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ABSTRACT 

Stable isotopes of oxygen and hydrogen, δ18O and δD, are tracers of climatic changes 

within the hydrologic cycle, and thus are a potential link in the relationship between climate-

influenced changes to the hydrologic cycle and modern and paleoenvironments. The Chesapeake 

Bay region, located on the boundary between subtropical and subpolar precipitation, is projected 

to see increased precipitation rates specifically during winter and spring under enhanced levels of 

greenhouse gases (Najjar et al., 2010). Additionally, paleoclimate archives from the Bay, which 

are sensitive to freshwater input from rivers, provide a baseline of past natural climate 

variability, recorded through changes in their δ18O composition that reflects the δ18O of the water 

from which it precipitated (e.g. LeGrande and Schmidt, 2009). Studies have shown that the 

isotopic content of surface water and groundwater parallel meteoric water (e.g. Dutton et al., 

2005); however, there is no previous work connecting δ18O and δD isotopes from meteoric water 

with nearby river and groundwater in the vicinity of the Fredericksburg, Virginia, region.  

In this study, the δ18O and δD content of meteoric and surface water in the 

Fredericksburg region was analyzed over the course of a year to understand the seasonality of the 

δ18O and δD of precipitation, and its relationship between the isotopic values of river water and 

groundwater. Surface water samples were collected from the Rappahannock River and Hazel 

Run tributary in Fredericksburg, VA, and precipitation and groundwater samples were collected 

on the University of Mary Washington campus. We have found precipitation in winter months to 

be more depleted in heavy isotopes than in warmer months. There is a muted correlation between 

the δ18O and δD values of precipitation and stream water; however, periods of prolonged dryness 

resulted in deviations of this trend due to high rates of evaporation and the inflow groundwater 

into the stream. This work will provide the foundation of using δ18O and δD of meteoric water to 
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study changing precipitation patterns as climate changes in the local Fredericksburg, VA, region, 

as well as understanding the controls of the δ18O and δD of surface water for more robust 

interpretations from proxy records in regional paleoclimate studies. 
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CHAPTER 1 - INTRODUCTION 

 

Overview 

 The hydrologic cycle is an earth process that is susceptible to changes in climate. As 

climate continues to warm, forecasts predict an intensification of the global hydrologic cycle, 

most specifically related to extreme weather events (Huntington, 2005). However, the resulting 

effects are latitudinally dependent, where an increased frequency of stronger rainfall events is 

expected in tropical regions, and decreased rainfall is expected in the mid-latitudes, thus driving 

the mid-latitudes to become drier on a global scale (Sherwood and Fu, 2014). On average, annual 

precipitation across the United States has increased 4% between the years 1901 to 2015 and 

precipitation events have become more intense and frequent (USGCRP, 2017). Annual increases 

in precipitation are observed throughout most of the United States, however, seasonal increases 

in rainfall are significantly greater in the autumn in the Southeast and Midwest as opposed to the 

other three seasons, where increase rates of drying are prevalent (Figure 1.1) (Hoffman et al., 

2019). 

Virginia is located on the boundary between subtropical and subpolar precipitation and is 

expected to see an increase in average annual precipitation as projected by climate models with 

enhanced levels of greenhouse gases (Najjar et al., 2010). Notably, increased precipitation rates 

will occur specifically during winter and spring as seasonal air temperatures are expected to 

warm (Najjar et al., 2010). An increase in autumnal precipitation has already been observed in 

Virginia over the past three decades (Figure 1.2), which is not consistent with model projections 

of rainfall with enhanced levels of greenhouse gases. Air surface temperatures in Virginia have 

also increased over the past three decades (Figure 1.3), alongside changes in seasonal 

precipitation, with greater warming rates occurring in the winter season (Hoffman et al., 2019). 
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The combination of changes in precipitation patterns and increasing temperature poses a 

significant issue because this apparent intensification the hydrologic cycle will result in changes 

to regional water balances. Periods of dryness from increasing surface air temperatures and a 

lack of precipitation will result in more frequent droughts and associated issues such as wildfires 

and a decline in available water resources due to increased background dryness of the 

environment. In between those periods of dryness, more intense rainfall events are expected, 

which may result in significant flooding and higher runoff rates (Sherwood and Fu, 2014). 

Understanding how changes to the hydrologic system affect regional watersheds is significant for 

many reasons, including better managing water resources, mitigating for floods, and planning for 

crop resiliency, just to name a few. It is imperative that we understand the controls and 

influences over the hydrologic cycle that will drive it to change as the climate continues to warm 

(e.g. IPCC, 2014), to better prepare for those changes in regional water balances and the future at 

large. 

To study these changes in climate and precipitation, we can use stable oxygen and 

hydrogen isotopes of water as they are tracers of water origin and movement throughout the 

hydrologic cycle (e.g. Gat, 2010). The isotopic composition of water is controlled by a series of 

climatic processes (e.g. Faure and Mensing, 2005), which results in each body of water having a 

unique isotopic “fingerprint,” (Liu, Bowen and Welker, 2010). By measuring this fingerprint and 

changes of the fingerprint, we can determine environmental conditions such as temperature, 

precipitation patterns as well as any associated changes to hydrologic cycle. Global maps of both 

oxygen and hydrogen have been developed (Figure 1.4), however, the resolution of these maps is 

coarse (Bowen and Wilkinson, 2002). Regional and local studies are necessary in order to 
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develop higher-resolution datasets, especially in the Virginia and Chesapeake Bay region, in 

order to more closely observe changes in the hydrologic cycle through isotope values. 

Beyond solely studying the changing patterns of modern waters, we also have the ability 

to measure the isotopic composition of paleoclimate natural archives, which serves as proxies to 

paleoclimatic conditions. Proxies are natural materials whose geochemistry is an imprint of past 

climate due to their isotopic composition being governed by environmental conditions (Grothe, 

pers. comm.). Paleoclimate studies help us understand the past by putting modern and future 

climate change into perspective of natural climate variability. Many natural archives record 

climate variability through changes in their δ18O composition (e.g. LeGrande and Schmidt, 

2009). The δ18O values recorded by natural archives reflect both the temperature and the δ18O of 

the water from which it precipitated (e.g. Cronin et al., 2005; Sanford et al., 2013). Studies have 

identified a link between the δ18O isotopic value of both river water and groundwater with 

meteoric water (e.g. Dutton et al., 2005; Pape et al., 2010). Specifically, in the Chesapeake Bay 

region, the δ18O of the water is heavily dependent on freshwater input from the major tributaries 

(Palmo and Grothe, 2018). Climate proxies such as oyster shells and foraminifera, found in the 

Chesapeake Bay, record climate conditions through the isotope values of their calcium carbonate 

shells which are derived from the water in which they formed. As they reflect not only 

temperature but also the oxygen isotope of the water (Grothe, pers. comm.), developing an 

understanding of the controls over the isotopic values of modern waters is important when 

interpreting paleoclimate records.  
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Objectives and Approach 

Through this study, we analyzed the stable isotopic content of meteoric and surface water 

in the Fredericksburg, Virginia, region (Figure 1.5). The first objective of this research was to 

record the seasonal variability in δ18O and δD of precipitation in Fredericksburg, VA, over the 

course of one year (May 2018- May 2019). This was done by analyzing the δ18O and δD content 

of meteoric water, or water derived from precipitation, collected from a rain gauge in front of the 

Jepson Science Center on the campus of the University of Mary Washington (Figure 1.5). By 

recording the isotopic values of precipitation over four seasons in Fredericksburg, we hoped to 

observe seasonal variability in δ18O and δD, and how those values trace the seasonal changes 

associated with storm trajectories. The study will provide one year of baseline data that will 

ultimately be used in a long-term monitoring project to track future changes in extreme weather 

events in Virginia related to seasonal shifts in storm trajectories. 

The second objective of this research is to understand how or if the δ18O and δD values of 

meteoric water influence the isotopic composition of the local watershed, including nearby 

streams and groundwater. To date, there is no previous work connecting δ18O and δD from 

meteoric water with nearby river and groundwater in the vicinity of the Fredericksburg region. 

To study this relationship, I collected river water from the Rappahannock River and the Hazel 

Run tributary, and groundwater samples from a groundwater monitoring well on the UMW 

campus (Figure 1.5). Through examining the relationship between the isotopic values of each 

local water reservoir with meteoric water, we hoped to improve our understanding of the controls 

that affect the δ18O of the local watershed. This will ultimately aid in interpreting the 

geochemistry from regional paleoclimate archives as they record the δ18O of the water from 

which they precipitate (e.g. LeGrande and Schmidt, 2009). This research will be particularly 
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important in ongoing research in Dr. Grothe’s lab interpreting δ18O in oyster shells from the 

Rappahannock River to infer paleoclimate variability in this region of Virginia. 

