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Abstract

In this paper, the eigenvectors of interpoint distance matrices will be discussed. When
plotted against each other, the eigenvectors of the distance matrix of evenly spaced points
in one dimension produce some interesting patterns. An explanation and description of the
patterns will be discussed. After examining many aspects of the general Euclidean interpoint
distance matrix of order N, Dy, as well as characteristics of the eigenvectors themselves,
some conclusions can be made. Furthermore, research revealed a similarity between our
matrices, Dy, and the Discrete Cosine Transform Matrix, DCT-2. This research led to
additional conclusion about our matrices Dy and allowed for a classification of the patterns
within the graphs of the eigenvectors.



Introduction
This project was proposed by researchers Dr. Elizabeth Hohman and Dr. David Marchette
at the Naval Surface Warfare Center at Dahlgren. The project statement was:
Consider the following: given (ordered) one dimensional data X = z1, ..., xy, compute
the interpoint distance matrix D = (d(z;,z;)), and compute the eigenvectors of D. The
eigenvectors can be plotted against each other (see the figure below).
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When the points are equally spaced, some interesting patterns emerge in the graphs of
pairs of eigenvectors. Explain the pattern. Does it depend on the distance measure used? Is
there a corresponding pattern for one dimensional data embedded in a higher dimensional
space?



In our study of patterns, we assume that the points are equally spaced. In this case,
the eigenvectors of the inter-point distance matrix do not depend on the distance between
consecutive points. Therefore, for the remaining of the thesis, for each positive integer N, we
fix the points x1 = 0,29 = 1,...,zy = N — 1, and denote by Dy the matrix that represents
the distances between these points.

The figure above shows the first five eigenvectors of the interpoint distance matrix Dy
for N = 100, graphed against one another. In other words, the plot in row 2 column
1 of the above figure takes vy = (ay,aq,...,a100) and vy = (by, ba, ..., b100) of Digp against
one another by plotting the points (ay, by), (ag,ba), ..., (@100, b100). Then, the plot in row 3
column 1 would take v; against v3 by plotting the points (a1, ¢1), (ag, ¢2), ..., (@100, ¢100) Where
V3 = (Cl, Co, ..., 0100).

An interpoint distance matrix is the matrix representation of distances between each pair
of observations on a line. So the first line of the matrix will represent the distance from the
first observation to itself, then the first observation to the second, and so on. Then, the next
line represents the distance from the second observation to the first, then from the second
to itself, and so on. This continues for as many observations, N, that the matrix will hold.
Throughout the research, we refered to these matrices as our matrices, Dy. For example,
for six evenly spaced points in one dimension the interpoint distance matrix Dg would be:

012345
101234
2 101 2 3
D=132 1012 (1)
432101
5 432 1 0]

These matrices Dy are symmetric, and it is well known that a symmetric n x n matrix
has the real eigenvalues and n orthonormal eigenvectors (see Section 7.3 in Larson (2013)).
These n orthonormal eigenvectors are the eigenvectors whose pairs are plotted above.

Background Information
In order to fully understand our matrices Dy there are certain classification definitions
that need to be discussed. First, we will define a symmetric matrix, A, to be a matrix that
is symmetric across its main diagonal.

Definition. A matriz A is defined to be symmetric if A = AT.

Then we define a centrosymmetric matrix to be a matrix, A, that is symmetric about
both its main and counterdiagonal.

Definition. A matriz A is defined to be centrosymmetric if JAJ = A where J is the coun-
teridentity matrix. The counteridentity matrix is defined as the square matriz whose elements
are all equal to zero except those on the counterdiagonal, which are all equal to 1.



A general 3 x 3 centrosymmetric matrix would have the form:
a b c
d e d (2)
c b a

Both the above definition and the definition below were given by Abu-Jeib (2002, p.430).
Below is the definition of a persymmetric matrix which is symmetric about the counterdiag-
onal.

Definition. A matriz A is persymmetric if JAJ = AT

Finally, we will define Toeplitz matrices, a special case of persymmetric matrices. Let
t_(n—1),---s t—1, o, t1, ..., tn—1 be a sequence of real numbers. Then, a Toeplitz matrix is defined

as an n X n matrix T, = [ty ;;k,j = 0,1,--- ,n — 1] where t;; = t;,_; i.e. a matrix of the
form:
[ oty too oo t_(n1)]
t1 to T-1
T,=|t t ¢t : (3)
[ In—1 e to

This definition was given by Robert M. Gray of Stanford University.

Our matrices Dy were classified to be symmetric since they were symmetric about the
main diagonal. Then, the matrices were also classified as centrosymmetric since they were
symmetric about the main and counterdiagonal, but more specifically JDyJ = Dy. Since
Dy is symmetric, we know Dy = D%, so JDyJ = D%, and our matrices are also persym-
metric. Lastly, our matrices were also classified as Toeplitz since they were the special case
of persymmetric where each diagonal surrounding the main diagonal is made up of the same
value.

