
University of Mary Washington
Eagle Scholar

Student Research Submissions

Spring 5-7-2019

Assessing Bias Removal from Word Embeddings
Clare Arrington

Follow this and additional works at: https://scholar.umw.edu/student_research

Part of the Computer Sciences Commons

This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by
an authorized administrator of Eagle Scholar. For more information, please contact archives@umw.edu.

Recommended Citation
Arrington, Clare, "Assessing Bias Removal from Word Embeddings" (2019). Student Research Submissions. 268.
https://scholar.umw.edu/student_research/268

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eagle Scholar University of Mary Washington

https://core.ac.uk/display/233191873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.umw.edu?utm_source=scholar.umw.edu%2Fstudent_research%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.umw.edu%2Fstudent_research%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research/268?utm_source=scholar.umw.edu%2Fstudent_research%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:archives@umw.edu


Table of Contents 

Abstract 2 

1. Introduction 3 

1.1 Word Embeddings 3 

1.2 Human Bias 4 

2. Related Work 5 

2.1 Applications 5 

2.2 Bias in Word Embeddings 6 

2.3 Differences in Word Embedding Algorithms 8 

3. Methodology 9 

3.1 Comparing Biases 9 

3.2 Data Collection 11 

3.2.1 Resumes 11 

3.2.2 Job Postings 15 

3.3 Text Analysis 16 

3.4 Machine Learning 18 

4. Conclusion 19 

4.1 Results and Discussion 19 

4.2 Future Work 19 

References 21 

 

  



Abstract 

As machine learning becomes more influential in our everyday life, we must begin 

addressing potential shortcomings. A current problem area is word embeddings, a group of 

frameworks that transform words into numbers, allowing the algorithmic analysis of language. 

Without a method for filtering implicit human bias from the documents used to create these 

embeddings, they contain and propagate stereotypes. Previous work has shown that one 

commonly used and distributed word embedding model trained on articles from Google News 

contained prejudice between gender and occupation [1]. While unsurprising, the use of biased 

data in machine learning models only serves to amplify the problem further. Although attempts 

have been made to remove or reduce these biases, a true solution has yet to be found. Hiring 

models, tools trained to identify well-fitting job candidates, show the impact of gender 

stereotypes on occupations. Companies like Amazon have abandoned these systems due to 

flawed decision-making, even after years of development.  

I investigated whether the technique of word embedding adjustments from Bolukbasi 

2016 made a difference in the results of an emulated hiring model. After collecting and cleaning 

a data set of resumes and job postings, I created a model that predicted whether candidates 

were a good fit for a job based on a training set of resumes from those already hired. To assess 

differences, I built the same model with different word vectors, including the original and 

adjusted word2vec embedding. Results were expected to show some form of bias on 

classification. I conclude with discussion on potential improvements and additional work being 

done.  



1. Introduction 

1.1 Word Embeddings 

Many models in modern day machine learning (ML) rely on numerical input. While this 

proves no issue for some sources of data, others like images and text must often be translated 

into a form that an algorithm can understand. This process of mapping one form to another is 

known as embedding. For text data, we are able to create many different kinds of embeddings 

depending on how we choose to separate strings of characters e.g. single character, word, 

sentence, or full document. No embedding method is decidedly best. In fact, multiple 

embeddings can be used in the same project to capture different contexts. In this paper, we will 

focus solely on word embeddings. Once one has chosen what kind of embedding they wish to 

create, the question becomes how it will be created. 

A myriad of techniques for translating text have been developed over the years with 

ever-increasing complexity. Most simply, one can create a dictionary of all words in a given 

document and assign a unique number to each. Using this paragraph for instance, we could say 

that ‘a’ is 1, ‘myriad’ is 2, ‘of’ is 3, and so on. This allows one to check what words are found 

within a document and where they occured, meaning we can assess the probability of a word’s 

existence. Since modern natural language processing (NLP) relies heavily on statistics, this 

method of measuring does well. However​,​ it also produces an ordering that was not originally 

present within the data. Recalling our example, ‘myriad’ is greater than ‘a’ and less than ‘of’. 

Additionally, ‘a’ is 1 distance from ‘myriad’ and 2 distances from ‘of’. These features are 

meaningless and only serve to confuse a model.  

