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Abstract 

 This research project determines which methods are the most effective for finding a best 

fit model for simultaneous time series. The type of model used was an Autoregressive Integrated 

Moving Average (ARIMA) model. Two distinct methods were used when determining what 

order to assign to the ARIMA model: 1.) using the floor of the average number of autoregressive 

and moving average terms, and 2.) using the ceiling of the average number of autoregressive and 

moving average terms. After fitting the model, the Akaike Information Criterion (AIC) value for 

each method measured the goodness of fit to compare to fitting separate models to each series. 

Based on the results of this research the most effective method depends on the type of data that is 

being fitted. In most of the different cases explored, the floor function method and the ceiling 

function method had very similar results. However, for two specific cases the ceiling function 

was the more effective method. Therefore, it is important to consider the characteristics of the 

data that is being fitted to determine the most effective method.  
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Introduction 

 Big data has recently become a higher focus in data analysis due to an increased need and 

desire to analyze large data sets. In many cases these data sets are a collection of points gathered 

over time. These time series can be analyzed to help identify significant patterns, to form best fit 

models, and to make predictions. The ability to simultaneously monitor several time series 

allows for several different data sets to be compared to each other, such as time series sets for 

different states to look for patterns across the entire country.  

 A previous study on time series data was completed by University of Mary Washington 

students in conjunction with the Dahlgren Navy Base (NSWCDD). The research team analyzed 

big data from the social media network Twitter. The analysis focused on data pulled from tweets 

in which users posted about their health. The data that was collected over time was examined for 

50 different counties. Autoregressive Integrated Moving Average (ARIMA) models were fit to 

these time series to determine if there were any events leading to increased health problems in a 

particular area. They also fit one ARIMA model to all 50 counties combined. When fitting this 

ARIMA model, the research team used the floor function of the average number of 

autoregressive (AR) and moving average (MA) terms across the sequence of time series to 

determine the number of AR and MA terms to include in a single ARIMA model fit to the 

sequence of simultaneous time series. 

 This research project explored the different methods of fitting a single ARIMA model to 

a sequence of simultaneous time series. Specifically, the difference between using a floor 

function versus a ceiling function was analyzed to determine if one method was more effective 

than the other. Both methods were compared to fitting separate models to each sequence. Eight 

different types of time series were used to test the effectiveness of these different methods.  
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Background 

 This project experimented with fitting models to time series, which are sequences with a 

set order. For the purpose of this research the Autoregressive Integrated Moving Average 

(ARIMA) model was chosen. According to Pennsylvania State University, “ARIMA models, also 

called Box-Jenkins models, are models that may possibly include autoregressive terms, moving 

average terms, and differencing operations” (Section 3.1). This type of model is generally denoted as 

ARIMA(p,d,q), where p represents the autoregressive order, the d represents the differencing, and q 

represents the moving average order. For example, if p=2 and q=1 the ARIMA model would be  

𝑥𝑡 =  𝛼1𝑥𝑡−1 +  𝛼2𝑥𝑡−2 +  𝛽1𝑒𝑡−1 +  𝑒𝑡 , 

where the 𝛼 parameters represent the AR coefficients and 𝛽 represents the MA coefficient. 

Throughout this study differencing will be ignored. In other words the model considered will be 

ARIMA(p,0,q), which is the same as ARMA(p,q). Once the model is fit to the data, it can be used for 

explaining the behavior of the time series or for making predictions.  

 When fitting a model to data, it is important to choose the most effective methods to find the 

best fit model. A statistic used to measure the effectiveness of a fitted model is called the Akaike 

Information Criterion (AIC). The equation for AIC is 

𝐴𝐼𝐶 = 2𝑘 − 2 ln (𝐿) , 

where 𝑘 represents the number of parameters in the model and 𝐿 is the maximum value of the 

likelihood function. The likelihood function is the joint probability distribution of data for a specified 

set of parameter values. The AIC measures the information lost when replacing data with the model 

data. When several different models are created using different methods, the AIC values can be 

compared to determine which model is the best fit.  Although other goodness-of-fit statistics are 

available for comparing models, AIC was used for this study because it is the criterion used by the 

auto.arima command in R to determine and fit best-fit models. 
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Methods 

 In order to experiment with different methods of finding the best fit for a sequence of 

simultaneous time series data, a computer program was written to randomly generate data. For 

each method analyzed, there were twenty sets of fifty randomly generated time series data 

points; the same data was used for analyzing each method.  The result is a collection of twenty 

simultaneous time series, each with fifty observations.   