 

Research Significance 

The overarching goal of this study is to further our understanding of the physical 

processes that control isotopic content of meteoric water and how they are translated into bodies 

of surface water and groundwater in the Fredericksburg region. By developing a better 

understanding on the controls that affect the δ18O of the water from which natural archives (e.g. 

calcite of foraminifera, ostracods, bivalves, coral skeletons, and cave deposits) precipitate, we 

will be able to more to accurately interpret the climate signal recorded in these natural archives 

(e.g. Tibert et al., 2012) from the region. Current global distribution patterns of δ18O and δD in 

meteoric waters show that there is a relationship between weather events and the isotopic 

composition of precipitation (Rozanski, Araguás-Araguás and Gonfiantini, 1993). This 

distribution is inferred from isotope resolution maps and models, which report high-resolution 

global records of δ18O values. These records are useful when comparing paleo precipitation and 

temperature across the globe; however, they cannot be used for regional comparisons due to 

limited spatial and temporal coverage (Bowen and Wilkinson, 2002). This study will work 

towards developing an understanding of the regional controls on the isotopic values within the 

hydrologic cycle that cannot be inferred from global records. Results from this study will be 

archived at the WaterIsotope database, located at the University of Utah. Additionally, this data 

has broad application for use in isotope-enabled climate models to further our understanding of 

how climate change is affecting the hydrologic cycle. 
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Figure 1.1. Annual and seasonal changes in precipitation across the conterminous United States 

in the years between 1986-2015, relative to the first half of the century (1901-1960) (USGCRP, 

2017). 
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Figure 1.2. Seasonal precipitation anomalies in Virginia in the years between 1986-2016, 

relative to 1895-2000 (Hoffman et al., 2019). The greatest increase in precipitation has occurred 

in the fall as compared to the other seasons. 

 

 
Figure 1.3. Seasonal changes in temperature in Virginia in the years between 1986-2016, 

relative to 1895-2000 (Hoffman et al., 2019). Temperatures have increased most significantly in 

the winter compared to the other three seasons.  
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Figure 1.4. Map of global δ18O values based on data from the WaterIsotope database 

(http://waterisotope.org).  
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Figure 1.5. Location map of Fredericksburg, VA, and sample collection sites. The red marker 

indicates the collection site of the Rappahannock River sample and the yellow marker is the 

Hazel Run sample location. The blue marker indicates the location of the rain gauge and the 

orange marker the location of groundwater sampling, both of which are on the University of 

Mary Washington campus. 
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CHAPTER 2 - BACKGROUND 

 

Stable Oxygen and Hydrogen Isotopes 

 Stable isotopes are atoms of an element that have the same number of protons in the 

nucleus as the standard atom, but have a different number of neutrons, with stable denoting that 

these isotopes do not decay (West et. al, 2010). There may be multiple isotopes for elements that 

each have a unique number of neutrons. Of the two elements analyzed in this study, there are two 

stable isotopes of hydrogen (1H and 2H) and three stable isotopes of oxygen (16O,17O, and 18O). 

These isotopes are naturally occurring in nature, in bodies of water and geologic material. Not all 

isotopes are abundant and measurable, but of the isotopes of hydrogen and oxygen, 1H, 2H, 16O, 

and 18O exist in abundant amounts and can be measured through mass spectrometry (e.g. West 

et. al, 2010 and Gibson, Fekete and Bowen, 2010). Each isotope has a different mass due to their 

different number of neutrons; this difference in mass is a significant factor when it comes to 

which isotopes are present in a material due to fractionation (Gat, 2010). Fractionation, or the 

separation of isotopes of different masses, occurs when molecules undergo a phase change 

between liquid, solid, and vapor, with heavier isotopes favoring the liquid and solid phase, and 

lighter isotopes favoring the vapor phase (Ichiyanagi, 2007). Isotopic values of water molecules 

vary between the different precipitatory and evaporative phases of the hydrologic cycle and their 

ratios of heavy to light isotopes are representative of those phases. 

Each isotope of oxygen and hydrogen exist in nature in different abundances. 18O, the 

heaviest of the oxygen isotopes, has a natural abundance of 0.200% in the hydrologic cycle 

whereas the most abundant isotope of oxygen is 16O and has a natural abundance of 99.762% 

(Gat, 2010). The hydrogen isotopes, Deuterium (denoted as D or 2H), is considered a heavy 

isotope because it has two neutrons, rather than one. It has a natural abundance of 0.015% in the 
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hydrologic cycle whereas the major hydrogen isotope, 1H, exists in hydrologic cycle in 

abundance of 99.985% (Gat, 2010). 

The abundance of an isotope is expressed as the ratio of the abundance of heavy isotopes 

to that of the light isotopes. This ratio value of isotopes, denoted by R, represents the number of 

atoms of the isotopes rather than their masses. The ratios of oxygen and hydrogen isotopes are 

measured using mass spectrometry, and are expressed in terms of the heaviest isotope, δ18O and 

δD, respectively. Rather than using the R value to represent the isotope abundance, the value is 

reported as the deviation (δ) from a common standard isotope reference value (Gourcy, Groening 

and Aggarwal, 2005). δ18O is defined by the relationship 

                      

where Rspl = 18O/16O is the ratio of the sample and Rstd = 18O/16O is the ratio of the standard 

abundances; δD is defined by 

          

The values of δ18O and δD can be positive, negative or zero, where a positive value indicates a 

larger abundance of the heavy isotope, or a higher ratio of 18O to 16O, and a negative value 

indicates a lower abundance of the heavy isotope (Faure and Mensing, 2005).  

The ratios of the abundance of stable isotope within water are compared to a “standard 

mean ocean water” (SMOW) ratio, which is a standard value originally determined relative to 

the NBS—1 standard, which was an arbitrarily chosen water sample from Potomac River, by 

Craig in 1961 (Gat, 2010). The SMOW values were determined from the equations 

   δ18O  = (Rspl - Rstd) x 103 ‰ 

       
Rstd  

   δD = (Rspl - Rstd) x 103  ‰ 

       
Rstd  
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R(18O/16O)SMOW = 1.008.R(18O/16O)NBS-1; 

R(18O/16O)SMOW = 1.050.R(18O/16O)NBS-1 

where R is the ratio value and NBS-1 is the sample collected from the Potomac River (Craig, 

1961). Today, these ratio values are compiled in a database of the International Atomic Energy 

Agency (IAEA) in Vienna, Austria, and are classified at VSMOW reference standards (Gat, 

2010). 

 

Controls over Isotopic Values of Meteoric Water 

Phase Changes 

As water undergoes phase changes between solid, liquid, and gas, the isotopic content of 

the water molecules changes. This is due to the process of fractionation where the molecules are 

separated based on mass. As water undergoes evaporation, the molecules with the lighter 

isotopes change from a solid or liquid to a gas before the heavier isotopes (e.g. Gat, 2010 and 

Faure and Mensing, 2005). Likewise, water molecules with heavier isotopes condense into liquid 

before molecules with lighter isotopes (e.g. Gat, 2010 and Faure and Mensing, 2005). This 

relationship between isotopic values and phase changes has an effect on the overall water isotope 

content within an air mass, which is reflected in the isotopic values of precipitation (Gedzelman 

and Lawrence, 1990). 

 

Temperature Effect 

 The isotopic process of fractionation is dependent on a number of climate factors, 

including temperature. Surface air temperatures during rainfall events play a role in the 

fractionation process and the determining of isotopic values (e.g. Tappa et al., 2016). Figure 2.1 
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illustrates the correlation between average δ18O and the local surface air temperature of 

precipitation collection from 325 stations within the global network of isotopes in precipitation 

(GNIP) (Gourcy, Groening and Aggarwal, 2005). The figure compares the correlation between 

surface air temperature and δ18O of precipitation between the latitudes of 60S and 60N and 

precipitation that falls outside of those latitudes. Within both ranges of latitudes, as surface air 

temperatures increase, the abundance of 18O does as well. The relationship between surface air 

temperature and average δ18O values of meteoric water is represented by the equation: 

δ18Oa = 0.698Ta – 13.6 

where δ18Oa = the annual mean of meteoric water δ18O values and Ta = the average annual 

surface air temperature, measured in oC (Dansgaard, 1964). Studies have found that the isotopic 

composition of precipitation in regions where mean annual surface air temperature is greater than 

18oC shows little dependence on the temperature effect due to the influence of more dominant 

effects, such as the location where the precipitation falls (Gourcy, Groening and Aggarwal, 

2005).  

Seasonal variations in temperature are a source of isotope variability within meteoric 

water. Measures of monthly minimum and maximum isotope values have indicated that winter 

precipitation tends to be more depleted in heavy isotopes, 18O and D, than summer precipitation 

(Gibson, Fekete and Bowen, 2010). The seasonality of the temperature effect on δ18O within 

precipitation is shown in Figure 2.2, which compares the globally-averaged temperature effect on 

meteoric water to that of the Northern and Southern Hemispheres (Ichiyanagi, 2007).  
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Amount Effect 

 Studies of isotope composition of meteoric water collected throughout a rainfall event 

have found that precipitation becomes more depleted with time due to the heavy isotopes 

preferentially raining out before light isotopes (e.g. Gedzelman and Lawrence, 1990). As 

precipitation rains out of an air mass, the more depleted values correspond to the middle and end 

of the storm event (Gat, 2010). As air masses move and precipitation falls, water molecules 

enriched with the heaviest isotopes, 18O and 2H (or D), rain out at the front of the air mass, 

meaning the water that falls later in a storm event is depleted in those values (Liu, Bowen and 

Welker, 2010). This effect explains discrepancies in isotope composition in meteoric water over 

the period of a long storm events and for storm events that travel a large distance.  