According to Cantoni and Butler (1976), “It is proved that the eigenvectors of a symmet-
ric centrosymmetric matrix of order N are either symmetric or skew symmetric, and that
there are [§] symmetric and [5] skew symmetric eigenvectors” (p.275). Abu-Jeib (2002)
defines “A vector x is called symmetric if Jr = x and skew-symmetric if Jr = —z.” An

example of a 3 x 1 and a 4 x 1 symmetric vector, respectively, would be:

a
a1
a
ao ) (4)
Qo
ai
ai



Then, an example of a 3 x 1 and a 4 x 1 skew-symmetric vector, respectively, would be:

a1
aq a
ao 0 (5)

The concept that our matrices Dy had symmetric and skew-symmetric eigenvectors was
further examined during this research. A presentation by Patricia H. Carter (2010) that was
found during the research process also indicated something about the symmetric and skew-
symmetric nature of the interpoint distance matrices’ eigenvectors. The way the research
classifies which eigenvectors are symmertric or skew-symmetric is based on the way the
eigenvectors are ordered. Since we used the program R, it automatically orders eigenvalues
from largest to smallest, and then the corresponding eigenvector. So the largest eigenvalue
of a matrix would be Ay, and its corresponding eigenvector would be v;. Then, the second
largest eigenvalue would be Ay, and its corresponding eigenvector would be v,. This ordering
continues for as many Ay and corresponding vy that the matrix has.

The presentation by Carter also indicated similarities between our matrices Dy and the
Discrete Cosine Transform Matrix (DCT-2). This matrix, DCT-2, has the following form
when N = 6:

1 -1 0 0 0 0
-1 2 -1.0 0 0
0 -1 2 -1 0 0
0 0 -1 2 -1 0 (6)
0 0 0 -1 2 -1
(0 0 0 0 -1 1

There are four discrete cosine transforms defined as follows (Rao & Yip, 1990, p.11):
(1) DCT-I:

I B 3 2 mnm B )
[CN+1]mn— (N> [kmknCOS< N )i| man_()al?"‘aN? (7>
(2) DCT-II:
3 1
[CXon = <%) [km cos <W)1 m,n=0,1,..,N —1; (8)
(3) DCT-III:
3 1
[C3 on = (%) {k‘n cos (W)} m,n=20,1,.... N — 1, (9)



(4) DCT-IV:

[CH ) = (%)2 {cos(<m+%)](vn+%)ﬁ>] mn=0,1,..,N—1,  (10)

All of these transforms are related to one another, but the DCT-II or DCT-2 matrix was
the form that seemed to have similarities to the inverse of our matrices Dy. This DCT-
2 matrix has known formulas for its eigenvalues and corresponding eigenvector. The m®*
eigenvalue is given by the formula:

A = 2 — 208 (%) (11)

Then, the j** component of the corresponding m" eigenvector is given by:

S
Jt3
€im = COS m 12
s ( N W) ( )
All this information and classification of our matrices Dy helped in directing the research
on these eigenvectors.

Methods

In order to explore why these patterns come about, we looked at different aspects of the
matrices and their eigenvectors. Using the R program, we examined different components
and patterns of the eigenvectors that could cause these graphs. We also came across the
Carter presentation that had information on these matrices as well as their inverses. This
information led us to look at the inverse of our matrices Dy and how it compares to the
DCT-2 Matrix. Also proposed in the presentation was the fact that some eigenvectors of the
matrices Dy were symmetric while others were skew-symmetric (Carter, 2010). Taking this
idea, we looked at if or when the eigenvectors were symmetric or skew-symmetric.

Continuing with the research, we looked further into classifying our matrices Dy as well
as trying to classify different patterns that appeared in the graphs of the eigenvectors. By
classifying further our matrices Dy we were able to research more about characteristics that
it or its eigenvectors may have. Then, knowing that whether the eigenvectors were odd
or even affected whether they were symmetric or skew-symmetric, this would mean that
varrying order would affect the number of symmetric and skew-symmetric vectors which
may also affect the patterns. The focus of the first part of this project was to determine how
the patterns varied along with order. We also examined interpoint distance matrices when
they were normally or uniformly distributed instead of being evenly spaced.

Results
We began this research by looking at the closed form solutions for the eigenvalues and
eigenvectors of the matrix Dy for N=2, 3, and 4 calculated by hand which are as follows:



When N=2, A = 1, —1 and the corresponding eigenvector to A = 1 had the form v =

S-S
N

=1
with the corresponding eigenvector to A = —1 having the form v = <‘{5>
V2

1

2
When N=3, A = 1 4+ /3, —2 and the corresponding eigenvector to A = —2 was v = \0[
7
When N=4, we arrived at A = 2 £+ /10, —2 + /2 and although solutions for the eigenvectors
exist, we did not calculate those solutions by hand.

