
University of Mary Washington
Eagle Scholar

Student Research Submissions

Spring 4-24-2019

Predicting Parameters for Bertini Using Neural
Networks
Makenzie Clower

Follow this and additional works at: https://scholar.umw.edu/student_research

This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by
an authorized administrator of Eagle Scholar. For more information, please contact archives@umw.edu.

Recommended Citation
Clower, Makenzie, "Predicting Parameters for Bertini Using Neural Networks" (2019). Student Research Submissions. 289.
https://scholar.umw.edu/student_research/289

https://scholar.umw.edu?utm_source=scholar.umw.edu%2Fstudent_research%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research/289?utm_source=scholar.umw.edu%2Fstudent_research%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:archives@umw.edu

Predicting parameters for bertini using
neural networks

Makenzie L. Clower

submitted in partial fulfillment of the requirements for Honors in

Mathematics at the University of Mary Washington

Fredericksburg, Virginia

April 2019

This thesis by Makenzie L. Clower is accepted in its present form as satisfying the thesis
requirement for Honors in Mathematics.

Date Approved

James Collins, Ph.D.
thesis advisor

Julius Esunge, Ph.D.
committee member

Suzanne Sumner, Ph.D.
committee member

Contents

1 Introduction 1
1.1 Bertini Classic and 2.0 . 1
1.2 Real World Applications . 1

1.2.1 GPS . 2
1.2.2 Robotics . 2
1.2.3 Chemistry . 3

2 Mathematics Behind Bertini 3
2.1 Introducing Variables and Functions . 3
2.2 Tracking . 4
2.3 Predictor Step . 5

2.3.1 Predictor Example . 6
2.3.2 Predictor Parameters . 7

2.4 Corrector Step . 7
2.4.1 Corrector Example . 8
2.4.2 Corrector Parameters . 9

2.5 Predictor-Corrector Failure . 9
2.6 Endgame Boundary . 9

3 Machine Learning 10
3.1 Neural Networks . 10
3.2 Minimizing Error . 11
3.3 Generating Data . 12

3.3.1 Training Data . 13
3.3.2 Test Data . 13

3.4 Probability Outputs . 13

4 Results 14
4.1 Neural Network Parameter Settings . 14
4.2 Single Variable Systems . 14
4.3 Future Work . 15

5 Conclusion 15

References 16

Abstract

The purpose of this research is to use machine learning algorithms to predict the
fastest settings for a program called Bertini. Bertini is a computer program that
approximates solutions to systems of polynomial equations. Settings for this program
can be changed by the user, but the user may not necessarily know the best settings
to use to optimize the run time for a particular system of polynomial equations. The
settings that were focused on were the differential equation predictor methods when
tracking the homotopy to the solution of the system. A neural network was used on a
training set of data to create a model and then a test set was run through to obtain
a percent accuracy for this model. Increased accuracy for the model was obtained by
changing hyperparameters of the neural network. Neural networks with training sets of
3,000 and 8,000 polynomials were used and results were found for different parameter
settings.

1 Introduction

A polynomial system of equations is a set of polynomials, f1, ..., fn, where each fi can
depend on one or several variables, each in varying degrees. To solve the system, each
function fi is set equal to zero and solved for each variable that the system contains. One
program that can approximate solutions to these polynomial systems of equations is Bertini.
This research focused on using and improving the Bertini program.

1.1 Bertini Classic and 2.0

Bertini is a computer program that approximates solutions to systems of polynomial
equations. Bertini Classic was written by Daniel J. Bates, Jonathan D. Hauenstein, Andrew
J. Sommese, and Charles W. Wampler.

Bertini 2.0, which was used in this research, was written by Danielle Brake. This program
was written to be more efficient and modularizable than Bertini Classic. Bertini 2.0 can
evaluate multivariate systems and efficiently find an approximate solution depending on the
size of the system. How the solution approximation is calculated changes with the settings
of the program. These settings can be changed by the user but it may not be apparent to
the user how these settings should be changed to best optimize the run time of the program.
This research focused on using machine learning to predict the best settings for different
polynomial systems that users may input into Bertini 2.0.

1.2 Real World Applications

Systems of polynomial equations can be very useful for solving problems outside of
the mathematics field. These applications include problems in Global Positioning Systems
(GPS), robotics, and chemical reaction networks. Examples of these applications will be
explained further throughout the next sections.