To avoid this problem, we can create a one-hot encoding by having a binary column 

denote the presence of a given word. For example, the phrase, ‘No pain, no gain’, can be 

represented as [[1 0 0], [0 1 0], [1 0 0], [0 0 1]] where the first column is ‘no’, the second is 

‘pain’ and the third is ‘gain’. Note that the third vector is the same as the first, since ‘no’ shows 

up twice. This keeps each word on equal footing with one another. If we want to focus more on 



word frequency, we can use the bag-of-words technique and represent the same phrase from 

before as {‘no’ : 2, ‘pain’ : 1, ‘gain’ : 1} where each value is the number of times a word appears 

in a sentence or document.  

As ML rose in popularity, we began to see the rise of distributed word representations 

that aimed to capture semantics. This was inspired by a hypothesis from John Firth that “you 

shall know a word by the company it keeps”. Word embeddings are created by observing word 

occurrence patterns, although this is done through are a number of different statistical and 

machine learning approaches. The resultant embedding is comprised of a set of words and 

corresponding multidimensional vectors, commonly 300 for standard models. Words with 

similar vectors can be considered semantically similar. For example, if we visualized the high 

dimensional space of words, ‘dog’ and ‘cat’ would be closer than ‘dog’ and ‘guitar’.  

1.2 Human Bias 

While introducing semantics to ML is beneficial for NLP tasks like opinion detection and 

automatic summarization, it also opens the door to numerous issues of bias. In the fields of 

machine learning and artificial intelligence (AI), bias has come to mean a few different things. 

Algorithmic bias is commonly used with regard to the bias-variance tradeoff. In that context, 

bias is overgeneralization error that arises when a model is too broad and doesn’t fit the data it 

was originally trained upon. Undeniably, the goal of ML is to have an intelligent model. 

Nevertheless, one must remember that there are real people on either side, giving input and 

being affected by the output.  

For this paper our attention will be on the influence people can have in the construction 

of a model. When discussing bias, we will be referring to implicit human bias which can be 

described as prejudices held by individuals and society that are pervasive yet unconscious. To 

illustrate this with word occurrences, there are 1.45 billion Google search results for the phrase 

‘male nurse’ and .586 billion for ‘female nurse’. With nearly a billion more results for the 

former, one may think this indicative of a large number of men in nursing when really the 

percentage of male nurses in the United States is around 9%. There is a base expectation that a 

nurse would be female, so when searching that clarification is left out. Things believed to be 



commonly known are often left unsaid, which can make it difficult to notice when bias is 

actually occuring [4]. 

2. Related Work 

2.1 Applications 

Many companies want to use machine learning to make their lives easier. One way they 

can do this is by semi-automating the hiring process through various methods. The two 

machine learning approaches we will touch on are learning to rank (LTR) and classification.  

LTR is a subtask of information retrieval, a field dedicated to obtaining relevant sources 

of information from a document or collection. Learning to rank utilizes machine learning to 

improve upon standard document ranking, which is primarily computed using exact features 

from the document. By including ML, we are able to pick up on latent patterns within the 

ranking. LTR can be used to find resumes that are most applicable to a given job posting [10]. It 

can also be used by companies like Linkedin for sorting one’s entire professional network [5].  

I originally looked into performing a ranking task to study the effects of bias in word 

embeddings, but after reading the common methodologies used I believe these may be more 

robust than other pure ML methods like classification. The common style of information 

retrieval is to select documents based upon key features such as skills, years worked and other 

measurable qualifications. In LTR, this method of selection serves as the first component, 

obtaining K documents that are believed to be best for the user. Once the top K documents 

have been selected, this subset is then re-ranked based on latent features provided during 

training. These can be things like user interaction or whether a candidate was contacted, 

interviewed, or hired. This creates the problem of potentially introducing human bias, which 

already exists within company hiring processes. While this is an interesting area of work, I 

decided I would be unable to explore this avenue due to its scope. Someone wishing to explore 

this problem would at best have access to internal hiring data or could collect a data set of 

rankings from a large number of individuals using a tool like Amazon Mechanical Turk.  