After looking at these, we used R to calculate v; and vy and see patterns as N increased.
In particular, we took N=10 and N=1000 and looked at their v; and v,. It was shown that
the coordinates of v; for N=10 appear as coordinates 48, 148, 248, 348, 445, 556, 653, 753,
853, and 953 of v; for N=1000, respectively. Then, the closest values of coordinates of v, for
N=10 appear as coordinates 51, 150, 251, 350, 451, 550, 651, 750, 851, 950 of v, for N=1000,
respectively.

Then, after coming across the Carter powerpoint on interpoint distance matrix eigen-
vectors, we decided to look at the conjecture that the eigenvectors are either symmetric or
skew symmetric. This was calculated using R as listed in Appendix A. This showed v; to
have symmetry and vy to have skew-symmetry. Later on in the research, we discovered the
theorem by Cantoni and Butler (1976) that indicated our matrix would have % symmetric
and % skew-symmetric eigenvectors. However, the theorem did not state which eigenvectors
were symmetric or skew-symmetric or whether they appeared in a pattern. So, we went on to
look at when the eigenvectors of our matrices Dy were either symmetric or skew-symmetric.
A way we found to show symmetry versus skew-symmetry more clearly was by the following
graphs:
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Even Eigenvectors N=10
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With these graphs it is clear to see that odd eigenvectors create symmetrical graphs while
even eigenvectors create skew-symmectrical graphs. Then, when testing this with N=100 the
following graphs appear:
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Even Eigenvectors N=100
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These graphs also show the symmetry with odd eigenvectors and skew-symmetry with
even eigenvectors, but furthermore show a repeating pattern of ¢ — 1 “clusters” of points in
the it" eigenvector.

Since it became clear that odd and even eigenvectors were symmetric and skew-symmetric,
respectively, we began to consider that perhaps this characteristic may play a part in the
graph patterns shown in the problem statement. In order to look further into this, we
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began examining matrices of varying orders since they would have varying amounts of skew-
symmetric versus symmetric eigenvectors.

When exploring the eigenvectors of matrix D that had even order, we found specific
reoccuring patterns. For example when N=100, the following graphs appear from vectors 48
through 53:

Eigenvectors 48-53 when N=100
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Here, you can see that anything graphed against vector 51 (the “central” vector) are just
line graphs. Also interesting is the circle graph that appears for vector 50 versus vector 52
and for vector 49 versus vector 53. These patterns appeared at the central vectors for any
matrix of even order. Since matrices of even order would not have an exact center vector, the
lines seem to appear around the vector % +1 which is referred to as the central vector. When

11



examining the central vector of even-order matrices it was found that if the vector were even,
then it would be skew-symmetric and its components would all have the same value. If the
vector were odd, then it would be symmetric and its components would be slightly varying
values. For example, when N=10 and the central vector is 6 and when N=12 and the central
vector is 7. The components of these eigenvectors are listed in Appendix B.

Then, when considering the vectors around the center of odd-order matrices, there were
no line graphs that appeared since there is an exact center vector. However, the circle graphs
still appear around the vector % + 1 and follow a similar diagonal path. For example, when
N=151 the center vectors appear as follows:

Eigenvectors 74-79 when N=151
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Not only do the circles appear in a similar fashion, but also the graphs around them
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have some similar traits as well. The graphs around the circle graphs seem to reflect and/or
rotate when reflected over the circle graphs. This pattern also occurs when looking at the
eigenvectors of even-order matrices as shown below when N=150:

Eigenvectors 73-79 when N=150
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Futhermore, vectors of even-order matrices whose orders are evenly divisible by four also
showed lines at what could be thought of as quarter vectors, vector % + 1 and vector % + 1.
Also, an interesting pattern appeared in the place where the circle graphs appear around the
central vector:
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Eigenvectors 73-78 when N=100
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This pattern, which seemed to look like two intersecting ovals, also appeared in the same
fashion around what would be the quarter vectors for matrices of even order that are not
evenly divisible by four, as shown below:
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Eigenvectors 49-54 when N=202
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In regards to the vectors around the quarter sections of matrices with odd order, there
are no line graphs and the two instersecting ovals graph does not appear either. Although,
there seemed to be certain reoccuring patterns that sometimes were seen as reflections or
rotations. For example, when looking at N=251 and N=211, the same graph patterns exist
at eigenvector 62 versus 64, eigenvector 63 versus 64, eigenvector 63 versus 65, eigenvector
63 versus 66, eigenvector 63 versus 67, eigenvector 64 versus 65, coordinate 64 versus 66,
and coordinate 65 versus 67 when N=251 as coordinate coordinate 52 versus 54, eigenvector
53 versus 54, eigenvector 53 versus 55, eigenvector 53 versus 56, eigenvector 53 versus 5H7,
eigenvector 54 versus 55, eigenvector 54 versus 56, and eigenvector 55 versus 57 when N=211
as shown:
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Eigenvectors 62—-67 when N=251
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However, with varying order of matrices, not all of these patterns reoccur for every odd
ordered matrix. The only consistent pattern that always remains in the same graph location
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for every odd order matrix is the pattern shown at coordinate 63 versus 65 when N=251
and at coordinate 53 versus 55 when N=211. This pattern occurs at coordinate & +1 versus
M+l 4 2 when N = 3 (mod 4) and at coordinate 22 — 1 versus ¥ 4 2 when N =1
(mod 4).