 

Physical Location 

 Another influence on the isotopic content of meteoric water is where it exists relative to 

altitude, latitude and distance inland from the ocean. These three factors have an effect on 

isotopic distribution within precipitation because as air masses and the water vapor they contain 

are transported away from the water vapor source, the precipitation goes through multiple cycles 

of condensing and evaporating, resulting in a depletion of heavy H and O isotopes (Gibson, 

Fekete and Bowen, 2010). This is the case for water that originates from oceans and is 

precipitated over continents. Precipitation at high latitudes is often so depleted in heavy isotopes 

that it resembles the VSMOW reference values of water close to the Equator, which generally 

has high 16O values due to fractionation caused by evaporation (Gibson, Fekete and Bowen, 

2010). The effect of distance from the equator in both the Northern and Southern Hemispheres at 

which water precipitates can be compounded with the temperature effect. The δ18O and δD 
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values become more negative as distance from the water vapor source increases due to the 

combined effects of temperature and rainout on the isotope content of the water vapor in the air 

masses as they move (Faure and Mensing, 2005). The latitude effect is approximately Δδ(18O) = 

−0.6‰ per degree of latitude in North America (Gat, 2010).  

The altitude at which water condenses within an air mass has an effect on the isotopic 

values of meteoric water as well. A higher abundance of lighter isotopes exists at higher altitudes 

within an air mass because the gaseous water molecules have undergone fractionation from the 

base to the top. As the water molecules fall through the air mass, the isotopes equilibrate with the 

heavy isotopes that exist at lower altitudes within the air mass due to the fact that the water at the 

base of the air mass has not undergone the same amount of fractionation (Gedzelman and 

Lawrence, 1990). Figure 2.3 (Gedzelman and Lawrence, 1990) is a schematic that represents the 

δD within convective and stratiform air masses that illustrates the combined effects of 

fractionation and altitude on isotopic values within water molecules. The lightest isotopes exist at 

the top of each of the two air masses, represented by a greater depletion of heavy isotopes within 

the water. As the water molecules precipitate and fall, the isotopic values become heavier, 

represented by a less negative value. 

 

The Meteoric-Water Line 

 The combination of the oxygen and hydrogen isotopes within water molecules means that 

they both undergo the same hydrologic processes of evaporation and condensation, and as such, 

there is a linear correlation between the two values which is represented by a water line plot 

(Faure and Mensing, 2005). The Meteoric Water Line (MWL) is a water line plot of precipitation 

isotope values generated using a least squares regression equation that gives equal weight to all 
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data points, regardless of the precipitation amount; however, a few studies have developed 

alternative equations that do take precipitation amount into account to correct potential biases 

caused by rainfall amount on water line plots (e.g. Hughes and Crawford, 2012). The Global 

Meteoric Water Line (GMWL) was first derived by Craig (1961) and expressed by the equation, 

 δH2 = 8.13 δ18O + 10.8 

using δ18O and δ2H values from the International Atomic Energy Agency (IAEA) (Tappa et al. 

2016).  Figure 2.4 is plot of the GMWL published by Faure and Mensing (2005) and is based on 

data from Rozanski et al. (1993).  

As δ18O and δD values of meteoric water is dependent on factors that vary with increased 

distance from the equator, such as temperature and rainout, the values of the isotopes on the 

MWL plot reflect the latitude at which the water precipitated (Faure and Mensing, 2005). 

Deviations of isotope values from the MWL are attributed to variations in regional weather and 

precipitation events (Gourcy, Groening and Aggarwal, 2005) as well as the meteoric oceanic and 

terrestrial sources of the water (Tappa et al. 2016). For example, water vapor sourced from arid 

regions will result in a LMWL with a smaller slope than that of the GWML and a higher y-

intercept, due to the effects of greater rates of evaporation on the water vapor (Figure 2.5) (e.g. 

Wang, Chen and Li, 2014 and Araguás-Araguás, Froehlich and Rozanski, 2000). Another factor 

involved is rainfall event size. Smaller precipitation events have heavier isotope values, whereas 

larger precipitation events generally become more depleted in heavy isotopes overtime (Hughes 

and Crawford, 2012). This difference between different sized rainfall events, which is 

determined by regional factors, can result in variations from the GMWL.  Discrepancies from the 

GMWL can be explained through the development of local MWL. Global and local MWLs can 
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be compared in order to infer systemic changes in isotope values as differences between the two 

types of MWLs may be indicative of large-scale climate changes. 

 

Applications of Meteoric Water Stable Isotopes for Climate Studies 

Due to the compounded effects of temperature, rainfall amount and physical 

characteristic of rainwater, the isotopic composition of precipitation is an indicator of water 

vapor origins and other aspects of the hydrologic cycle, including storm events, moisture levels 

in the atmosphere, and rates of evaporation within a region (Kendall and McDonnell, 1998). 

Isotopes can be used to trace precipitation of different origins, as air masses that originate from 

different regions have specific isotopic “fingerprints” in their moisture content (Liu, Bowen and 

Welker, 2010). Cole et al. (1999), found that shifts among water vapor sources have an effect on 

isotopic variability observed in precipitation records. For example, a study by Scholl and 

Murphy (2014) established isotopic signatures from major weather patterns in Puerto Rico in an 

effort to monitor changing atmospheric dynamics as a result of climate change. Additionally, 

Ichiyanagi (2007) found that the isotopic content of monsoons in Southeast Asia was mostly 

controlled by moisture source and transport patterns. However, the significance of water vapor 

origins on isotopic content of precipitation may vary by region, as studies have found local 

climate, temperature and rainfall amount played more of a role in the Andes Mountains, for 

example, than water vapor origin (Ichiyanagi, 2007). 

 

Stable Isotopes as Tracers of the Interaction of Water Within the Hydrologic Cycle 

Water from different sources can affect the composition of water in another reservoir as it 

moves throughout the hydrologic cycle, such as atmospheric water affecting a surface water 
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reservoir. Studies have been conducted on the influence of meteoric water on the isotopic values 

of surface water. Local and regional studies have found that the stable isotopic composition of 

rivers can be vastly different from the values of local precipitation (Dutton et al., 2005), a 

difference that has been attributed to environmental and climate factors such as snowmelt, 

especially in high elevations (Friedman et al., 1992). The difference between the isotopic values 

in rivers and precipitation has also been attributed to the origin of the river water itself. As river 

water is derived from precipitation upstream of where samples are collected, otherwise known as 

the ‘catchment effect,’ the primary isotopic values will reflect the upstream precipitation rather 

than the local precipitation (Dutton et al., 2005). This conclusion was derived from a study of the 

48 conterminous United States, which implies that, on average, the isotopic values of river water 

reflect the climatic events and characteristics of meteoric water upstream of sampling locations. 

To understand the isotopic characteristics and controls of groundwater and their 

relationship with precipitation, cave drip waters have been studied as well. A study in Austin, 

Texas found that, on average, the δ18O values within cave drip water were lower than the 

weighted average of the values in precipitation, indicating that there may be a threshold 

precipitation amount needed to infiltrate into the groundwater system for precipitation to have an 

effect on groundwater stable isotopes (Pape et al., 2010). Drip waters from multiple caves within 

the Central Texas region did display a spatial gradient inland that suggests the isotopic values of 

groundwater are affected by a combination of continental (or location) and temperature effects, 

with deviations from the gradient brought about by changes in storm paths or moisture sources 

(Pape et al., 2010). A study conducted in China found that, when taking percolating rates of the 

water into consideration, the isotopic composition of cave drip water generally parallels the 

seasonality of precipitation, with higher δ18O and δD values occurring April through June and in 
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January, and lower values occurring from September to December (Wu et al., 2014). The results 

of these studies suggest there is a correlation between the isotopic values of surface and 

groundwater and the climate-influence values of precipitation. Precipitation runs off as surface 

water or infiltrates into groundwater, which in turn flows into stream systems, thus linking the 

three water types and their isotope content together. When correlating the isotopic values of the 

three bodies of water, the movement of water within the hydrologic cycle must be taken into 

consideration when interpreting the trends between values. 

 

The Values of Stable Isotopes Within Climate Proxies as Paleoenvironmental Indicators 

 Many natural archives (e.g. calcite of foraminifera, ostracods, bivalves, coral skeletons, 

and cave deposits) record climate variability through changes in their δ18O composition, which 

reflects not only temperature, but also the δ18O of the water from which their calcium carbonate 

shells are precipitated (e.g. LeGrande and Schmidt, 2009). The values of the stable isotopes 

within a body of water or ice, or within the shells of organisms, such as oysters, are 

representative of the fractionation process which is influenced by environmental factors such as 

temperature. It is for this reason that the ratio between light and heavy isotopes (18O/16O) is 

indicative of paleoenvironments (Robertson, 2017). Paleoclimate archives are important in 

understanding past natural variations in climate change which is useful for contextualizing our 

present and future climate change.  

 Local studies use foraminifera and oyster shells to infer how climate changes impact 

modern and paleo fluvial environments (e.g. Cronin et al., 2005 and Sanford et al., 2013). These 

studies used foraminifera from sediment cores in their analyses and found that river discharge 

had a significant effect on temperature and salinity within the Chesapeake Bay (Cronin et al., 
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2005). Precipitation and groundwater can also have an effect on the stable isotope composition 

of archives due to their influence on river water (e.g. Dutton et al., 2005 and Pape et al., 2010). 