For these reasons,  I redirected my research towards projects that tried to fully 

automate the hiring process with ML. One case that caught my attention was Amazon’s 

announcement of a cancelled hiring model project that began in 2014. [3] The objective was to 

create a group of models that would suggest who’s resume should be looked at based on 10 

years of hired employee resumes. Unfortunately, they made the mistake of creating a feedback 

loop by basing who they should hire in the future off of who they currently had hired. While 

biases may not be as prominent in some fields, the lack of diversity in tech means we can end 

up with models that amplify the problem. 

The models confused distinct qualities for undesirable qualities. It was not stated 

whether names were left on the resumes. Regardless, the models could pick up on minute 

differences, like resumes that used the word ‘women’ such as ‘women’s soccer’ or graduates of 

women’s only universities. While not discussed, I would go further to say that this may have 

also happened to resumes of graduates from historically black colleges and universities 

(HBCUs), as there is also a lack of representation for African-Americans in STEM. When 

Amazon’s team tried to remedy this problem, there wasn’t much change. The models began to 

find gender indicators that were less obvious, such as more masculine terminology like 

‘executed’ and ‘captured’. Amazon asserted that these models were never officially used for 

hiring anyone. They have since changed direction and are looking into how they can use this 

project to promote diversity. 

2.2 Bias in Word Embeddings 

If sufficient data is available, one may choose to build a domain specific word 

embedding model. There are also freely available versions that have been trained on corpora 

containing billions of words. Many don’t have the resources to create an equally 

well-developed vector and will utilize these pre-existing embeddings. Since these common 

embeddings are used so frequently, it becomes easy to accept them as safe and dependable. 

The foundation of my research can be established by two papers that formally introduced, 

attempted to correct and assessed the corrections of bias within these popular word 

embedding vectors. 



It can be difficult for anyone to admit that they’re biased, even computer algorithms. 

Harvard’s Implicit Association Test (IAT)  is a free online research tool that helps individuals 1

assess what biases they may have by taking quizzes that compare two groups at a time. As an 

example, the skin-tone IAT “requires the ability to recognize light and dark-skinned faces. It 

often reveals an automatic preference for light-skin relative to dark-skin”  [9]. 

This test was converted into the Word Embedding Association Test (WEAT) by 

challenging a particular word embedding algorithm (GloVe) to finish analogies. Starting simply, 

the WEAT checked for non-harmful prejudices such as showing flowers are considered 

significantly more pleasant than insects. Moving into more detrimental beliefs, they 

documented gender bias where “female names [were] more associated with family than career 

words” and “female words [were] more associated with arts than with mathematics” [2].  

It can be argued that these kinds of associations are helpful in decision-making. With 

our nurse example from before, if we predict a nurse is a women, more than 9 times out of 10 

we will be correct. However, it has been shown that machine learning models can quickly shift 

towards amplifying these biases. One study found that their model assumed women were 68% 

more likely to be related to cooking than men, despite the training data only having a 33% 

difference. [14]  

Therefore, word embeddings and the models developed from them must be given more 

attention. One of the first groups to address this issue suggested a method for identifying and 

neutralizing a particular angle of bias, gender and occupation. Within an embedding built from 

the word2vec algorithm with documents from Google News, they found where the sets of male 

and female definitional terms were located. In this context, definitional terminology refers 

words where presence of gender is expected. For example, sister and waitress are inherently 

female terms. Nurse, on the other hand, would be considered stereotypically gendered. They 

were able to observe the extent of bias for various occupational terms by projecting them onto 

an axes with ‘he’ and ‘she’ on either end. While two methods were proposed for removing bias, 

hard and soft de-biasing, they only published an adjusted embedding with the former. Hard 

de-biasing involves two parts, neutralizing and equalizing . For every biased term, they moved it 

1 https://implicit.harvard.edu/implicit/takeatest.html 



to the center of the gender axis within the word embedding model. This means there is no 

difference in similarity value between the term and ‘he’ or the term and  ‘she’  following 

adjustment [1]. 

2.3 Differences in Word Embedding Algorithms 

Not all word embeddings algorithms are the same, meaning resulting vectors trained on 

the same data will show disparities. Above, I noted two algorithms that were shown to contain 

bias, Word2Vec and GloVe. FastText is another popular algorithm that I have not seen analyzed, 

but will discuss. It’s important for us to know the backgrounds of these algorithms to better 

understand future results. 