1

1.2.1 GPS

GPS location services use solutions to systems of polynomial equations to find locations
of target objects. Usually four satellites near the target object are used, with a coordinate
point (Ai, Bi, Ci) known for each satellite. These coordinates are then substituted into the
following system.

(x− A1)
2 + (y −B1)

2 + (z − C1)
2 − (c(t1 − d))2 = 0

(x− A2)
2 + (y −B2)

2 + (z − C2)
2 − (c(t2 − d))2 = 0

(x− A3)
2 + (y −B3)

2 + (z − C3)
2 − (c(t3 − d))2 = 0

(x− A4)
2 + (y −B4)

2 + (z − C4)
2 − (c(t4 − d))2 = 0

The constant d is used as a difference between the clock of the satellite and the object’s
time. Each variable ti is the time variable for how long the signal takes to travel from the
satellite to the object. The speed of light is used for the constant c. Solving this system
for the coordinate variables (x, y, z) then gives the approximate placement of the object of
interest. [1]

1.2.2 Robotics

In the area of robotics, the range of motion of robots can be found by solving systems
of equations. Each point on the robot, such as the joints on an arm, have a range of motion
that can be represented by a system of polynomial equations. The system comprised of all
polynomial equations can then be solved to find a range of motion.

Figure 1: The figure above shows an animation of a robotic bird during flight. The range of
motion outlined by the black curve is found by solving the system of polynomial equations
that incorporates the range of motion at each joint of the wing. [4]

2

1.2.3 Chemistry

Solving systems of equations can also be useful in chemistry. When finding the equi-
librium values for certain chemical reaction networks, systems of polynomial equations are
helpful in solving for the concentrations of elements and compounds. For example, consider
the simple chemical reaction network below.

H2O −−⇀↽−− 2 H + O

From this equation, we can then set up the chemical reaction equation

kXH2O = X2
HXO,

where X is the concentration of the element or compound and k is the equilibrium constant.
It is also important to follow conservation equations so that the concentration of each indi-
vidual element on both sides of the chemical reaction do not exceed the total concentration
possible for each element. These equations are

2XH2O +XH = TH

XH2O +XO = TO.

Here, T is the total concentration of the element throughout the whole system. The total
polynomial system comprised of each function above can then be rewritten as,

f1 = kXH2O −X2
HXO

f2 = 2XH2O +XH − TH
f3 = XH2O +XO − TO.

Solving this system for each of the X and T variables would then give us the equilibrium
concentrations of each element and compound in this chemical reaction network. [5]

2 Mathematics Behind Bertini

Homotopy continuation is a method of approximating solutions to systems of polyno-
mial equations. This method finds the solutions to f(z) = 0, by relating the f(z) system
to g(z), which has known solutions for g(z) = 0. This z variable in each equation may
represent more than one variable. For example, f and g may be a functions of x and y,
such that f(z) = f(x, y) and g(z) = g(x, y). For a thorough description of the mathematics
behind Bertini, reference Numerically Solving Polynomial Systems with Bertini, by Bates,
Hauenstein, Sommese, and Wampler. [2]

2.1 Introducing Variables and Functions

The homotopy function used for approximating a solution is

H(z(t), t) = (1− t)f(z) + t(g(z)).

3

The variable t ∈ [0, 1] is used during tracking. Our “known” function is g(z) and our
function or system that we are solving is f(z). The system that is chosen as the “known”
system needs to have a number of solutions equal to the maximum number of possible solu-
tions for the target system so that when tracking, no solutions to the target system are left
unsolved. Thus, the degree of f(z) is equal to the degree of g(z). When solving a system
with only one variable and one polynomial, the simplest known system is g(z) = zd − 1, so
that g(z) has d solutions, which we can find very easily. This d is the maximum number of
solutions that the system f(z) can have.

2.2 Tracking

Tracking is the process through which the Bertini program approximates the solution to
the system of polynomial equations.

singular
endpoint

endgame
boundary

nonsingular
endpoint

smooth
start
points

© danielle amethyst brake

Figure 2: This picture, made by Danielle Brake, shows the homotopy continuation visually.[3]

The tracking variable t begins at 1 and ends at 0. When t = 1, the circle points along
the right side of Figure 2 represent the solutions to the previously mentioned system g(z).
At this point, the homotopy function is equal to the known system as seen below.

