Struct. Mol. Biol. 19, 594–601.

Shoemaker, C.J., Eyler, D.E., and Green, R. (2010). Dom34:Hbs1 promotes

subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Sci-

ence 330, 369–372.

Soudet, J., Gélugne, J.P., Belhabich-Baumas, K., Caizergues-Ferrer, M., and

Mougin, A. (2010). Immature small ribosomal subunits can engage in transla-

tion initiation in Saccharomyces cerevisiae. EMBO J. 29, 80–92.

Strunk, B.S., Novak,M.N., Young, C.L., and Karbstein, K. (2012). A translation-

like cycle is a quality control checkpoint for maturing 40S ribosome subunits.

Cell 150, 111–121.

Tada, M., and Kohda, K. (1993). Identification of N4-(guanosin-7-yl)-4-amino-

quinoline 1-oxide and its possible role in guanine C8 adduction. Nucleic Acids

Symp. Ser. 29, 25–26.

Tanaka, M., Chock, P.B., and Stadtman, E.R. (2007). Oxidized messenger

RNA induces translation errors. Proc. Natl. Acad. Sci. USA 104, 66–71.

Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., and Inada,

T. (2012). Dom34:hbs1 plays a general role in quality-control systems by

dissociation of a stalled ribosome at the 30 end of aberrant mRNA. Mol. Cell

46, 518–529.

van den Elzen, A.M., Schuller, A., Green, R., and Séraphin, B. (2014). Dom34-
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