Word2vec was developed in 2013 by a Google research team [8]. The model is actually 

comprised of two different algorithms, continuous bag of words (CBOW) and skip-gram. These 

algorithms rely on the concept that words that occur in the same contexts are semantically 

similar. Both models follow the same shallow neural network (NN) structure, but have opposite 

goals. Regardless of the algorithm, the embedding itself is the hidden layer of the trained NN. 

For skip-gram, the goal is to identify the surrounding words in a sentence given a single word. 

This teaches the model the contexts in which a word may occur. For CBOW, a context is given 

and the model must predict what word is most likely to appear. It is said that skip-gram works 

better with a smaller amount of data and is better for uncommon words, while CBOW trains 

faster and is better for more frequent words. Generally, finding a clear difference between the 

two algorithms is difficult given how similar they are. 

GloVe came one year later from Stanford researchers and is built very similarly to 

word2vec [11]. Unlike word2vec, GloVe does not use a neural network to create its vector. 

Instead, it uses a log-bilinear model that essentially counts co-occurrences and computes the 

conditional probabilities for words appearing in similar semantic contexts. 

FastText was first released in 2015 from Facebook’s AI Research (FAIR) lab [6]. It is an 

improved model based upon the original word2vec framework. While word2vec and GloVE 

treat words as the smallest unit, FastText breaks words into characters n-grams. For example, 

lovely​ broken into bigrams would be ​lo, ov, ve, el, ly​. Because every language has extractable 



patterns, storing what characters fall before and after one another allows for better 

representation of words that occur very rarely or not at all within the vocabulary. 

3. Methodology 

Since my project goal was to observe the presence of bias within machine learning 

systems when using word embeddings, I emulated the Amazon project. There were no details 

given on what specific methods their team followed, so I do not know if they used word 

embeddings. However, I decided this model design was a good foundation because it had 

already been shown to produce biases.  

3.1 Comparing Biases  

I examined the features of the four pre-trained word vectors listed in Table 1. Each word 

vector was created with a word embedding algorithm trained on at least one data source. We 

can measure these sources by the number of word tokens within them and we can measure the 

created vectors through the number of words catalogued. Every word vector uses a dimension 

size of 300, such that every word in the embedding has a vector of length 300. 

 

Algorithm Data Source 
Number of  

Word Tokens 
Number of 

Word Vectors  

word2vec Google News 3 billion 3 million  

Debiased word2vec Google News 3 billion 3 million  

GloVe Wikipedia 2014 and Gigaword 5 6 billion 1 million  

fastText 
Wikipedia 2017, UMBC webbase 
corpus and statmt.org news 
dataset 

16 billion 400 thousand  

Table 1. Components for pre-trained word vectors  

 



Given the variety of algorithmic approaches and amount of data, I wanted to see 

what kind of improvements could be found with the more advanced model, fastText, and the 

debiased word2vec model. With word embedding vectors, one can query a term and receive 

the K most similar words to it, such as Table 2.  

 

Algorithm Results 

word2vec Maryland, Charlottesville, Hampton Roads, North Carolina 

GloVe va., maryland, carolina, tennessee 

fastText Virgina, Viriginia, Charlottesville, Richmond 

Table 2.  5 most similar words to ‘Virginia’  

 

We can also perform mathematical operations on word vectors. For example, if we wish 

to complete an analogy, we can add and subtract different word vectors. So the analogy, ‘Man 

is to brother as woman is to _____’, can be found with the following equation: Brother - man + 

woman. By replacing the dimensions for ‘man’ with the dimensions for ‘woman’, we are shifting 

the location of the original term, ‘brother’. Every embedding I looked at, aside from GloVe, 

returned ‘sister’ as the result. This helps us discover semantic relationships held within the 

embeddings, especially for analogies that are less obvious. 

For my work, I looked at the difference between occupations and the gendered terms. 

Table 3 contains a subset of results from this observation. For every word embedding, I selected 

a set of definitional and stereotypical terms and found the similarity towards ‘she’ and ‘he’. 

Each term was labeled with a primary gender based on which pronoun it was most similar to. I 

then subtracted the higher similarity from the lower to show the amount of bias towards the 

primary gender, which is listed in each word embedding column.  