H(z(1), 1) = (1− 1)f(z) + (1)g(z)

= g(z)

We will then follow along these paths seen above in Figure 2. These paths are z(t) solved
at the various values of t that are used in tracking. At the end of tracking, t = 0, we have

4

arrived at the triangle and star endpoints on the left side of Figure 2. These endpoints are
the solutions to the system that is being solved. The homotopy function is now equal to the
system that is being solved as seen below.

H(z(0), 0) = (1− 0)f(z) + (0)g(z)

= f(z)

Tracking t from 1 to 0 requires many small steps to be taken. At each of these steps,
it is necessary to solve H(z, t) = 0 for z, using each step’s t value. We know that at
t = 1, H(z, 1) = g(z), which is a system with known solutions. Also, when t = 0 at
the end of tracking, H(z, 0) = f(z), which will give us the approximate solutions to our
“unknown” system. Each of these steps consists of two stages. These stages are the predictor
and corrector steps, each of which are methods of approximation to move along the paths
correctly. How the predictor and corrector steps approximate the next value can be set
by the user. This research focused on various predictor approximation settings available in
Bertini 2.0.

As seen above in the homotopy continuation image, these tracking paths seem to cross,
but in three dimensional space, they will never intersect. By using the complex plane to
track these paths across, we can say that these paths will cross with probability zero. It is
important that the paths never cross, because if they did, the program would fail. Paths
crossing could result in one path incorrectly following a second path along its tracking. If this
occurs and the second path does not converge, switching paths could result in no outputted
solutions. Another outcome could be that the first path would converge to incorrect solutions,
thus omitting the first path’s solutions.

2.3 Predictor Step

The predictor step, as mentioned above, is the first step in tracking the homotopy variable
t along the path from t = 1 to t = 0. This predictor step begins by finding the line tangent to
the curve at t = 1 when using Euler’s predictor method. For other predictor methods used,
a similar equation to the tangent line is used for the approximation. To find this equation,
we will need to solve H(z, t) = 0 at the various step values of t that are taken across the
tracking path. We will do this process by taking the homotopy function, differentiating it
with respect to t, and solving the differential equation as explained below. A visualization
of this prediction step process can be seen below.

5

Figure 3: In this graph, the straight broken line is the predictor step and dotted line is the
corrector step in tracking from t3 to t4. Many of these small steps that include a predictor
and corrector method are used when tracking the path along from t = 1 to t = 0.

The equation below can now be used to solve for z(t) at the ti step value, where ti is the
next value of t that is being “stepped” towards.

d

dt
(H(z(t), t)) =

∂H

∂z

dz(t)

dt
+
∂H

∂t
= 0

We then separate to obtain dz(t)
dt

on one side of the equation so that an ordinary differential
equation will be left to solve.

dz(t)

dt
= −(

∂H

∂z
)−1

∂H

∂t
, where

∂H

∂z
6= 0

Now, all that is left is to solve the above ordinary differential equation, which is called
the Davidenko equation. An initial condition of z(1) = y0 can then be used to solve for the
final solution to the prediction step. Here, y0 is a solution of g(z). Once this is calculated,
the corrector step needs to be taken to continue moving along the path to obtain accurate
solutions.

2.3.1 Predictor Example

For the following example, we will use an example differential equation dz(t)
dt

= z2t. Sup-
pose we begin at t = 1 and use a step size of ∆t = 0.05. Let our starting point be z(1) = 0.4.

6

Euler’s method is a method that can be use to approximate the solution to this ordinary
differential equation. Using this method, we will obtain the following equation

z1 = z0 + (∆t)z20t

where z1 is the approximate solution at the point t = 0.95. Then we can solve for the z1
equation above to complete the prediction step.

z1 = 1 + (−0.05)(−0.16)

= 1.008

Thus, z1 = 1.008 approximates z(0.95). The next step in the process is to correct this
approximation of z1 using Newton’s method which we consider in Section 2.4.

2.3.2 Predictor Parameters

The possible predictor approximators that can be used in Bertini are Constant, Eu-
ler, Heun, HeunEuler, RK4, RKCashKarp, RKCashKarp45, RKDormandPrince56, RKF45,
RKNorsett34, and RKVerner67. Each of these predictor approximators are well known nu-
merical methods for approximating solutions to differential equations. The default setting
for the predictor step is RKF45, which is a fourth order predictor method. Not all predictor
parameters were evaluated in this research. Only Euler, RKCashKarp, RK4, and RKF45
were considered. First order predictors, such as Euler, may be faster at approximating
through each step in tracking, but these predictors are less accurate, and hence many steps
need to be taken to approximate with high accuracy. Higher order predictor methods such
as RKF45 and RKCK are more accurate at each step and can take larger steps, but each
step speed may be slower. Trying to balance between speed per step and number of steps
taken is necessary in optimizing the time taken to run the program for each polynomial.
Some polynomials may run faster with lower order predictors while others may run faster
using higher orders.