Other studies of the Chesapeake Bay have used oyster shells to analyze the salinity and 

temperature of water, and to track the changes in these values as climate temperatures increase 

(Najjar et al. 2010). Others have attributed the decrease of salinity, as inferred from foraminifera, 

to the combined effects of climate trends and aggressive land use in the Chesapeake Bay 

watershed (Tibert et al., 2012) rather than from the influence of river or groundwater.  
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Figure 2.1. The correlation between average δ18O and the local air temperature of precipitation 

collection from 325 stations within the global network of isotopes in precipitation (GNIP) 

(Gourcy, Groening and Aggarwal, 2005). 

 

Figure 2.2. The seasonality of the influence of temperature effect on δ18O in precipitation 

globally, and in the Northern and Southern Hemispheres (Ichiyanagi, 2007). Monthly averages 

are plotted and paired with annual averages. 
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Figure 2.3. A schematic of δD values of water molecules within convective and stratiform air 

masses (Gedzelman and Lawrence, 1990). Divide the values by 8 to get δ18O values. 
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Figure 2.4. The meteoric-water line of δ18O and δD values of precipitation based on monthly-

average global data from the International Atomic Energy Agency (Faure and Mensing, 2005). 
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Figure 2.5. Schematic of the reasons behind deviations of a LMWL from the GMWL 

(web.sahra.arizona.edu). 
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CHAPTER 3 - METHODS 

 

Sample Collection 

Between May 28, 2018, and April 20, 2019, duplicate rainwater samples were collected 

on a per-event basis from a rain gauge located in front of the Jepson Science Center on the 

University of Mary Washington campus, Fredericksburg, VA (Figure 1.5). Rainwater samples 

were collected no more than three hours after the conclusion of each rainfall event to minimize 

the effect of evaporation on isotope composition. Samples were stored at ~4°C in 15 x 45 mm 

clear Borosilicate screw top glass vials with the tops wrapped in parafilm. Seven events where 

rainfall lasted over the course of at least one day were sampled two to three times throughout the 

duration of the event. When sampling these events, the rain water collector was emptied each 

time to prevent the influence of earlier water on the samples. The weather station, located 

directly next to the rain gauge, provided an independent measurement of rainfall amount, to 

compare with the recorded amount from the rain collector itself. Air temperature at the time of 

rainwater sample collection was another variable recorded and was supplemented by data from 

the Thunder Eagle Daily Weather Archive for Fredericksburg, VA, database. 

Water samples were collected from the Rappahannock River and Hazel Run on a weekly 

basis between June 13, 2018, and April 24, 2019, for the Rappahannock River and September 28, 

2018, and April 24, 2019, for Hazel Run (Figure 1.5). Although water samples from the main 

current would have been ideal, for safety reasons the samples were sourced from eddies along 

the river edge and stream bank. The locations of the sample sites were chosen based on ease of 

access as both sample collection locations are accessible by roads. At the time of each water 

sample collection, the water temperature was recorded using a YSI Data Logger. Discharge 
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values of the Rappahannock River was recorded at the time of sample collection from a database 

maintained by the U.S. Geological Survey (https://waterdata.usgs.gov/nwis/uv?01668000). 

Groundwater samples were collected from a 29.6-foot deep groundwater monitoring well 

on the southwest corner of the University of Mary Washington campus, where the water table 

elevation is approximately 68 feet (Whipkey, pers comm.), on a weekly basis between 

September 12, 2018, and April 24, 2019. Water sourced from this well, which has a well screen 

height of 10 feet, is from an unconfined aquifer, with water coming from below the water table 

(Whipekey, pers. comm.). To ensure the groundwater sample was free from surface drainage into 

the well, the well was emptied two times before collecting the sample using a groundwater bailer 

by removing approximately 6.4 gallons of water, a value determined from the depth and diameter 

(2 inches) of the well. To confirm that the well water was being replaced by flowing 

groundwater as the well emptied, the pH was recorded after approximately every two gallons 

were removed from the well. 

 

Sample Analysis 

In the lab, river and groundwater samples were filtered using a syringe and a 0.20 µm 

nylon filter in order to remove all sediment from the water before sample analysis. Filtered 

samples were transferred into Picarro vials and then were wrapped in parafilm and stored at 

~4°C to reduce the effects of evaporation on the samples. Each water sample type was numbered 

in sequential order based on the order of sample collection and had a unique sample ID that 

indicated the type of water.  Rainwater was labeled RW, Rappahannock River water was labeled 

VOC (after the sample collection site the Virginia Outdoor Center), HR stood for Hazel Run and 

groundwater was labeled GW. The rain, river and groundwater samples were analyzed in the lab 

of Dr. Bronwen Konecky of Washington University in St. Louis in a Picarro water isotope 
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analyzer, which recorded the of δ18O (‰), δ17O (‰), and δD (‰) content of the water. The 

Picarro analyzer had yet to be calibrated for δ¹7O (‰) at the time of analysis so the quality 

assurance nor control could be provided for the results, therefore the values are not included in 

this study. I sent water samples collected over the summer and during the Fall semester to Dr. 

Konecky in December 2018. In March 2019, I traveled to Washington University to learn the 

process of sample analysis and personally ran water samples collected through the first half of 

the Spring semester. I worked alongside Dr. Konecky’s lab manager, Dr. Jack Hutchings, who 

taught me the analysis process.   

The Picarro analyzer uses Cavity Ring-down Spectroscopy to determine the isotopic 

content of a water sample. A sample is injected into the instrument by a syringe and is then 

vaporized. The water vapor enters a cavity within the machine and a laser is reflected in a 

triangular fashion in the cavity by mirrors. Isotopes absorb photons of different wavelengths so 

isotopes are identified by absorbance of the laser. As the laser circulates around the cavity, some 

of the beam immediately exits the cavity; the remaining energy of the laser slowly is emitted as 

the beam is reflected. Absorbance of the laser is measured after some energy is emitted because 

the initial energy of the laser, before reflection, is too high for the instrument to analyze. Isotopic 

abundance is determined from the absorbance data and is then corrected for drift and machine 

memory, or the effect of residual vapor from the previous sample affect the sample being tested. 

The water samples were analyzed six times, with the final data value being the average of the last 

three values. Samples were analyzed in a series with control samples of USGS45 and water from 

Kona, Hawaii, and VSMOW (Vienna Standard Mean Ocean Water) standards to minimize 

machine drift and maintain calibration (Hutchings, pers. comm.). Data from the Picarro was 

analyzed and plotted using the statistical analysis function of Microsoft Excel.  
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CHAPTER 4 – RESULTS 

Presented here are the results from the water samples collected from May 28, 2018, to 

February 28, 2019. Samples collected since March 1, 2019, will be analyzed at a future date. The 

isotopic data of the four water types were analyzed for seasonal trends. Seasonal divisions of the 

data were determined based on the winter and summer solstices, and the spring and autumnal 

equinoxes (Table 4.1). These results do not contain a years’ worth of data as spring data has yet 

to be analyzed. It is important to note that reported winter seasonal averages do not include data 

from March 1 – March 20. 

 

Seasonal Climate Conditions  

Daily high temperature was recorded for each day a rainfall event occurred. During the 

summer, daily high temperatures ranged between 19.4 oC and 35 oC, with an average value of 

26.26 oC. Daily high temperatures had a greater range in the fall with temperature ranging 

between 3.9 oC and 28.3 oC. The average daily high temperature for this season was less than that 

of the summer, with a value of 16.31 oC. The winter had the lowest daily high temperature 

average of the three seasons sampled. The average value was 11.92 oC for this season, but 

temperatures ranged between 3.8 oC and 17.2 oC. 

Water temperatures of the Rappahannock River and Hazel Run fluctuated with less 

variability than daily high temperatures, however, both bodies of water followed a seasonal trend 

of becoming cooler over the course of the year. In the summer season, Rappahannock River 

water temperature ranged between 21.9 oC and 27.8 oC, and had an average water temperature of 

23.8 oC. The average water temperature of the Rappahannock River dropped to 14.9 oC in the 

fall. During this season, water temperatures ranged between 6 oC and 21.3 oC. Hazel Run water 
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temperatures ranged between 7.8 oC and 20.8 oC during the fall, and had an average temperature 

of 14.6 oC, similar to the Rappahannock River water temperatures during this season. Stream 

water temperatures were the coldest during the winter, compared to the two previous seasons, 

with the Rappahannock River temperature averaging 4.8 oC and Hazel Run averaging 6.6 oC. 

Rappahannock River water temperature ranged between 3 oC and 6.7 oC during this season, and 

Hazel Run water temperatures ranged between 5.2 oC and 8.6 oC. Hazel Run was not sampled 

during the summer of 2018. Likewise, groundwater temperature was not recorded.  