Apart from the debiased word2vec embedding, every embedding shows more bias 

towards female terms than male terms. The original word2vec model shows the most bias, 

aside from ‘computer programmer’ interesting enough. This lack of bias may be indicative of 



later trouble with finding bias within machine learning models. The debiased word2vec 

embedding has its neutralized values, resulting in zero difference between the ‘he / she’ 

similarity. Strangely, this was also done for ‘waiter’ which may be because this is considered a 

gender-neutral term. fastText has much smaller similarity differences, which may be due to the 

size of its training. Unfortunately, there is still strong bias within even this model. ‘Nurse’ is 

considered more female than ‘sister’, which clearly shouldn’t be the case. The same problem 

happens between ‘architect’ and ‘brother’. 

 

Primary 
Gender 

Gender 
Category 

Term word2vec 
Debiased 
word2vec 

GloVe fastText 

Female Stereotypical Nurse 0.247 0.000 0.187 0.102 

Female Stereotypical Librarian 0.234 0.000 0.101 0.032 

Female Definitional Waitress 0.242 0.263 0.230 0.097 

Female Definitional Sister 0.253 0.336 0.295 0.075 

Male Stereotypical Architect 0.148 0.000 0.104 0.084 

Male Stereotypical Programmer 0.001 0.000 0.052 0.053 

Male Definitional Waiter 0.017 0.000 -0.024 0.041 

Male Definitional Brother 0.142 0.337 0.153 0.063 

Table 3. Comparison of biased terminology within word embeddings 

 

3.2 Data Collection 

3.2.1 Resumes 

My biggest challenge was finding a data source where I could access resume data that 

contained the name of the individuals. Unsurprisingly, there is no widely distributed dataset of 



real resumes for a few reasons. Most resumes are incredibly personal. They contain a lot of 

identifying details such as name, employment and education history, and contact information. 

Resumes from other countries may contain even more private information such as marital 

status. Websites like Indeed do host resumes, but they avoid this issue by having users fill out a 

form that populates a standard template. This gives employers a look into skills and career 

accomplishments without sharing data that identifies anyone. 

I ended up using a website called PostJobFree , which has been in operation since 2007. 2

This site allows direct uploading of resumes with the expectation that they will be able to be 

found through search sites like Google. Since users have agreed to having their resume 

accessible, I decided this was the most ethical option I could find for a larger scale amount of 

data. Initially, I collected a set of resumes based on the gendered occupations specified in 

Bolukbasi 2016. Each term from the word embedding was given a calculated value for 

stereotypical gender and definitional gender. There were 34 occupations with a bias towards 

women and 89 with a bias towards men. The scale went from -1 for female terms to 1 for male 

terms. I focused only on terms with a high stereotypical value and a low definitional value, but I 

did not collect resumes for every occupation that fit this criteria.  

Resumes for this data set were collected without scraping. For each profession, I 

queried PostJobFree.com and checked each result for a name, sufficient length, and intelligible 

content. I also attempted to collect an equal amount of resumes for men and women 

regardless of the stereotypical gender. This didn’t always work out, which can be seen with 

electricians and stylists. If I extended this data set, I would stop trying to balance it, since it 

limited how much I was able to gather. Table 4 outlines what specific professions I queried, 

which category they belonged to, and the gender distribution of each. Table 5 gives a summary 

of the entire dataset.  

 

 

 

 

2 https://www.postjobfree.com/ 



 