When looking at graphs of the first six eigenvectors of these matrices, the following
patterns appeared:
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First Six Eigenvectors N=38
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Despite having different orders, all patterns up to wvs versus vg that appear are the
same. Although, some patterns do appear as reflections in certain graphs. Similarly,
when looking at the last six eigenvectors of these matrices, the following patterns appeared:
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Last Six Eigenvectors N=137
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Last Six Eigenvectors N=38
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Again, it can be seen that the patterns are identical, but sometimes reflected.

These orders were specifically chosen to be examined because they vary in size difference
and the specific numbers are very different as well. With N=500, it is an even number whose
central eigenvector would be at 251 which is an odd number. With N=137, it is an odd
number that has an exact center. Then, with N=38, it is an even number whose central
eigenvector would be at 20 which is an even number.

The Carter presentation also gave the idea to look at the inverses of the matrices to
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examine the eigenvectors of interpoint distance matrices since the eigenvectors are the same.
This, and the fact that the inverse of matrix A has the eigenvalues %, where A\ ranges over
the eigenvalue of A, are proved by the following:

Let A be an n x n matrix with eigenvalues A and eigenvector v. Then,

Av=X = ATAv= Mv=v= Av=A"1v= %U

However, since we have that the eigenvalue of the inverse matrix will be %, if the matrix
has an eigenvalue of 0, the corresponding inverse matrix’s eigenvalue would be undefined. It
is known that 0 cannot be an eigenvalue of a nonsingular matrix by the following theorem:

Theorem. Let A be a nonsingular n x n matriz. Suppose that X is an eigenvalue of A. Then
there exists a nonzero vector v in R™ such that Av = \v. Thus A™'Av = A7 (\v), and so
v=AA"1). Hence A cannot be 0 since v is a nonzero vector.

Thus, 0 can never be an eigenvalue for our matrices Dy and the idea of looking at its
inverse can be pursued.
In the Carter presentation previously mentioned, it was proposed that the formula for
inverse matrix for D when N=6 is as follows:
1

Letq:m

Then, the matrix D has inverse _TIM where

l—¢ -1 0 0 0
1 2 10 0 o0
0 -1 2 -1 0

M=1'9 0 -1 2 -1 o0 (13)
0 0 0 -1 2 -1
¢ 0 0 0 -1 1-¢

This was verified using R when N=6 and N=10. The code and output of this can be seen
in Appendix C. Although R showed values that were sometimes close to, but not exactly the
same as the identity, when checked by hand the inverse by _71]\/[ does turn out to be correct.

Another aspect of testing whether this was a true inverse or not was going off of the idea
that the matrix D is also classified as a Toeplitz matrix. We found an alternative inverse
formula for D using the following lemma and theorem:

Lemma. Let T' = (a,—q); =1 be an n x n Toeplitz matriz; then it satisfies the formula

KT —TK = fel —e, f1J (14)
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where

0 01
0 0 1
1 0
0
K= 0 0 ,J = (15)
0
0 0 1 0 0
_O 0 1 0_
1 0 0
0 ) Ap—1 — A1
€1 = . y Ep = : 7f = : (16>
: 0 '
a1 — QG—p+t1

Theorem. Let T' = (a,—4); -, be a Toeplitz matriz. If each of the systems of equations
Tx = f, Ty = ey is consistent with the solutions x = (x1, %o, ...,x)T, v = (Y1, Y2, -, Yn)?,
repectively, then

(a) T is invertible;

(b)T~' = TYU, + TyUs,, where

Y1 Yn 0 Y2 L =z, - —22
1 .
Tl = y.2 n 7U1 = (17>
. ‘ . ‘ . . yn * . . _mn
Yn Yo n 1
1 Tn T2 0 yn Y2
To I 0 R
T2 — UQ - (18)
T, -+ X9 I 0

We then tested using R if this inverse would equal our _71]\/[ when N=2 (Lv & Huang,
2007). The code that verified this can be found in Appendix D. This showed that this
formula gave back the correct inverse as well as that 7! is the same as our inverse matrix
_TIM when N=2. We then also came up with a fairly general way of showing that _TIM
works for all values N in one direction.