The time it takes a single polynomial system to run through the program may be mi-
nuscule, but when running multiple systems of polynomials through the program, the time
accumulates and thus picking the best predictor method for each system is important.

2.4 Corrector Step

The next component in the stepping process is the corrector step. During this step,
Newton’s method, which is an iterative method, is used to make a better approximation of
the function H(z, ti) = 0, using the approximation obtained from the predictor as the initial
iterate. A good initial iterate is necessary for Newton’s method to work efficiently.

Below is the formula for Newton’s method during the corrector steps.

zn+1 = zn −
H(zn, t

∗)
∂H
∂z
|z=zn

7

We also will make the assumption that ∂H
∂z
|z=zn 6= 0 because the curves in the tracking

paths are assumed not to cross. Newton’s method as explained above only uses about 2-3
iterations in each step of tracking. It is a very accurate method of approximation, but the
method does require a good initial iterate.

2.4.1 Corrector Example

For this example, let us start with the system f(z) = 5− z2 − 2z4. If we begin with an
initial iterate of z0 = 1, we follow the steps below for Newton’s method.
The general equation used for Newton’s method is

zn+1 = zn −
f(zn)

f ′(zn)

First, we see that f(1) = 2 and f ′(1) = −10. Then the first iteration will be

z1 = 1− 2

−10

= 1.2

Using z1 = 1.2, we can calculate that f(1.2) = −0.5872 and f ′(1.2) = −16.2240.
Then the second iteration is

z2 = 1.2− −0.5872

−16.2240

= 1.1638

Next, we see that f(1.1638) = −0.0235 and f ′(1.1638) = −14.9382. The third iteration is
then

z3 = 1.1638− −0.0235

−14.9382

= 1.1622

For the fourth iteration, f(1.1622) = 0.0004624. and f ′(1.1622) = −14.8828.
This result gives us

z4 = 1.1622− 0.0004624

−14.8828

= 1.1622

We have now reached an iterate that is fairly close to the previous iterate. Once this
matching occurs, we can assume that the z values have converged and we move on to the
next step.

8

2.4.2 Corrector Parameters

The corrector steps are used after the predictor step to correct the previously approxi-
mated predictor step and continue along the path. Visually we can see this process in Figure
3.

Settings that affect the corrector step are explained further in the next section. These
settings were not studied during this research, but it is a very important step for the Bertini
program to run.

2.5 Predictor-Corrector Failure

In the process of tracking, “checkpoints” are in place to make sure that we are following
the path at a high accuracy of approximation. One way that the Bertini program checks
this accuracy is through the tracking tolerance settings. Tolerance overall is how far each
corrector iteration of predictor-corrector approximations are from the previous corrector
iteration. This tolerance will tell us when the Newton iterations have converged. So that we
can move through with accurate values, the tracking tolerance can be changed to allow the
user to determine how accurate is “accurate enough” to move along the path. If each step
approximation does not fall within the tolerance after the maximum number of iterations,
then the step size (∆t) is cut in half. If several consecutive steps are successful and fall
within the tolerance, then the step size will double.

Step size is another parameter that can be changed in Bertini to allow the user to decide
the maximum and minimum step size. Setting a small maximum size would make the
program run slowly, because it has to take many small steps. On the other hand, if the
minimum size is too large, then the tolerance for approximations may not be met quickly, if
at all, and thus the program will continuously need to re-approximate each step value.

Another important setting that can be changed in the Bertini program is the maximum
number of Newton iterations that can be taken. This number allows the user to set the
maximum iterations that the corrector step can take in an attempt to get the approximations
to converge. These settings in Bertini are very important in running the program, but they
also were not evaluated in this research.