Rainfall amounts were totaled based on the rainfall of sampled events. Rainfall in the 

summer seasons totaled an amount of 17.32 inches. Rainfall increased in the fall months, with a 

total amount of 29.51 inches of sampled rainfall. During the winter season, sampled rainfall was 

less than the two previous seasons, with a total of only 8.40 inches. Seasonal rainfall totals were 

not consistent with past trends as there is usually more rain in the summer seasons than in the fall 

season in Fredericksburg. Total rainfall in July through September averages approximately 11.5 

inches, whereas rainfall total averages approximately 10.3 inches in the months October through 

December (U.S. Climate Data, 2019). 

 The discharge of the Rappahannock River was recorded at the time of sample collection 

from a database maintained by the USGS. Discharge in the summer months ranged from 841 

ft3/sec to 27,800 ft3/sec, and averaged 7,798 ft3/sec. During the fall, average discharge was 9,302 

ft3/sec, with discharge values falling in the range between 1,340 ft3/sec and 24,200 ft3/sec. 

Average river discharge was the lowest in the winter than the two previous seasons, with a value 

of 7,510 ft3/sec. The range of river discharge during this season was 2,480 ft3/sec to 15,200. 

  

 

Precipitation 
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A total of 56 samples of rainwater were collected between May 28, 2018, and February 

24, 2019 (Table 4.2). The δ18O values ranged from -1.14 ‰ to -14.08 ‰, with the average value 

being -6.44 ‰, which is within an expected range of δ18O values based on the latitude of 

Fredericksburg, VA (Figure 4.1a) (Bowen and Wilkinson, 2002). The maximum δ18O value of -

1.14 ‰ occurred on the warmest day of sampled rainfall events, recorded on July 16, 2018 at 

35°C, which is expected as temperature has a strong influence on the δ18O of the water. There is 

a general seasonal trend observed in the δ18O values, where summer values average -5.01 ‰, fall 

values -7.81 ‰, and winter values -6.21 ‰. The standard deviations of these averages were 2.16, 

2.79 and 2.26, respectively. Temperature is most likely the strongest control, especially on the 

more enriched summer values. However, other factors, such as rainfall amount and moisture 

source, which are also seasonal dependent, mostly likely affect the values, especially during the 

fall season which recorded 29.51 inches of rainfall, a factor of 1.7 times more than summer and 

3.5 times more than winter. The δD values ranged from 3.24 ‰ and -92.96 ‰, and the average 

value was -36.25 ‰ (Figure 4.2a). The seasonal trends are similar as the δ18O values, where the 

summer values are most enriched, averaging -26.04 ‰, with a standard deviation of 16.8, and the 

fall values are most depleted, averaging -45.48 ‰, with a standard deviation of 22.5, again most 

likely related to a combination changes in temperature and rainfall amount. 

For rainfall events sampled throughout their duration, five out of seven events became 

more enriched in heavy isotopes over time (Table 4.6; Figure 4.3). This is inconsistent with the 

amount effect as heavier isotopes rain out of an air mass at the beginning of a rainfall event, 

leaving the remaining water to get progressively more depleted in heavy isotopes (e.g. Faure and 

Mensing, 2005 and Gedzelman and Lawrence, 1990). Event one, sampled midway through the 

storm, became more depleted in the hour between sample 1 and 2, but then proceeded to become 
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more enriched between sample 2 and sample 3. Event three was the only event to become more 

depleted from midway through the storm until the end of the rainfall event (Tale 4.6). All other 

events became more enriched as the rainfall event progressed, with not obvious correlation 

between rainfall amount and isotope enrichment. For example, event 6, which became more 

enriched, only saw .06 inches of rainfall between sample collection, whereas event 1, which 

become more depleted between the first two samples collected, saw an increase of .30 inches of 

rainfall. 

 

Surface Water 

From June 13, 2018, to February 24, 2019, a total of 25 samples were collected from the 

Rappahannock River (Table 4.3). The Rappahannock River δ18O values range between -8.91 ‰ 

and -5.89 ‰, and average -6.85 ‰ (Figure 4.1b). The δD values range between -54.58 ‰ and -

32.31 ‰, and average -40.65 ‰ (Figure 4.2b). Like precipitation, the Rappahannock River 

surface water follows a seasonal trend with more depleted values in the cooler fall and winter 

months than summer months. During the warmer summer months, values for δ18O and δD 

averaged -6.42 ‰ and -38.48 ‰, respectively, whereas the fall months averaged -7.05 ‰ and -

42.03 ‰ and winter -7.29 ‰ and -42.13 ‰. The standard deviations of the δ18O averages was 

0.33 in the summer, 0.95 in the fall and 0.07 in the winter. The standard deviations of the δD 

values was 3.2, 7.09 and 0.48 for the summer, fall and winter. Colder temperatures are associated 

with more depleted values due to the lack of evaporation of 18O (e.g. Faure and Mensing, 2005). 

As expected, the isotopic values of Hazel Run followed trends similar to those of the 

Rappahannock River. A total of 15 water samples were collected from Hazel Run between 

September 28, 2018, and February 24, 2019 (Table 4.4). The minimum δ18O value of the Hazel 

Run samples is -8.79 ‰, whereas the maximum is -5.54 ‰, with an average of -7.34 ‰ (Figure 
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4.1c). The minimum δD value is -55.34 ‰ compared to a maximum of -29.6 ‰; the average 

value is -44.07 ‰ (Figure 4.2c). The average δ18O value of the water in the fall was  

-7.30 ‰, with a standard deviation of 1.09, and an average δD of -44.32 ‰, with a standard 

deviation of 8.14. The average abundance of δ18O of the Hazel Run water was more depleted in 

the winter than in the fall with average value of -7.42 ‰, which had a standard deviation of 0.41. 

Conversely, the δD value of the water was more enriched in the winter than in the fall with an 

average of -43.57 ‰ and a standard deviation of 3.08. 

 

Groundwater 

Between the dates of September 12, 2018, to February 28, 2019, 15 groundwater samples 

were collected (Table 4.5). Of all types of water samples analyzed in this study, groundwater 

isotope values fluctuate the least, with the range of 0.33 ‰ for the δ18O values and 1.44 ‰ for 

the δD values. The minimum δ18O value is -7.19 ‰ and the maximum -6.86 ‰, and the average 

value is -7.06 ‰ (Figure 4.1d). The minimum δD value is -42.98 ‰ and the maximum is -41.54 

‰, and the average is -42.55 ‰ (Figure 4.2d). Groundwater values were slightly more enriched 

δ18O values in the winter months (average of -7.04 ‰, standard deviation of 0.03) compared to 

the fall (average of -7.06 ‰, standard deviation is 0.11). 
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Table 4.1 Summary of seasonal climate and isotope data 

 
 

Summer 

6/21/18 -- 9/21/18  

Fall 

9/22/18 -- 12/21/18  

Winter 

12/22/18 -- 2/28/19  

Surface Air 

Temp (avg.) 

26.26 oC 16.31 oC 11.92 oC 

Rainfall Amount 

(total) 

17.32 in 29.51 in 8.40 in 

Rapp. Water 

Temp (avg.) 

23.8 oC 14.9 oC 4.8 oC 

HR Water Temp 

(avg.) 

----------- 14.7 oC 6.6 oC 

Precip. δ18O 

(avg.) 

-5.01 ‰ -7.81 ‰  -6.21 ‰  

Std. Deviation 2.16 2.79 2.26 

Precip. δD (avg.) -26.04 ‰ -45.48 ‰ -33.64 ‰ 

Std. Deviation 16.83 22.51 17.77 

Rapp. δ18O (avg.) -6.42 ‰  -7.05 ‰ -7.29 ‰ 

Std. Deviation 0.33 0.95 0.07 

Rapp. δD (avg.) -38.48 ‰ -42.03 ‰ -42.13 ‰ 

Std. Deviation 3.21 7.09 0.48 

HR δ18O (avg.) ----------- -7.30 ‰ -7.42 ‰ 

Std. Deviation  1.09 0.41 

HR δD (avg.) ----------- -44.32 ‰ -43.57 ‰ 

Std. Deviation ----------- 8.14 3.08 

GW δ18O (avg.) ----------- -7.06 ‰ -7.04 ‰ 

Std. Deviation  0.11 0.03 

GW δD (avg.) ----------- -42.51 ‰ -42.54‰ 

Std. Deviation ----------- 0.50 0.17 
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Table 4.2 Rainwater isotopic composition results 

Sample 

ID 

Event Date δ18O 

(‰) 

δD (‰) Weather Station 

Amount (in) 

Daily High Temp. 