221\7N2 % 2N12 0 1 0 N—2 N1 1 0 0
a B 1 v N—-3 N-2
r 4 1 1 0
5 -1 5| |N-2 N-3 0 1 0 0
1 1 2=N 0 - 0 1
IN—2 2  2N—2  N-1 N-2 - 1 0 |
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The Carter presentation also discussed this inverse matrix by mentioning that D (or its
inverse) is very similar to the discrete cosine transform (DCT-2) matrix. This was important
to note since the DCT-2 matrix has known formulas for its eigenvalues and corresponding
eigenvectors. These formulas can be seen in the Background Information section as formula
and formula [12] respectively.

In order to test this, we first looked at whether the odd eigenvectors of the DCT-2 matrix
were also eigenvectors of our matrix D in the case of N=6. The code used in R to test this
can be found in Appendix E. This showed that the even vectors of D were the same as the
odd vectors of DCT-2. When taking the plot of the first eigenvector of the DCT-2 matrix
by the second eigenvector of our matrix, D, when N=20, it gave a circle as follows:

V2
0.1
[o]
[o]

As of now, we are not sure why this graph appears to be circular, but the DCT-2 matrix
eigenvector formula proved to be true in giving even eigenvectors for our matrices Dy .

We also looked at the conjecture that when the sequence from 0 to 1 has order N, the
it" element in v is also the 2i*" element in v; of the sequence from 0 to 1 with order 2N.
This pattern was examined graphically when N=500 versus when N=250 versus with every
other point from the N=500 vector.
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This graph disproved the conjecture, but indicated a proportional relationship between
the i*" element of v; when N=250 and the 2i*" element of v; when N=500. This proportional
relationship can be seen when mapping v; when N=250 against every other element for v,
when N=500:
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Interestingly enough, the coefficients of a line fit to this graph, seen in Appendix F, show
the slope of the line to be v/2. However, when testing other lengths, the relationship did not
hold to always be v/2.

Finally, we looked at interpoint distance matrices when the points were normally or
uniformly distributed rather than being evenly spaced. When normally distributed, the first
six eigenvector graphs appeared as follows:

Normal First Six Eigenvectors N=1000
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Then, around the center vectors showed the following graphs:

Normal Center Eigenvectors N=1000
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Finally, the last six eigenvectors gave the following graphs:

Normal Last Six Eigenvectors N=1000
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Mostly, the normally distributed points produced eigenvectors that had graphs similar
to the ones seen around the first six eigenvectors and those around the center eigenvectors.
The somewhat patterns that appear with the last six eigenvectors slightly show resemblance
to some graphs that Dy produced. However, these patterns do not appear until the very
last eigenvectors and may have some resemblance, but not much, to certain graphs that Dy
produced.

Then, with uniformly distributed points, the following patterns appear around the first
six eigenvectors, center eigenvectors, and last six eigenvectors, respectively:
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Uniform First Six Eigenvectors N=1000
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Uniform Last Six Eigenvectors N=1000
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These graphs appeared to have more definite patterns than when the points were normally
distributed. Also, the graphs appear to be more similar in pattern to those of Dy towards
the end. However, it is also seen that these similar patterns do not appear until the very last
eigenvectors. This is most likely due to the fact that altering the interpoint distance matrix
to have uniformly or normally distributed points greatly changes it from our matrix Dy.

Conclusion

When altering the interpoint distance matrix to be uniformly and normally distributed,
the patterns that appear with our matrix Dy do not appear. Towards the last eigenvectors
of both distributions, some patterns seem to have slight resemblance to those of Dy, this
is more evident with uniform distribution rather than normal. Most likely, the majority
of these eigenvectors do not show the same patterns as those of Dy because changing the
point distribution changes the matrix we are using. When points are uniformly or normally
distributed, the interpoint distance matrix is no longer persymmetric, centrosymmetric, or
Toeplitz. No longer having these classifications may be the reason the patterns almost do
not appear with uniformly and normally distributed interpoint distance matrices.

We also came to the conjecture, when the matrix D has order 2N, the 2i*" element in its
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vy is proportional to the "

element of v; when D has order N. We looked at two graphical
representations of this conjecture which held it to be true.

We also found that the inverse of our matrices Dy can be written as _71M where M is

the matrix (in N=6 form here):

1—-¢ =1 0 0 0 —gq

-1 2 -1 0 0 0

0 -1 2 -1 0 0
M=119 0 1 2 -1 o (20)

0O 0 0 -1 2 —1

¢ 0 0 0 —1 1-g]

This led to looking at the DCT 2 matrix and the formula for its eigenvectors. Since the
DCT-2 matrix was so similar to the TM inverse matrix, it was possible for eigenvectors to
be the same for the inverse matrix. This would mean they would also be eigenvectors for
our matrices Dy since we know eigenvectors are the same for matrices and their inverses.
Ultimately, we found that every odd eigenvector of the DCT-2 matrix was a corresponding
even eigenvector for our matrices Dy.