2.6 Endgame Boundary

As we approach the end of tracking each path, a new process must occur, especially when
the system of polynomials has solutions of mutliplicity greater than one. This new process
happens in the endgame boundary during the final steps of tracking as seen in Figure 2. The
default time when this endgame boundary begins in tracking is when t = 0.1. As mentioned
previously, it is necessary that the multiple paths being tracked do not cross or the program
will fail. If a singularity occurs in the final solution of f(z) = 0, multiple paths may converge
to a single point at t = 0. One way that we can approximate the solutions to these paths is
through Cauchy’s integral formula. This formula,

f(0) =

∮
f(s)ds,

9

is used to to approximate the solution at t = 0, using a neighborhood in the complex plane
around t with radius ε. We need ε > 0, but small enough that the approximation at this
point is very close to the actual value at t = 0. By doing this method we can complete the
tracking paths with an accurate approximation to the system of polynomial equations.

Multiple settings can be changed by the user for the endgame. These settings include
FinalTol, EndgameNum, EndgameBdry, and NbhdRadius. The FinalTol is the tolerance
used by the endgame method of approximation to determine whether the approximations
are accurate. The EndgameNum setting determines which Endgame method is used. For
this setting there are three options, one being a fractional power-series endgame, and two
using Cauchy’s integral formula. The EndgameBdry sets the t value for which the program
switches from predictor-corrector steps to this new endgame method of approximation. The
default value for this setting is t = 0.1. Lastly, the NbhdRadius setting determines the radius
value (ε) of the neighborhood used in Cauchy’s integral formula.

3 Machine Learning

Machine learning uses algorithms to find patterns in data sets. These patterns can then
be used to predict outputs on new sets of data. The data set that is used to learn is called
a training set. The machine learning algorithm can then test how well it is able to predict
outputs by using a validation set and a test set. These sets of data contain input data and
labels. For a simple example, consider students’ tests scores as results of hours of sleep and
hours of studying. The number of hours of sleep and studying would be the input data that
are used to predict the label, which in this case would be the test scores.

Validation sets are used before test sets are implemented to make sure the learning
algorithm does not over fit the original training data. Overfitting is a term used when the
machine learning algorithm fits its prediction method too closely around the training data,
such that when given new data, it cannot predict well. What predictions the machine learning
algorithm uses are determined by the data. For example, in this research, classification
prediction is used. This method means that the predictions of the neural network must fit
into a certain number of discrete classes. The main machine learning algorithm used in this
research is a neural network.

3.1 Neural Networks

A neural network is the specific machine learning algorithm that was used in this research.
Neural networks learn from data patterns to predict outputs on new data. The general
structure of a neural network is seen in Figure 4.

10

Figure 4: This diagram is the general structure of a neural network with five inputs and two
outputs.

The inputs into this network structure are the coefficients of the system of polynomial
equations. These numbers then propagate through the network, and at each node the number
is inputted into the equation of the node, which will then return an output for that node.
Each node output then becomes an input into the following layer of nodes. The number of
layers in the structure and the number of nodes in each layer can be changed to help the
accuracy of the model. In the neural network, hyperparameters can be changed other than
the network structure to help maximize the accuracy of the model. These parameters will
be explained further in section 3.2.

For the initial neural networks that were used in this research, Google’s Tensor Flow was
used to create the structure of the network. Once the network was built, we then switched
to a more user friendly software called keras. The keras code structure gives the same neural
network as before, but allows for changes in the structure to be made much faster.

3.2 Minimizing Error

The learning rate and number of training steps for the model are hyperparameters that
can be changed in the neural network to effectively minimize the error in the outputs of the
neural network. The weight values in a neural network are also important in minimizing
error, but these are not controlled by the user. We are trying to maximize the number of
correctly classified polynomial systems by changing these settings.

Weights in the neural network are values associated with each node that change the
output value of the node. Weight values differ across all nodes and they determine how
important that input value is to the prediction output at the end of the process. Once
these weights are determined by the neural network and a prediction is given, the network
weights can change using gradient descent by taking the gradient of the error function with
respect to the weights to minimize the error of prediction in accordance with the weight

11

values throughout the network.
To begin with a simple example of minimizing error, we can relate this concept to linear

regression. In linear regression, points (x, y) on a plane are given and the goal is to find the
equation of the line, y = mx + b, so that the distances from each point to the line are the
smallest.

In a neural network, the objective is similar but distance calculation will not be used to
find the error. Instead, the mean squared error formula will be used and is shown below.

Error =
1

m

m∑
i=1

(h(x(i))− y(i))2

Here, h(x(i)) is the predicted output given by the neural network and y(i) is the actual
label for the given polynomial. We want to minimize this function so that the accuracy of
the neural network model is maximized.