(oC) 

RW 1 5/28/2018 -4.73 -30.06 --  22.77778 

RW 3 5/31/2018 -5.58 -40.96 0.03 30 

RW 4 6/11/2018 -3.48 -12.63 1.02 21.11111 

RW 6 6/20/2018 -3.78 -22.19 0.38 31.66667 

RW 8 6/22/2018 -6.87 -42.21 2.21 23.88889 

RW 10 6/22/2018 -8.51 -55.30 2.51 23.88889 

RW 12 6/22/2018 -7.30 -44.66 2.76 23.88889 

RW 14 6/25/2018 -6.11 -38.22 0.24 28.33333 

RW 16 7/16/2018 -1.14 -3.38 0.05 35 

RW 17 7/23/2018 -8.68 -57.34 4.28 27.77778 

RW 19 7/24/2018 -3.58 -15.89 4.48 27.77778 

RW 21 8/20/2018 -5.83 -32.17 0.05 26.66667 

RW 22 9/8/2018 -4.26 -17.19 0.26 24.44444 

RW 24 9/9/2018 -5.91 -25.51 2.26 19.44444 

RW 26 9/14/2018 -2.75 -10.03 --  25 

RW 28 9/14/2018 -2.68 -9.45  -- 25 

RW 30 9/15/2018 -3.66 -14.42  -- 26.66667 

RW 32 9/15/2018 -4.12 -14.79  -- 26.66667 

RW 34 9/18/2018 -3.77 -16.18 2.67 26.66667 

RW 36 9/21/2018 -4.39 -20.48 0.27 26.66667 

RW 38 9/23/2018 -6.14 -29.27 1.35 17.77778 

RW 40 9/23/2018 -5.64 -24.28 1.52 17.77778 

RW 42 9/24/2018 -5.77 -24.83 1.67 19.44444 

RW 44 9/25/2018 -3.66 -8.67 2.12 28.33333 

RW 46 9/27/2018 -4.74 -21.09 0.24 22.22222 
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RW 48 9/28/2018 -6.25 -30.02 1.05 25 

RW 50 10/11/2018 -10.22 -69.85 3.21 28.33333 

RW 52 10/17/2018 -7.08 -40.54 0.04 20 

RW 54 10/20/2018 -3.50 -23.49 0.14 20 

RW 56 10/21/2018 -5.77 -41.42 0.19 11.66667 

RW 57 10/28/2018 -14.08 -91.87 1.79 16.11111 

RW 59 11/3/2018 -8.48 -52.97 0.53 16.11111 

RW 61 11/5/2018 -9.23 -56.14 1.85 12.22222 

RW 63 11/6/2018 -7.72 -46.26 2.53 17.22222 

RW 65 11/6/2018 -7.60 -46.43 2.87 17.22222 

RW 67 11/6/2018 -5.36 -28.11 2.96 17.22222 

RW 69 11/9/2018 -7.72 -43.93 0.30 9.444444 

RW 71 11/9/2018 -7.56 -42.38 0.36 9.444444 

RW 72 11/12/2018 -12.75 -92.96 0.30 9.444444 

RW 74 11/13/2018 -12.80 -87.47 0.70 10 

RW 76 11/15/2018 -9.44 -52.56 0.43 3.888889 

RW 78 11/16/2018 -9.81 -57.65 1.49 11.66667 

RW 80 11/25/2018 -10.97 -65.04 1.52 17.22222 

RW 82 11/26/2018 -6.44 -30.60 0.15 12.22222 

RW 84 12/3/2018 -6.53 -29.26 0.20 17.77778 

RW 86 12/28/2018 -4.91 -15.61 0.32 13.88889 

RW 88 12/28/2018 -2.87 -3.24 1.28 13.88889 

RW 90 1/20/2019 -7.57 -41.91 0.56 12.22222 

RW 92 1/24/2019 -7.35 -43.58 0.80 16.66667 

RW 94 2/7/2019 -1.98 -11.07 0.05 11.66667 

RW 95 2/12/2019 -8.60 -50.87 1.06 3.888889 

RW 97 2/13/2019 -6.78 -37.08 1.18 10.55556 
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RW 98 2/18/2019 -8.47 -58.16 0.64 11.66667 

RW 100 2/21/2019 -7.55 -40.12 1.21 13.33333 

RW 102 2/23/2019 -7.54 -46.01 0.30 6.111111 

RW 104 2/24/2019 -4.70 -22.39 1.00 17.22222 
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Table 4.3 Rappahannock River isotopic composition results 

Sample ID Collection Date δ18O (‰) δD (‰) Water Temp. (oC) Discharge (ft3/sec) 

VOC 1 6/13/2018 -6.23 -36.66 20.8 2590 

VOC 2 6/20/2018 -6.28 -37.35 28 1340 

VOC 3 6/22/2018 -6.88 -42.76 22.4 27800 

VOC 4 6/26/2018 -6.87 -42.69 21.9 6280 

VOC 5 7/12/2018 -6.41 -39.53 27.8 884 

VOC 6 9/8/2018 -6.14 -36.85 26.6 841 

VOC 7 9/9/2018 -6.12 -35.54 -- 1040 

VOC 8 9/18/2018 -6.15 -35.25 22.4 14100 

VOC 9 9/21/2018 -6.34 -36.77 21.9 3640 

VOC 10 9/25/2018 -5.89 -32.31 19.7 12000 

VOC 11 9/28/2018 -6.09 -33.66 18.8 22000 

VOC 12 10/7/2018 -6.39 -37.28 21.3 2000 

VOC 13 10/12/2018 -7.23 -46.14 20.8 9310 

VOC 14 10/19/2018 -6.42 -38.12 14.7 1380 

VOC 15 10/20/2018 -6.38 -38.03 14.7 1340 

VOC 16 10/28/2018 -8.16 -50.86 11.9 3660 

VOC 17 11/3/2018 -6.74 -40.1 15.2 9510 

VOC 18 11/6/2018 -7.78 -46.73 12.9 11300 

VOC 19 11/16/2018 -8.91 -54.58 6 24200 

VOC 20 11/27/2018 -7.51 -44.47 7.7 5620 

VOC 21 1/25/2019 -7.37 -41.68 4.8 10400 

VOC 22 2/4/2019 -7.18 -41.56 3 2480 

VOC 23 2/16/2019 -7.27 -42.37 -- 3150 

VOC 24 2/21/2019 -7.33 -42.59 4.6 6320 

VOC 25 2/24/2019 -7.29 -42.46 6.7 15200 
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Table 4.4 Hazel Run isotopic composition results 

Sample ID Collection Date δ18O (‰) δD (‰) Water Temp. (oC) 

HR 1 9/28/2018 -5.54 -29.6 19.8 

HR 2 10/7/2018 -6.01 -34.91 20.8 

HR 3 10/12/2018 -8.05 -52.64 18.9 

HR 4 10/19/2018 -6.62 -40.74 13.2 

HR 5 10/20/2018 -6.28 -38.76 15.2 

HR 6 10/28/2018 -8.79 -55.34 13.2 

HR 7 11/3/2018 -7.95 -49.18 14.7 

HR 8 11/6/2018 -7.81 -47.04 13.8 

HR 9 11/16/2018 -8.19 -49.13 9.2 

HR 10 11/27/2018 -7.77 -45.9 7.8 

HR 11 1/25/2019 -8 -47.84 5.7 

HR 12 2/4/2019 -7.46 -44.09 5.2 

HR 13 2/16/2019 -7.42 -44.08 7.7 

HR 14 2/21/2019 -7.4 -42.53 5.7 

HR 15 2/24/2019 -6.84 -39.31 8.6 
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Table 4.5 Groundwater isotopic composition results 

Sample ID Collection Date δ18O (‰) δD (‰) 

GW 1 9/12/2018 -7.18 -42.88 

GW 3 9/28/2018 -7.19 -42.98 

GW 4 10/7/2018 -7.15 -42.89 

GW 5 10/12/2018 -7.12 -42.8 

GW 6 10/19/2018 -7.05 -42.43 

GW 7 10/28/2018 -7.11 -42.78 

GW 8 11/3/2018 -7.07 -42.66 

GW 9 11/6/2018 -7.08 -42.69 

GW 10 11/16/2018 -6.92 -41.81 

GW 11 11/30/2018 -6.86 -41.54 

GW 12 1/25/2019 -7.05 -42.37 

GW 13 2/4/2019 -7.06 -42.51 

GW 14 2/16/2019 -7.06 -42.77 

GW 15 2/22/2019 -7.04 -42.65 

GW 16 2/28/2019 -6.99 -42.42 
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Table 4.6. Date, δ¹⁸O (‰) abundance and rainfall amount information for event-based trend 

sampling 

 

Event 

Number 

Date Time of 

Sample 

Collection 

δ¹⁸O (‰) WS Amount (in) 

at Time of 

Collection 

Cumulative 

Rainfall 

Amount (in) 

1 6/22/2018 8:50 am 

9:50 am 

10:50 am 

-6.87 

-8.51 

-7.30 

2.21 

0.30 

0.25  

 

 

2.76 

2 9/14/2018 8:00 am 

12:50 pm 

-2.75 

-2.68 

No Data No Data 

3 9/16/2018 2:15 pm 

4:45 pm 

-3.66 

-4.12 

No Data No Data 

4 9/23/2018 12:50 pm 

9:04 pm 

-6.14 

-5.64 

1.35 

0.17 

 

1.52 

5 11/6/2018 8:30 am 

9:00 am 

11:40 am 

-7.72 

-7.60 

-5.36 

2.53 

0.34 

0.09 

 

 

2.96 

6 11/9/2018 2:40 pm 

5:36 pm 

-7.72 

-7.56 

0.30 

0.06 

 

0.36 

7 12/28/2018 9:00 am 

3:00 pm 

-4.91 

-2.87 

0.32 

0.96 

 

1.28 
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Figure 4.1. Plots of δ¹⁸O (‰) values of (A) Precipitation, the (B) Rappahannock River, (C) 

Hazel Run, and (D) Groundwater. 
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Figure 4.2. Plots of δD (‰) values of (A) Precipitation, the (B) Rappahannock River, (C) Hazel 