The Carter presentation suggested the eigenvectors would be symmetric when they were
even and skew-symmetric when they were odd. Although we only tested v1 and v2, we found
with these that the eigenvectors were symmetric for odd eigenvectors and skew-symmetric
for even eigenvectors. We further examined this topic to find that graphing the eigenvectors
using lines showed symmetry versus skew-symmetry. This also showed odd eigenvectors to
be symmetric and even eigenvectors to be skew-symmetric. Then, determining that our
matrices Dy were centrosymmetric Toeplitz matrices led to the fact that a proof does exist
to show eigenvectors are either symmetric or skew-symmetric and there are number % of
each.

Considering the order of the matrix would affect the number of symmetric and skew-
symmetric eigenvectors, different patterns appeared when testing certain orders. Ultimately,
it was found that matrices of even order have lines at vector % + 1 with circle graphs at

vectors { — ”}7?:51 versus vectors {5 + n}n%:Q where N is the matrix order. Then, looking
specifically at values of the vector % + 1, it was shown that if the vector were odd it was
symmetric and made up of slightly differing values. If the vector were even, it was skew-
symmetric and made up of one identical value. Since the values were only slightly different
when vector % + 1 was odd, this probably is due to slight-error and may mean that it would
normally be made up of one identical value.

Regarding the eigenvectors of odd order matrices, no line graphs appeared. However, the

. N+l g Nl
circle graphs did appear at vectors M —n},2, versus vectors {N 1+ n}, 2, where N

is the matrix order. Another interestmg pattern found around the central vectors for both
odd and even order matrices was that the graphs around the circle graphs seem to reflect
and/or rotate when reflected across the circle graphs.

Looking at even ordered matrices, orders that were evenly divisible by four also showed
line graphs at vector % + 1 and vector % + 1. Also, similar to the place of the circle graphs
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Nt2
mentioned before, the following pattern appeared around the vectors {% —n}t,2 ! versus
N+2

vectors {222 4+ n}, 1
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Finally, when examining odd ordered matrices the following pattern appeared at coordi-
nate 25 versus 2 + 2 when N = 3 (mod 4) and at coordinate 252 — 1 versus 252 + 2
when N =1 (mod 4) with every odd ordered matrix:
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Overall, more was found about classifying our matrices Dy and more reoccuring patterns
were identified over the course of this research. However, more in depth analysis of these
eigenvectors and their graphs beyond my own capabilities may be necessary to find an explicit
concluding statement on what causes the patterns in these graphs.
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Appendices

Appendix A
The following R code displays v; and vy, respectively of our matrix D when N=20:

## [1] -0.3013348 -0.2739647 -0.2505489 -0.2307495 -0.2142806 -0.2009046
## [7] -0.1904283 -0.1827006 -0.1776100 -0.1750829 -0.1750829 -0.1776100
## [13] -0.1827006 -0.1904283 -0.2009046 -0.2142806 -0.2307495 -0.2505489
## [19] -0.2739647 -0.3013348

## [1] 0.02481094 -0.07382191 0.12101513 -0.16522855 0.20537351
## [6] -0.24046148 0.26962849 -0.29215636 0.30749037 -0.31525294
## [11] 0.31525294 -0.30749037 0.29215636 -0.26962849 0.24046148
## [16] -0.20537351 0.16522855 -0.12101513 0.07382191 -0.02481094

Appendix B
The following R code displays the “central” vectors, vg for N=10 and v; for N=12,
respectively:

ev$vector[,6]

## [1] -0.3162278 0.3162278 0.3162278 -0.3162278 -0.3162278 0.3162278
## [7] 0.3162278 -0.3162278 -0.3162278 0.3162278

ev$vector[,7]

## [1] 0.2674016 -0.3085053 -0.2760716 0.3007468 0.2845236 -0.2927508
## [7] -0.2927508 0.2845236 0.3007468 -0.2760716 -0.3085053 0.2674016

Appendix C
The following R code tested the inverse from the Carter Presentation when N=6 and
N=10, respectively:

matl

## (,11 (,2]1 [,3] [,4] [,5] [,6]
## [1,] 0 1 2 3 4 5
## [2,] 1 0 1 2 3 4
## [3,] 2 1 0 1 2 3
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## [4,] 3 2 1
## [5,] 4 3 2 1
# [6,] 5 4 3

invmatl=matrix(c(-0.4,0.5,0,0,0,0.1,0

invmatl

#Hit (,11 [,2]1 [,3] [,4] [,5] [,6]

## [1,] -0.4 0.5 0.0 0.0 0.0 0.1

## [2,] 0.5 -1.0 0.5 0.0 0.0 0.0

## [3,] 0.0 0.5 -1.0 0.5 0.0 0.0

## [4,] 0.0 0.0 0.5 -1.0 0.5 0.0

## [5,] 0.0 0.0 0.0 0.5 -1.0 0.5

## [6,] 0.1 0.0 0.0 0.0 0.5 -0.4
invmat1%*%matl

## [,11 [,2] [,3]
## [1,] 1.000000e+00 0 -2.775558e-17
## [2,] 0.000000e+00 1 0.000000e+00
## [3,] 0.000000e+00 0 1.000000e+00
## [4,] 0.000000e+00 0 0.000000e+00
## [5,] 0.000000e+00 0 0.000000e+00
## [6,] -1.110223e-16 0 -1.110223e-16
matl%*%invmatl