Since this study considers ARMA time series models with no differencing terms, only the 

autoregressive (AR) and moving average (MA) terms were specified during the data generation. 

The software used for this study was R. The programs written are included in the Appendix. The 

command arima.sim was used to generate the time series data. The command auto.arima was 

then used to fit an ARIMA model to each of the time series. (Because ARMA data was 

generated, any differencing terms included in a best-fit model were ignored.)  

In each of the eight cases examined by these programs, three different AIC values were 

recorded to compare across the different methods. The first AIC recorded was from the best fit 

model fit to each of the twenty different time series, which allows there to be different numbers 

of AR and MA terms for each data set. A best fit model was found for each of the simultaneous 

series using a program that determined the numbers of AR and MA terms and also estimated the 

coefficients for these terms. A possibly different best fit model was found for each of the twenty 

time series. The second and third AIC values were calculated by using the same specified 

numbers of AR and MA terms for each of the twenty sets of data. In these methods the results 

from the first method were used to find the average number of AR and MA terms from fitting a 

separate model to each of the twenty time series.  For one method the floor of the average was 

used to determine the number of terms to estimate; the ceiling of the average was used in the last 

method. The auto.arima command was then used to fit the same ARMA model to each of the 
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twenty time series using the specified number of coefficients. The exact procedure for one of the 

eight cases studied is described below. In order to illustrate the process used, Table 1 shows the 

possible methods for three example series. For Method 1, auto.arima determined the best values 

for p and q for each series. Consequently, Method 1 uses different models for each time series 

whereas Methods 2 and 3 use the same model.  

 

Example Series 

 Series 

Method 1   

 Model Fit 

Method 2 

Model Fit 

Method 3      

Model Fit 

1 p=2, q=1 p=1, q=0 p=2, q=1 

2 p=1, q=1 p=1, q=0 p=2, q=1 

3 p=2, q=0 p=1, q=0 p=2, q=1 

 

Average p = 1.67, 

Average q = 0.67 
  

 

Table 1: Model fits for example series 

 

 The first case examined time series data generated using two fixed autoregressive 

coefficients, 0.1 and 0.5, and one fixed moving average coefficient, 0.2. Thus the equation is 

𝑥𝑡 =  0.1𝑥𝑡−1 + 0.5𝑥𝑡−2 +  0.2𝑒𝑡−1 + 𝑒𝑡 . 

Furthermore, a small standard deviation of √0.15 was used for the random error term. After the 

data had been generated, an ARIMA model was fit to the data. In addition to the AIC value, the 

number of AR and MA terms were extracted from this case and stored in separate matrices for 

further analysis. The mean, minimum, maximum, and standard deviation of the AIC values were 

calculated to be used when comparing the efficiency of the different methods. The next method 

explored in this case was that of taking the floor of the average number of AR and MA terms. 

These values were used to fit an ARIMA model of the order (floor of the average number of AR, 
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0, floor of the average number of MA) to the generated data. The AIC values were stored and 

used to calculate the same statistics as previously mentioned. The last method substituted the 

ceiling function for the floor function. Thus the generated data was fit to an ARIMA model of 

the order (ceiling of the average number of AR, 0, ceiling of the average number of MA) and the 

AIC values were stored.   

 All subsequent cases in this project followed the same procedures as in the first case. The 

second case had the same conditions as the first case where time series data was generated using 

two fixed autoregressive coefficients, 0.1 and 0.5, and one fixed moving average coefficient, 0.2. 