Run, and (D) Groundwater. 
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Figure 4.3. Rainwater δ¹⁸O (‰) of samples collected throughout a rainfall event. Black arrows 

pointing up indicate heavy isotope enrichment and arrows pointing down indicate heavy isotope 

depletion. Events bounded by a red box indicate isotopic depletion occurred during the event. 
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CHAPTER 5 – DISCUSSION 

Trends in Isotopic Composition 

Seasonal Variability 

The δ18O and δD compositions of precipitation follow a general seasonal trend of 

becoming more depleted in heavy isotopes in late fall and early winter months. Though the δ18O 

and δD values of the Rappahannock River and Hazel Run reflect a similar trend (Figure 5.1a), 

the overall variability is muted. The range in precipitation δ18O values is about four times the 

range observed in the stream water, which is not unexpected (e.g. Dutton et al., 2005). The 

seasonal trend of isotopic content seems to be strongly connected to changes in daily temperature 

and is most likely a strong control over the isotopic composition of both precipitation and stream 

water (e.g. Gedzelman and Lawrence, 1990). As daily high temperatures and river temperatures 

decrease over the course of the year (Figure 5.1d), precipitation and stream water become more 

depleted of heavy isotopes (Figure 5.1a and b). The warmer summer months, both precipitation 

and stream water values are more enriched. In fact, the rainfall event most enriched in 18O 

occurred in the summer with the highest daily temperature of 35°C. The rainfall event most 

depleted in δ18O occurred on a cooler day in the fall where the daily high was 16.1°C. However, 

this was not the coldest recorded day, indicating there are other factors than temperature alone 

influencing the values of precipitation. Yet, a positive correlation between water temperature and 

isotopic composition is evident for both precipitation and stream water, as seen in Figures 5.2a 

and 5.3a, with warmer temperatures correlating with more enriched water (e.g. Scholl and 

Murphy, 2014; Dutton et al., 2005). This result is expected as the temperature effect results in 

warmer water, or summer precipitation, being more enriched with heavy isotopes such as 18O 

and D, and for cooler waters, or winter precipitation, to be more depleted in heavy isotopes (e.g. 
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Ichiyanagi, 2007; Gibson et al., 2010) due to seasonal changes in condensation rates of water 

(Araguás-Araguás et al., 2000). Additionally, the isotopic composition of precipitation is 

expected to show dependence on the temperature if the mean annual temperature is lower than 

18°C (Gourcy et al., 2005), which it is for Fredericksburg, VA, region, where the mean annual 

temperature is 13°C (U.S. Climate Data, 2019). 

Though temperature has a control over the δ18O and δD values of the rainwater and 

stream water, it is not the single factor influencing the values. The data also suggest an 

observable trend in the isotopic values stream water with rainfall frequency. Surprisingly, there 

is a slight negative correlation with δ18O of the rainwater and rainfall amount (Figure 5.2b). This 

is probably related to the fact that the large swings in seasonal temperature in the Fredericksburg 

region have a stronger control on the isotopic values (e.g. Gourcy et al., 2005). However, there 

does seem to be a correlation between frequency of rainfall events and the isotopic values of the 

steam water (Figure 5.1e). During periods of little to no rainfall events, primarily during summer 

and winter, stream isotope values are relatively constant, even after a single rainfall event. 

However, during periods of frequent rainfall events, the stream water isotopic values show more 

variability that follow the same trend as the precipitation values, though more muted in range 

(Figure 5.1a, b, c, and e). The stream water values do not vary as much because a river is the 

average of the entire watershed. The muted trend is the result of the averaging of the isotopic 

values of multiple sources of inflow into the stream system (Dutton et al., 2005; Bronwen 

Konecky, personal communication, 2019), and not the values of precipitation which are more 

directly affected by atmospheric changes and influences (e.g. Gedzelman and Lawrence, 1990, 

Rozanski, Araguás-Araguás, and Gonfiantini, 1993). During periods of few rainfall events, 

stream isotope values appear to follow the relatively constant trend, similar to that of 
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groundwater, indicating that during drier times, groundwater is the primary source of inflow to 

the river and possibly the major influence on the isotopic content (e.g. Dutton et al., 2005). 

During periods of frequent rainfall, such as observed in the fall months (Figure 5.2e), 

precipitation and surface runoff is the main source of inflow into a river, and thus most likely is a 

strong influence on the isotopic values. This is apparent in Figure 5.3b, which shows a slight 

negative correlation with river discharge and δ18O of the Rappahannock River water. Note, it 

may also be possible that a single large rainfall event could also influence the stream water 

isotope values; however, we cannot conclude this based on this dataset. The single large rainfall 

event that occurred July 28, 2018, does not have a subsequent river water sample. It must be 

noted that there exists significant breaks in sample collection during summer (July 17 and 

August 18, 2018) and winter break (December 4, 2018 – January 19, 2019), though those short 

periods of no data most likely would not affect the overall observed trends. Additionally, 

sampling did not begin from Hazel Run and the groundwater well until September 2018, limiting 

robust comparison across the summer to fall seasons among all the different datasets. 

There are many controls and influences over the isotopic composition of water including, 

but not limited to, both the temperature effect and the amount effect. Only 25% of the variance 

of the precipitation δ18O data is explained by temperature and only 2% is explained by rainfall 

amount (Figure 5.3). Likewise, only 50% of the Rappahannock River δ18O variance and 19% of 

variance of δ18O data of Hazel Run is explained by temperature and, for the Rappahannock 

River, only 10% of the data variance is explained by river discharge. This indicates that other 

factors may be playing a role in determining isotopic abundance of the water in Fredericksburg 

along with the influence of temperature. An alternative control that may explain more of the data 

variance could be water vapor source origin, as the source of water vapor and the distance an air 
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mass travels from source location is another determining effect of isotopic composition. Future 

work of this project includes determining water vapor source of a rainfall event through tracking 

the storm’s trajectory and comparing the known isotopic values of the source water to those of 

Fredericksburg water to identify a correlation or lack thereof.  

 

Event-Based Trends 

Per the amount effect, precipitation is expected to become more depleted of heavy 

isotopes over the duration of the event as heavy isotopes, such as δ18O and δD, rain out at the 

front of the air mass, leaving the lighter isotopes to rain out during the middle and conclusion of 

the rainfall event (e.g. Dansgaard, 1964; Gedzelman and Lawrence; 1990, Gat, 2010; Liu et al., 

2010). There is a weak correlation between rainfall amount and isotopic composition, with 

greater precipitation amount correlating with more depleted isotopes (Figure 5.2b). This is 

expected as the amount effect is seen to have more of an influence over isotopic composition in 

the tropics rather than mid- and high-latitudes, where precipitation amounts are higher and 

temperature fluctuations are less (e.g. Dansgaard, 1964; Araguás-Araguás et al., 2000). 

The amount effect, however, is more commonly observed when examining single rainfall 

events. Seven rainfall events were sampled two to three times throughout the duration of the 

event. Out of those events, 5 are seen to become more enriched in heavy isotopes over the course 

of the rainfall event (Figure 4.3). This trend was unexpected as it does not follow with the 

amount effect (e.g. Dansgaard, 1964; Ichiyanagi, 2007). The cause of this trend could be 

evaporation of the rainwater in the rain gauge (Scholl and Murphy, 2014). However, this is 

probably not likely as events that were sampled every hour with continued rainfall show 

enrichment (e.g. event 1), along with events that were sampled much farther apart where the last 

sample was not collected for a couple hours after the rainfall stopped (event 3) (Table 4.6). The 
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more likely explanation is the progressive mixing in marine-sourced moisture as the events 

progress (Bronwen, pers. comm.). If more depleted air masses from the south or west mix with 

more enriched air masses from the coast mid-rainfall event, as suggested occurs by Figure 5.4, 

this could explain why isotopic values become more enriched. Future work needs to be done to 

help further explain this rainfall event data. This include running back-trajectories on the 

movement of air masses during a rainfall event to determine if air mass mixing occurred, using 

the Hybrid Single Particle Lagrangian Integrated Trajectory model, or HYSPLIT (Grothe, pers. 

comm.), for example. Future work also includes running a test to determine whether or not 

evaporation occurs within the rain gauge, and thus driving values to become more enriched as 

time continues after the rainfall event concludes, we can sample the rainwater at different time 

intervals at the conclusion of a rainfall event. Additionally, future work should include 

developing a rain gauge that seals post-rainfall to limit evaporation, especially when the sample 

cannot be collected immediately at the termination of the event. 

 

Regional Waters Compared to Global Averages 

The average isotopic values of water from the Fredericksburg region are an indication of 

where the water was sourced from and how it has behaved as it was transported to the local area. 

The average δ18O value from this study is -6.44 ‰. Compared to global values, this value is 

expected as it is similar to averages from other mid-latitude sites sampled in previous studies 

(e.g. Bowen and Wilkinson, 2002). More-enriched values indicate a tropical water source, as 

precipitation from oceanic and tropical sources have an enriched isotopic value of δ = −2 to −3‰ 

(Araguás-Araguás et al., 2000). In Fredericksburg, VA, isotopic composition reflects a tropical 

source, but is more depleted due to gradual depletion that occurs as the water vapor is 

transported to towards the poles (e.g. Dutton et al., 2005; Araguás-Araguás et al., 2000), but does 
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not reflect a polar source as polar is significantly more depleted in heavy isotopes than what is 

observed at the sample site (Bowen and Wilkinson, 2002). 