#H [,11 [,2] [,3] [,4] [,5]
## [1,] 1.000000e+00 0 0 0 0
## [2,] 0.000000e+00 1 0 0 0
## [3,] -2.775558e-17 0 1 0 0
## [4,] -1.665335e-16 0 0 1 0
## [5,] -8.326673e-17 0 0 0 1
## [6,] 0.000000e+00 0 0 0 0

## Warning in matrix(c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 2, 3, 4, 5, 6,
data length [99] is not a sub-multiple or multiple of the number of rows [10]

mat2

#i#

##  [1,] 0 1 2 3

4 5
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##  [2,] 1 0 1 2 3 4 5 6 7 8
##  [3,] 2 1 0 1 2 3 4 5 6 7
#  [4,] 3 2 1 0 1 2 3 4 5 6
## [5,] 4 3 2 1 0 1 2 3 4 5
## [6,] 5 4 3 2 1 0 1 2 3 4
## [7,] 6 5 4 3 2 1 0 1 2 3
## [8,] 7 6 5 4 3 2 1 0 1 2
## [9,] 8 7 6 5 4 3 2 1 0 1
## [10,] < 8 7 6 5 4 3 2 1 0

invmat2=matrix(c(-0.4444444,0.5,0,0,0,0,0,0,0,0.55555556,0.5,-1,0.5,0,0,0,0,0,0,0,0,0.5,
invmat2

#H# [(,11 [,2] [,3] [,4] [,5] [,6] [,7]1 [,8] [,9] [,10]

## [1,] -0.4444444 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5555556

## [2,] 0.5000000 -1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0000000

## [3,] 0.0000000 0.5 -1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0000000

## [4,] 0.0000000 0.0 0.5 -1.0 0.5 0.0 0.0 0.0 0.0 0.0000000

## [5,] 0.0000000 0.0 0.0 0.5 -1.0 0.5 0.0 0.0 0.0 0.0000000

## [6,] 0.0000000 0.0 0.0 0.0 0.5 -1.0 0.5 0.0 0.0 0.0000000

## [7,] 0.0000000 0.0 0.0 0.0 0.0 0.5 -1.0 0.5 0.0 0.0000000

## [8,] 0.0000000 0.0 0.0 0.0 0.0 0.0 0.5 -1.0 0.5 0.0000000

## [9,] 0.0000000 0.0 0.0 0.0 0.0 0.0 0.0 0.5 -1.0 0.5000000

## [10,] 0.5555556 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 -0.4444444
invmat2%*Y%mat?2

#H# [,1] (,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 5.5e+00 4.0000001 3.5 3.0 2.5 2.0 1.5 1.0 0.5000004 4.0e-07
## [2,] 0.0e+00 1.0000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0000000 0.0e+00
## [3,] 0.0e+00 0.0000000 1.0 0.0 0.0 0.0 0.0 0.0 0.0000000 0.0e+00
## [4,] 0.0e+00 0.0000000 0.0 1.0 0.0 0.0 0.0 0.0 0.0000000 0.0e+00
## [5,] 0.0e+00 0.0000000 0.0 0.0 1.0 0.0 0.0 0.0 0.0000000 0.0e+00
## [6,] 0.0e+00 0.0000000 0.0 0.0 0.0 1.0 0.0 0.0 0.0000000 0.0e+00
## [7,] 0.0e+00 0.0000000 0.0 0.0 0.0 0.0 1.0 0.0 0.0000000 0.0e+00
## [8,] 0.0e+00 0.0000000 0.0 0.0 0.0 0.0 0.0 1.0 0.0000000 0.0e+00
## [9,] 0.0e+00 0.0000000 0.0 0.0 0.0 0.0 0.0 0.0 1.0000000 0.0e+00
## [10,] 4.0e-07 0.5000004 1.0 1.5 2.0 2.5 3.0 3.5 4.0000001 5.5e+00
mat2%*%invmat?2

#H# (,11 [,2] [,3] [,4] [,5] [,6] [,7]1 [,8] [,9] [,10]

## [1,] 5.5000000 0 0 0 0 0 0 0 0 0.0000004
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## [2,] 4.0000001 1 0 0 0 0 0 0 0 0.5000004
## [3,] 3.5000001 0 1 0 0 0 0 0 0 1.0000003
# [4,] 3.0000002 0 0 1 0 0 0 0 0 1.5000003
## [5,] 2.5000002 0 0 0 1 0 0 0 0 2.0000002
## [6,] 2.0000002 0 0 0 0 1 0 0 0 2.5000002
## [7,] 1.5000003 0 0 0 0 0 1 0 0 3.0000002
## [8,] 1.0000003 0 0 0 0 0 0 1 0 3.5000001
# [9,] 0.5000004 0 0 0 0 0 0 0 1 4.0000001
## [10,] 0.0000004 0 0 0 0 0 0 0 0 5.5000000
Appendix D