Profession 
Defined 
Gender 

Biased 
Value 

Male 
Resumes 

Female 
Resumes 

Total 
Resumes 

Custodian, Janitor Male 0.9 11 12 23 

Superintendent Male 0.9 13 2 15 

Carpenter Male 0.8 9 0 9 

Electrician Male 0.8 12 0 12 

Sheriff, Deputy Male 0.8 9 4 13 

Athletic Director Male 0.7 6 5 11 

Dentist Male 0.7 10 10 20 

Pastor, Preacher Male 0.7 14 3 17 

Trucker, Truck Driver Male 0.7 11 1 12 

Computer Programmer Male 0.6 9 8 17 

Manager Male 0.6 15 10 25 

Chemist Neutral 0.2 9 4 13 

Biologist Neutral 0.1 12 10 22 

Consultant Neutral 0.1 23 7 30 

Author, Writer, Novelist Neutral 0 8 11 19 

Psychologist Neutral 0 8 16 24 

Counselor Neutral -0.1 9 15 24 

Photographer Neutral -0.1 19 10 29 

Realtor Neutral -0.2 3 9 12 

Paralegal Female -0.4 17 19 36 

Therapist Female -0.4 13 18 31 



Secretary, Receptionist Female -0.7 5 23 28 

Stylist Female -0.7 0 13 13 

Teacher, Educator Female -0.7 5 9 14 

Caretaker, Nanny Female -0.8 5 7 12 

Housekeeper Female -0.8 6 11 17 

Librarian Female -0.9 9 12 21 

Nurse Female -0.9 11 19 30 

 

Table 4. Distribution of scraped resumes 

 

Category Male Resumes Female Resumes Total 

Male 119 55 174 

Neutral 91 82 173 

Female 71 131 202 

Overall 281 268 549 

Table 5. Summary of scraped resumes 

 

Later in my research, I created a data set of purely computer programmer and software 

developer resumes. These were also retrieved from PostJobFree.com, but were scraped instead 

of self-selected. 930 resumes were collected and 856 were ultimately used. The most important 

step was identifying gender, so any resume that didn’t clearly identify the individual were 

removed. I used 2 separate tools for doing gender identification. The first was a Python API 

called gender-guesser that relied on a dictionary of 40,000 primarily European names. This API 3

would return the assumed gender of a given name based on how frequently it was attributed to 

one gender or the other. Names with close to equally occurring frequency were labeled 

3 https://pypi.org/project/gender-guesser/ 



androgynous and names not in the dictionary were labeled unknown. This was most common 

with Asian names, so I relied on an external tool to check any that could not be labeled by the 

gender-guesser API. The Baby Name Guesser  is a website that checks Google for the usage of a 4

name and reports back how popular the name is and how common it is for the primary gender. 

Using these 2 sources, I was able to assess the gender of each resume I collected aside from a 

few that were too androgynous to say for sure. In the end, I had 623 male resumes and 233 

female resumes. Since these were collected indiscriminately, this reinforces the perception that 

computer programmer is a more masculine career. 

Following the identification of the data set, I worked towards removing any personal 

details I could. I attempted to use named-entity recognition to aid with the removal process, 

but it often misattributed entities like companies or schools with names of individuals. I ended 

up going a more direct route and removed all applicant names, numbers, and strings ending in 

‘.com’​ ​such as websites or emails. If a resume mentioned the word ‘references’, I had it flag me 

so I could figure out which section of the document should be removed, so others’ personal 

data wasn’t included either. I also did some cleaning up of the document data itself by 

removing punctuation and running words through a spellchecker to correct any small mistakes. 

Because resumes for different fields could potentially use very specific language, I wanted to 

make sure there weren’t too many unidentifiable terms within them. 

3.2.2 Job Postings 

Unlike resumes, job postings are very easily accessible online. To match the two resume 

data sets that I created, I gathered resumes from two different sources. For the dataset of 

varied occupations, I scraped Indeed for job listings matching the list of gender-biased careers. 5

Approximately, 100 postings were collected for 19 different occupations, totalling to a corpus 

of 1,900 job posts. This data set was not used unfortunately due to a lack of time.  

The second corpus was collected to match the computer programmer resumes. Since 

the goal of that data set was to emulate the Amazon hiring model, 88 job postings for software 

4 https://www.gpeters.com/names/baby-names.php 
5 https://www.indeed.com/ 



developers were pulled from Amazon’s website . Only punctuation and numbers were removed 6

from both data sets due to their already short length and impersonal nature.  

 

 

Profession Defined Gender Total 

Athletic Director      Male   97 

Carpenter      Male   50 

Computer Programmer      Male 140 

Custodian, Janitor      Male 100 

Dentist      Male   59 

Electrician      Male   99 

Manager      Male 109 

Pastor, Preacher      Male 136 

Realtor      Neutral 118 

Chemist      Neutral 110 

Counselor      Neutral   80 

Consultant      Neutral 130 

Photographer      Neutral   98 

Caretaker, Nanny      Female 120 

Housekeeper      Female   80 

Librarian      Female   89 

Nurse      Female 110 

Paralegal      Female 110 

Table 6. Distribution of scraped job postings 

6 https://www.amazon.jobs/en/job_categories/software-development 



3.3 Text Analysis 

One of the biggest issues that arose from the Amazon hiring model was the emphasis 