To minimize the error function in the neural network, the gradient descent method is
used. Gradient descent is a process that finds the minimum of a function through an iter-
ative optimization algorithm. The steps/iterations that are taken are proportional to the
negative gradient of the function at the current point. In the neural network, hyperparam-
eters such as the learning rate and training steps affect how this gradient descent method
minimizes the function. The learning rate decides the size of the steps. If the step size is
too large, the gradient descent function cannot minimize because the large steps fluctuate
around the function and may never reach the minimum of the error. On the other hand, if
the learning rate is too small, then the steps taken in an attempt to minimize will result in
going towards the minimum but never actually reaching the minimum or taking too long to
do so.

Another critical setting in the neural network for the gradient-descent function is the
number of training steps. This value is the number of iterations/steps taken in the mini-
mization process. Once again, if the number of training steps is too large, it may take too
long to run the algorithm, and if the number of training steps is too small, then we may
begin to minimize without actually reaching the minimum error.

3.3 Generating Data

Once we have constructed a neural network, the next step is to generate data sets that the
network can use to learn from and test its accuracy on. The data sets previously mentioned
were comprised of single polynomial systems. These polynomials were generated with the
following structure:

(x+ a)b(x+ c)d,

where a, b, c, d ∈ Z and −100 < a, b, c, d < 100. At first,we started with only integer roots to
make sure that the neural network could predict solutions with a generally high accuracy.

The coefficients of the randomly generated polynomial systems were then inputted into
a data file, which is a matrix of the coefficients.

12

Figure 5: The data chart for a single variable system would look similar to this matrix.
Each row is the coefficients for a single variable polynomial that was generated. The column
on the right contains the labels that each polynomial is given to correspond to the fastest
setting that system will run under in Bertini.

3.3.1 Training Data

The training data of the single variable polynomials was made by running each polynomial
through the program twice. Each polynomial ran once under the RKF45 (default) setting
and once under the Euler setting. The run time under each of these settings was recorded.
After each polynomial runs through Bertini twice, the timing of each run is compared to
label the polynomial as to which setting is the optimal run time setting for the polynomial.
If the system ran through Bertini fastest under the RKF45 setting, it was labeled with a 1,
and if the system ran through fastest under the Euler setting, it was labeled with a 0.

3.3.2 Test Data

Test data was constructed in the same form as the training data. These data sets are
polynomial coefficients with labels that give the best predictor parameter. The test set
is used to test the accuracy of predictions that the machine learning algorithm gives. The
neural network is given the polynomial coefficients without the labels and is then expected to
predict the fastest setting for this polynomial system to run through Bertini. Once the neural
network predicts the best setting for each polynomial system in the data set, the predicted
parameter outcomes are compared with the actual best output for each polynomial system.
The number of correct predictions is turned into a percentage out of the total number of
polynomial systems to give an accuracy for this model.

3.4 Probability Outputs

The outputs of the neural network structure as seen in Figure 4 are probabilities that each
predictor parameter will be the fastest setting for the given system. In the single polynomial
system data the following are the outputs.

P1=Probability that the system will run fastest under the RKF45 setting

13

P2=Probability that the system will run fastest under the Euler setting

The outputs P1 and P2 (shown in Figure 4) will be probabilities between 0 and 1. The
neural network can then decide the highest probability of these three options and choose
that setting as the optimal parameter for Bertini to run this polynomial system.

4 Results

4.1 Neural Network Parameter Settings

Below are the parameter settings used for the neural network. Each setting was changed
to obtain higher accuracy on the neural network model. The most effective hidden layer
structure that was used was two hidden layers with 100 nodes in each layer, so this setting
was used in each of the following neural network structures.

Training Steps Learning Rate
Parameters1 100,000 0.08
Parameters2 50,000 0.05
Parameters3 50,000 0.08
Parameters4 100,000 0.05

4.2 Single Variable Systems

For the single variable systems, the Google Tensor flow package for neural networks was
used to construct the code. Below are the accuracies of the neural network models when
trained on a set of 3,000 polynomials and tested on a set of 2,300 polynomials.

Parameters1 Parameters2 Parameters3 Parameters4
RKF45 83.37% 81.27% 43.86% 88.10%
Euler 62.06% 55.92% 80.11% 50.42%
Overall Accuracy 73.45% 69.28% 61.01% 69.95%

Below are the accuracies of a network model that trained with a set of 8,000 polynomials
and tested with a set of 3,000 polynomials.