There is a very predictable relationship between global precipitation δ18O and δD values 

that form the Global Meteoric Water Line (GMWL). When plotting the Fredericksburg rainwater 

isotopic values against the GMWL (i.e. the Local Meteoric Water Line (LMWL)), the LMWL is 

slightly shallower, with a slope of 7.48 compared to the GMWL slope of 8.13 (Figure 5.5). The 

two trend lines are similar, with the LMWL only slightly deviating from the GMWL slope and y-

intercept. This indicates that similar processes affect local waters as those that affect the average 

isotopic content of global waters (Bronwen, pers. comm.). The lower slope value of the LMWL, 

however, is an indication of the influence of evaporative loss on the isotopic content of the 

precipitation source water (e.g. Rozanski et al, 1993), and the higher y-intercept of the LMWL 

versus the GMWL is indicative of an arid vapor source region of the precipitation (Araguás-

Araguás et al., 2000). Evaporation is a contributing factor to the temperature effect, one of the 

primary controls over isotopic content (e.g. Faure and Mensing, 2005; Ichiyanagi, 2007). 

Evidence of the greater role of evaporation as a control over the isotopic content of precipitation 

based on the LMWL suggests that the temperature effect is one of the leading controls over 

isotopic composition of rainwater in the study region. 

Stream water lines plot closely with that of the LMWL. The water lines of the 

Rappahannock River and Hazel Run have slopes of 6.81 and 7.24, respectively. Like the LMWL 

of rainwater, both stream water slopes are smaller than the GMWL, yet the y-intercepts of each 

are lower than that of the GMWL (Figure 5.5). This is an indication of the influence of 

evaporation on the stream isotopic values (e.g. Kendall and Coplen, 2001) rather than water 

vapor source, which is seen to have a greater influence on precipitation. The closeness of the 
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stream water line with the LMWL may reflect the influence precipitation has on stream isotope 

values (e.g. Dutton et al., 2005; Kendall and Coplen, 2001). 

Of each of the water types sampled, groundwater deviates the most from the GMWL. The 

slope of the groundwater line is the smallest, with a value of 4.25. The greater difference 

between the slope groundwater and the slopes of the GMWL, LMWL, and stream water lines 

indicate greater exposure of surface water to evaporation before infiltrating into the groundwater 

system (e.g. Wassenaar, Athanasopoulos and Hendry, 2011). It could also be explained by the 

time delay effect of groundwater (Wang et al., 2014), in which case slower flow rates and infill 

rates of groundwater versus precipitation, stream and surface water results in a lag in the timing 

of when recent rainfall events infiltrate into the groundwater and when it is sampled (e.g. Wu et 

al. 2014). If this were to be the case, the groundwater sampled would not match recent rainfall, 

isotopically, and therefore their water lines would differ. Even so, the shallow slopes of the 

stream and groundwater water lines indicates the control of evaporation on the isotopic 

composition of the water sampled. 

 

Influence of Meteoric Water on Paleo and Modern Environments 

The isotopic values observed in this study reflect the influence of temperature on the 

seasonality of the isotopic composition of both meteoric and stream water in the Fredericksburg, 

VA, region. These results support the notion that isotopic values of climate proxies derived from 

surface water are primarily governed by temperature in the region (e.g. Harding et al., 2010). 

However, meteoric water does influence the isotopic composition of surface water during 

periods of frequent rainfall events, mainly driving the δ18O values more negative, which may 

cause an artifact in temperature reconstructions from proxies. A multiproxy approach, such as 
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paired δ18O and Mg/Ca ratios in carbonate shells, would provide a more robust temperature 

reconstruction as well as a method to calculate the δ18O of the water. 

As modern climate warms, precipitation patterns are expected to change. Studies predict 

to see an increase in winter and spring precipitation as well as shift in the vapor source of rainfall 

events, with models predicting an increase in subpolar precipitation depleted in heavy isotopes in 

the winter months (Najjar et al., 2010). Should this trend continue, we would expect to see it be 

reflected in the isotopic composition of meteoric and surface water in the region. However, other 

regional studies have found that over the past three decades, relative to the last century, there has 

been a significant increase in precipitation in Autumn (September, October and November), in 

Virginia (Hoffman et al., 2019). Autumnal precipitation, tropical in source (e.g. Hendon, Lim 

and Nguyen, 2014), is enriched in heavy isotopes (Araguás-Araguás et al., 2000). Should this 

increase continue, it is expected that baseline isotopic composition in the region will become 

more enriched in heavy isotopes, a change that will be observed through the continuation of this 

monitoring project. However, to help improve our understanding of these results as it relates to 

future climate change, additional atmospheric data should be collected with each rainwater 

sample, such as wind direction, humidity, and moisture source. 
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Figure 5.1. Plots of (A) δ¹⁸O (‰) and (B) δD (‰) of precipitation, Rappahannock River, Hazel 

Run and groundwater sample, (C) daily high temperature (°C) and temperature (°C) of the 

Rappahannock River and Hazel Run paired, and (D) precipitation amount of each rainfall event 

and discharge (ft³/sec) of the Rappahannock River. 
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Figure 5.2. Precipitation δ¹⁸O (‰) paired with (A) daily high temperature and (B) rainfall 

amount. 
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Figure 5.3. (A) Rappahannock and Hazel Run δ¹⁸O (‰) paired with water temperature (°C); (B) 

Rappahannock δ¹⁸O (‰) paired with river discharge (ft³/sec). The R2 of the Rappahannock River 

paired δ¹⁸O—Temperature data is 0.47 and 0.10 for δ¹⁸O—Discharge. The R2 for Hazel Run 

paired δ¹⁸O—Temperature data is 0.19. 
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Figure 5.4. A map of air mass movement and interaction in North America (Harvey and Welker, 

2000).  
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Figure 5.5. Global Meteoric Water Line (GMWL) of Fredericksburg, VA, paired with the Local 

Meteoric Water Line (LMWL), and the δ¹⁸O (‰) and δD (‰) values of Rappahannock River, 

Hazel Run and groundwater samples. The R2 value of the Rappahannock water line is 0.9343, 

0.9457 for the Hazel Run water line, and 0.894 for the groundwater water line. 
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CHAPTER 6 – CONCLUSION 

 

The objectives of this study were two-fold. The first was to develop a baseline 

understanding of the seasonality of the isotopic composition of water in the Fredericksburg, VA, 

region and the second was to understand how the δ18O and δD values within meteoric water 

influences the stable isotopic composition of stream and groundwater in the region. Through the 

analysis of rain, stream and groundwater samples over the course of a year, we sought to provide 

information on the behavior of isotopic composition in the region, as no previous work on the 

topic had been conducted to date. The purpose of these objectives was to develop a more 

thorough understanding of the controls over isotopic composition in the region, and in surface 

water, in particular, to aid paleoclimate reconstruction from climate proxies within the 

Rappahannock River and greater Chesapeake Bay. 

To answer these questions, the isotopic composition of precipitation, Rappahannock 

River water, Hazel Run water and groundwater were analyzed for seasonal trends and 

relationships. Over the course of the year, isotopic values became more depleted as daily high 

temperatures and water temperatures became colder, a trend consistent with the temperature 

effect. The correlation between isotopic composition and temperature was observed to be more 

prominent than the correlation with rainfall amount or river discharge. Stream values remain 

relatively constant throughout the year, which could be a reflection of groundwater isotopic 

values; however, during periods of frequent rainfall events, stream values are observed to trend 

more closely with precipitation values, although the trend is muted. Based on these relationships, 

we hypothesize that temperature is a leading control over the isotopic values of water in the 

Fredericksburg region, and that groundwater has greater influence over the variability in stream 

values except for during periods of frequent rainfall, at which point precipitation becomes a 
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leading control over the isotopic composition of the stream because it is the main source of 

inflow into the stream system. 

These findings and hypotheses have significant implications for paleoclimate 

reconstructions and understanding how the isotopic composition of water in the area will change 

with expected changes in precipitation patterns associated with continuous climate warming. 

Based on the influence of temperature and rainfall frequency on the isotopic composition of 

stream water, we can expect proxy records from the Rappahannock River to be governed 

primarily by temperature and the precipitation effect of paleoclimates. As modern precipitation 

patterns continue to change in the region, in the form of changes in seasonal rainfall frequency 

and water vapor source, we expect the isotopic composition of regional waters to reflect this 

change. 

This study was only the initial steps in what will be a long-term monitoring project of the 

isotopic composition of regional waters. There are limitations in the data, such as significant 

breaks in sample collection, that necessitate a longer dataset to determine more conclusive 

isotopic trends. By continuing this project, we hope to gain a better understanding of how 

seasonal trends in isotopic composition of meteoric and stream water, as well as climate archives 

like oyster shells in the Rappahannock River, will change as climate continues to warm. This 

will help us to make more robust interpretations and reconstructions of the paleoclimate of the 

region, which, in turn, will allow us to better predict and prepare for future climatic changes. 
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