put on masculine language. I wanted to see if there was any obvious difference in word choice 

between my set of female and male computer programmer resumes, so I compared the 

log-likelihood of words within each set of documents, or corpus. Log-likelihood measures word 

frequency between two corpora to find which words are most unique to each [12]. Words that 

show up frequently in corpus A and infrequently in corpus B will have a high log-likelihood for A 

and a low log-likelihood for B. Using this method, I found the top ten most distinct terms for 

women’s and men’s resumes from my dataset which can be found in Tables 7 and 8. 

Unfortunately, I do not believe I found anything significant.  

 

Word Log-Likelihood  Word Log-Likelihood 

Testing 412.23  Systems 125.20 

Test 390.04  System  58.03 

Cases 143.40  Programs  53.92 

Involved 111.05  Senior  42.84 

Regression  98.71  IBM  42.20 

Defect  86.22  Network  41.16 

Selenium  72.21  Support  35.56 

Jira  70.67  Windows  23.28 

Description  70.50  Inc  21.93 

Automation  65.75  Including  21.51 

Table 7. Top 10 words for women’s resumes    Table 8. Top 10 words for men’s resumes 

 

 



I also explored a project where 1,100 technology resumes split near evenly between 

men and women were assessed [13]. The findings stated that women have longer resumes with 

around 745 words on average compared to men who have about 414 words per resume. I did 

not find this to be the case for either of my corpora. For my corpus of varied resumes, women 

averaged 572 words while men averaged 598 words. For the corpus of programmers, the 

average length was 676 for women and 766 for men. It appears that the article’s data set was 

collected from primarily US-based individuals, whereas PostJobFree has shown to contain a 

wider variety of sources. There are assumedly cultural differences in what is considered a 

well-structured resume, but I was unable to find a trustworthy source confirming this. For 

example, online sources have claimed that it is more acceptable to put personal information in 

European and Asian resumes which I have seen during cleaning. The author may also have 

collected from a different tier, such as upper-management, or type of computer programmer, 

since they relied on a personal network to gather data. 

3.4 Machine Learning 

Since my goal was replicating a hiring model, I split my resume data set bya binary, hired 

or not. I assigned this label by finding which resumes were most similar in language usage to 

the set of Amazon job postings. ​ ​For each resume, I found its average similarity to all job 

postings. I gave the 300 most similar the ‘hired’ label, leaving the 556 remaining ‘not-hired’. 

Because of the Amazon masculine language issue, I wondered if I would see an imbalance 

between male and female resumes within these two groups. I was surprised to see that there 

was essentially no difference between the labels. The hired group was 72% male while the 

non-hired group was 73% male. This matched the actual distribution of the group, so it didn’t 

give me much hope in terms of finding a bias within my model. While machine learning is able 

to pick up on very subtle, latent features, a data set this balanced was unlikely to show any 

large upsets.  

I built a convolutional neural network (CNN) to predict whether the candidate of a given 

resume would be hired or not. CNN’s are an advanced form of a deep neural network that use 

filters, or convolutions, to pull information from input data. While commonly used for 



image-based machine learning tasks, CNN’s are useful for any job that trains on data that can 

be broken into distinct chunks. For images, this is pixels. For text, this is words. 

I trained three models, varying between vectors: the original word2vec embedding, the 

debiased Bolukbasi embedding, and the fastText embedding. This meant the same model 

structure was receiving the same inputs each time, but they were being translated differently. 

Despite using varied embeddings, I did not see any distinction between these models. Each had 

an accuracy of approximately 77%.  

4. Conclusion 

4.1 Results and Discussion 

Often, discoveries occur when one is not intending it. This seems to be the case with 

bias in machine learning as well. While I did not expect to see profound bias present, I did 

believe I would see some form of difference. This may be for a number of reasons. With respect 

to machine learning, even a thousand resumes is a small amount. Instead of a deep neural 

network, I could have just as easily used a simpler algorithm and obtained similar results. If I 

continued with this project, I think I would have to either collect much more resume data or 

forego the angle of occupation entirely. Additionally, my corpora of resumes can be presumed 

to be distinct from those a company might work with. I specifically have data from individuals 

who were comfortable putting their resumes online. While this is not very different from having 

a Linkedin account, which some individuals in my corpus did list, the approach taken may 

indicate more strenuous job hunting. 