Parameters1 Parameters2 Parameters3 Parameters4
RKF45 89.65% 78.25% 83.60% 81.23%
Euler 42.14% 62.81% 57.43% 59.93%
Overall Accuracy 65.71% 69.97% 70.41% 70.50%

The overall accuracy of the models did not seem to change with the varying structures of
the neural network or the size of the training and test sets given. Prediction accuracy’s above
over 50%, give us a neural network that helps Bertini run at faster than default settings.

14

4.3 Future Work

New labels for systems of polynomial equations can be created using probabilities instead
of the original classification of 0 or 1. This idea originated because the timing of the Bertini
program can be somewhat random, and thus a probability that each system will run fastest
under each setting should be the label instead of a single best setting for each system.

The new data for polynomial systems of equations can be obtained in the following way.
Each system can be run through the Bertini program thirty times. A loop will be used to
split up the runs into ten loops. Each one of the ten loops consists of the polynomial system
running through the program under three predictor settings. In each of the ten loops run,
the fastest setting is recorded. After the 10 loops are finished, the best settings can then
be recorded as probabilities. The label below is an example of a label for one system of
polynomial equations.

Probability of RKF45 Probability of RKCK Probability of RK4
0.5 0.4 0.1

For example, with the above labels, the RKF45 setting is the fastest setting for this system
in 5 out of the 10 times that it was used. Similarly, the RKCK setting is the fastest for this
system in 4 of the 10 times that it was used. Lastly, the RK4 setting is the fastest setting
for this system in only 1 of the 10 times that it was used.

These new labels may be able to increase the accuracies of the neural networks predictions
for the predictor parameter settings for each system of polynomial equations. We believe this
increase in accuracy may occur because the outputs of the neural network are probabilities,
similar to these new labels.

5 Conclusion

The Bertini program is a very useful way to approximate solutions to systems of polyno-
mial equations. Understanding the settings of this program can be essential to its efficiency.
This research was concentrated around using machine learning algorithms to improve the
run-time of this program.

The specific setting that was focused on was the predictor setting. This predictor step
is used in solving the homotopy continuation function along the tracking paths, which are
essential to approximating the solution to the overall system of polynomial equations. By
using a neural network, we can predict the optimal setting for each individual system that
Bertini is given so that the fastest setting is used for each system.

In conclusion, we have made a neural network that can predict settings for single variable
polynomial systems so that the program will run faster than it would under default settings.
We have also considered future work that contains different labels in an attempt to obtain
higher accuracies on original data as well as accuracies for higher variable systems.

15

References

[1] H. Arneja, A. Bender, S. Jugus, and T. Reid. Solving the GPS equations. URL http:

//mason.gmu.edu/~treid5/Math447/GPSEquations/.

[2] D. Bates, J. Hauenstein, A. Sommese, and C. Wampler. Numerically Solving Polynomial
Systems with Bertini. Society for Industrial and Applied Mathematics, 2013.

[3] Danielle Brake. Homotopy continuation. Image.

[4] Ferdi Kahraman. Flapping wing mechanism. Youtube.com, November 2014. URL https:

//www.youtube.com/watch?v=7aXmze9Ynis.

[5] A. Sommese and C. Wampler. The Numerical Solution of Systems of Polynomials Arising
in Engineering and Science. World Scientific Publishing, 2005.

16

http://mason.gmu.edu/~treid5/Math447/GPSEquations/
http://mason.gmu.edu/~treid5/Math447/GPSEquations/
https://www.youtube.com/watch?v=7aXmze9Ynis
https://www.youtube.com/watch?v=7aXmze9Ynis

	University of Mary Washington
	Eagle Scholar
	Spring 4-24-2019

	Predicting Parameters for Bertini Using Neural Networks
	Makenzie Clower
	Recommended Citation

	Introduction
	Bertini Classic and 2.0
	Real World Applications
	GPS
	Robotics
	Chemistry

	Mathematics Behind Bertini
	Introducing Variables and Functions
	Tracking
	Predictor Step
	Predictor Example
	Predictor Parameters

	Corrector Step
	Corrector Example
	Corrector Parameters

	Predictor-Corrector Failure
	Endgame Boundary

	Machine Learning
	Neural Networks
	Minimizing Error
	Generating Data
	Training Data
	Test Data

	Probability Outputs

	Results
	Neural Network Parameter Settings
	Single Variable Systems
	Future Work

	Conclusion
	References