The following R code compares the theorem of Lv & Huang (2007) to the inverse defined
in the Carter Presentation:

K=matrix(c(0,1,0,0,0,1,1,0,0) ,nrow=3)
T=matrix(c(0,1,2,1,0,1,2,1,0) ,nrow=3)
KY%*xhT-T%h*%hK

## (11 [,2] [,3]
## [1,] 1 -1 0
## [2,] 0 0 1
## [3,] 0 0o -1

J=matrix(c(0,0,1,0,1,0,1,0,0) ,nrow=3)
f=c(0,1,-1)

e3=c(0,0,1)

el=c(1,0,0)

£%*%t (e3) —el1%x%t (£) %*%J

## [,11 [,2] [,3]

## [1,] 1 =il 0

## [2,] 0 0 1

## [3,] 0 0 =il

b=c(0,1,-1)
solve(T,b)

## [1] 0.25 -1.50 0.75

el=c(1,0,0)
solve(T,el)

## [1] -0.25 0.50 0.25
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Til=matrix(c(-.25,.5,.25,.25,-.25,.5,.5,.25,-.25) ,nrow=3)
Ul=matrix(c(1,0,0,-.75,1,0,1.5,-.75,1) ,nrow=3)
T2=matrix(c(.25,-1.5,.75,.75,.25,-1.5,-1.5,.75, .25) ,nrow=3)
U2=matrix(c(0,0,0,.25,0,0,.5,.25,0) ,nrow=3)
Tinv=T1%*%{U1+T2%*%U2

Tinv

#it [,11 [,21 [,3]
## [1,] -0.25 0.5 0.25
## [2,] 0.50 -1.0 0.50
## [3,] 0.25 0.5 -0.25
Tinv%*)T

#it [,11 [,2] [,3]

## [1,] 1 0 0
## [2,] 0 1 0
# [3,] 0 0 1

Appendix E
The following R code compares the eigenvalues and eigenvectors of the DCT-2 matrix
and our matrix D respectively when N=6:

eigen(DCT2)

## $values
## [1] 3.732051e+00 3.000000e+00 2.000000e+00 1.000000e+00 2.679492e-01
## [6] 1.332268e-15

##

## $vectors

#it [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.1494292 -0.2886751 0.4082483 -5.000000e-01 0.5576775 0.4082483
## [2,] 0.4082483 0.5773503 -0.4082483 -2.220446e-16 0.4082483 0.4082483
## [3,] -0.5576775 -0.2886751 -0.4082483 5.000000e-01 0.1494292 0.4082483
## [4,] 0.5576775 -0.2886751 0.4082483 5.000000e-01 -0.1494292 0.4082483
## [65,] -0.4082483 0.5773503 0.4082483 3.552714e-15 -0.4082483 0.4082483
## [6,] 0.1494292 -0.2886751 -0.4082483 -5.000000e-01 -0.5576775 0.4082483

matl=matrix(c(0,1,2,3,4,5,1,0,1,2,3,4,2,1,0,1,2,3,3,2,1,0,1,2,4,3,2,1,0,1,5,4,3,2,1,0) ,n
eigen(matl)

## $values
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## [1] 12.1093115 -0.5358984 -0.6798227 -1.0000000 -2.4294888 -7.4641016
#i#

## $vectors

#it [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0.4979220 -0.1494292 0.2509572 0.4082483 0.43484956 0.5576775
## [2,] 0.3809911 0.4082483 -0.5877278 -0.4082483 -0.09706644 0.4082483
## [3,] 0.3269854 -0.5576775 0.3026492 -0.4082483 -0.54907556 0.1494292
## [4,] 0.3269854 0.5576775 0.3026492 0.4082483 -0.54907556 -0.1494292
## [6,] 0.3809911 -0.4082483 -0.5877278 0.4082483 -0.09706644 -0.4082483
## [6,] 0.4979220 0.1494292 0.2509572 -0.4082483 0.43484956 -0.5576775
Appendix F

The following R code output shows the correlation and relationship of the following graph:

plot(evy$vector[,1],evnew,xlab=expression(v[1]~~"N==500),ylab=expression(v[1]~~N==250))
cor (evy$vector[,1],evnew)

## [1] 0.9999675

reg=1m(evnew~evy$vector[,1])

reg
##
## Call:
## 1lm(formula = evnew ~ evy$vector[, 1])
##
## Coefficients:
## (Intercept) evy$vector[, 1]
## -3.100e-07 7.071e-01
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