4.2 Future Work 

In the same way that Amazon adapted their model to identify bias and support diversity, 

others have been able to make use of bias within word embeddings like finding prejudiced 

language within customer reviews [7]. Implicit bias will always permeate our lives and 

subsequently, our data and algorithms. Working towards reducing bias in word embeddings is 



an important component, but we must be wary of its presence at every phase of the ML 

pipeline. Thankfully, the rise of ML has also shown the rise of mindfulness and discussions 

around this issue. From techniques for collecting fair, yet representative data to developing 

methods for identifying and mitigating biased predictions, work is continuing to be done to 

alleviate problems with bias. 

Now that I have these corpora, I plan to explore in more detail the language and 

structure used. It was shown that women often have longer resumes, because of executive 

summaries, non-standard sections, more personal distinctions, and a lack of bulleted lists [13]. 

I would like to test these claims with my own data. I’m also still surprised by my lack of findings, 

so I’d like to try more variety in my machine learning approach. Since my labeling process was 

based on a simple similarity measures, I could potentially create a more robust method for 

deciding who had been hired.   



References 

[1] T. Bolukbasi, K. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. 2016. Man is to Computer  

Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In ​Advances in 

Neural Information Processing Systems,​ pages 4349–4357. 

 

[2] A. Caliskan, J. J. Bryson, and A. Narayanan. 2017. Semantics derived automatically from  

language corpora contain human-like biases. In ​Science​, 356, pages 183-186.  

 

[3] J. Dastin. 2018. Amazon scraps secret AI recruiting tool that showed bias against 

women.  

In ​Reuters​. 

 

[4] J. Gordon and B. Van Durme. 2013. Reporting bias and knowledge extraction. In  

Automated Knowledge Base Construction​ (​AKBC​). 

 

[5] V. Ha-Thuc and S. Sinha. 2016. Learning to Rank Personalized Search Results in  

Professional Networks. In ​SIGIR​.  

 

[6] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. 2016. Bag of Tricks for Efficient Text  

Classification. From arXiv:1607.01759 [cs.CL]. 

 

[7] A. Mishra, H. Mishra, and S. Rathee. 2019. Examining the Presence of Gender Bias in  

Customer Reviews Using Word Embedding. From arXiv:1902.00496 [cs.CL]. 

 

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed  

representations of words and phrases and their compositionality. In ​Proc. Advances in 

Neural Information Processing Systems​ 26 3111–3119. 



 

[9] B. A. Nosek, M. Banaji, and A. G. Greenwald. 2002. Harvesting implicit group attitudes  

and beliefs from a demonstration web site. In ​Group Dynamics: Theory, Research, and 

Practice​, 6(1):101. 

 

[10] S. Patil, G. Palshikar, R. Srivastava, and I. Das. 2012.  Learning to Rank Resumes. In 

Forum  

for Information Retrieval Evaluation​. 

 

[11] J. Pennington, R. Socher, and C. D. Manning. 2014. Glove: Global vectors for word  

representation. In ​Conference on Empirical Methods in Natural Language Processing 

(EMNLP). 

 

[12] P. Rayson and R. Garside. 2000. Comparing corpora using frequency profiling. In  

Proceedings of the workshop on Comparing Corpora, held in conjunction with the 38th 

annual meeting of the Association for Computational Linguistics (ACL 2000)​. 1-8 October 

2000, Hong Kong, pp. 1 - 6. 

 

[13] K. Snyder. 2015. The resume gap: Are different gender styles contributing to tech's  

dismal diversity? In ​Fortune​. 

 

[14] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and KW. Chang. 2017. Men also like shopping:  

Reducing gender bias amplification using corpus-level constraints. In ​Proceedings of the 

2017 Conference on Empirical Methods in Natural Language Processing (EMNLP)​, pages 

2979–2989. 


	University of Mary Washington
	Eagle Scholar
	Spring 5-7-2019

	Assessing Bias Removal from Word Embeddings
	Clare Arrington
	Recommended Citation


	tmp.1557258382.pdf.TzZ1i