However, a larger standard deviation of √0.5 was used. The third and fourth cases both 

examined time series data generated using two autoregressive terms and one moving average 

term, all of which had random coefficients between 0 and 1. The difference between these cases 

was that the third case used a smaller standard deviation of √0.15 and the fourth case used a 

larger standard deviation of √0.5. The fifth and sixth cases were nearly identical to cases three 

and four, except that the random coefficients were between 0 and 0.5. As before, case five had 

the lower standard deviation while case six had the higher. Finally, cases seven and eight 

examined an even mixture of varying numbers of AR and MA terms with random coefficients 

between 0 and 1. The mixture consisted of four sets of five time series. The four different sets 

were created as follows: 1.) one AR term and one MA term, 2.) one AR term and two MA terms, 

3.) two AR terms and one MA term, and 4.) two AR terms and two MA terms. The four sets 

were combined to form a set of 20 time series, as there had been in the previous cases. The 

difference between these cases was that the seventh case used a smaller standard deviation of 

√0.15 and the eighth case used a larger standard deviation of √0.5. Table 2 below displays all of 

the information for the eight cases. 
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Case p, q values Standard 

Deviation 

 

1 

 

 

2 

 

 

Fixed: p=2, q=1 

 

 

Same as above 

 

Fixed: AR1=0.1, AR2=0.5, 

               MA1=0.2 

 

Same as above 

 

√0.15 
 

 

√0.5 

 

3 

 

4 

 

 

Fixed: p=2, q=1 

 

Same as above 

 

Random between 0 and 1 

 

Same as above 

 

√0.15 
 

√0.5 

 

5 

 

6 

 

 

Fixed: p=2, q=1 

 

Same as above 

 

Random between 0 and 0.5 

 

Same as above 

 

√0.15 
 

√0.5 

 

7 

 

 

 

8 

 

 

Even mixture:  

p (0 to 2) 

q (0 to 2)  

 

Same as above 

 

Random between 0 and 1 

 

 

 

Same as above 

 

√0.15 
 

 

 

√0.5 

 

Table 2: Parameters for the eight cases studied 

These cases were chosen to determine what aspects of times series data impact the effectiveness 

of the model fitting methods. This study focuses on the impact of the values of coefficients of an 

ARMA(2,1) series (fixed, random ranging from 0 to 1, or random ranging from 0 to 0.5) and the 

amount of random variation of the series.   

 

Results 

 The following tables display the AIC values for each method for the eight different cases. 

The values in the tables were used to calculate the average percentage increase in the average 
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AIC to compare the second and third methods with the first method.  That is, the percent increase 

in average AIC indicates how much worse the approach using the same number of AR and MA 

terms in models fit to a simultaneous sequence of time series does compared to fitting separate 

models to each of those time series. 

Fixed p=2 and q=1, set coefficients (AR1=0.1, AR2=0.5, 

MA1=0.2), small SD = √𝟎. 𝟏𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 47.17119 59.24048 58.9313 

Min 30.38086 37.8228 37.8228 

Max 61.51179 87.23085 87.23085 

SD 8.727144 11.02587 10.83969 

 

Table 3: Results for Case 1 

 

Fixed p=2 and q=1, set coefficients(AR1=0.1, AR2=0.5, 

MA1=0.2), large SD = √𝟎. 𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 110.1417 118.2341 118.5153 

Min 93.4908 98.87386 98.87386 

Max 129.493 135.3692 135.3692 

SD 10.12309 11.05805 10.85481 

 

Table 4: Results for Case 2  

 

Fixed p=2 and q=1, random coefficients (1,0,1),  

small SD = √𝟎. 𝟏𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 55.99704 83.73349 74.66904 

Min 51.00926 79.95844 56.54016 

Max 60.98481 87.50853 87.50853 

SD 7.053781 5.338721 16.14755 

 

Table 5: Results for Case 3 
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Fixed p=2 and q=1, random coefficients (1,0,1),  

large SD = √𝟎. 𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 107.3178 110.6135 109.9475 

Min 89.75717 85.97857 85.97857 

Max 121.5015 123.2994 123.2994 

SD 11.97373 15.23562 13.72446 

 

Table 6: Results for Case 4 

 

 

Fixed p=2 and q=1, random coefficients (1,0,0.5),  

small SD = √𝟎. 𝟏𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 50.42602 64.63026 64.36691 

Min 30.26033 42.03672 42.03672 

Max 69.0756 103.345 103.345 

SD 9.30843 18.33312 17.90962 

 

Table 7: Results for Case 5 

 

 

Fixed p=2 and q=1, random coefficients (1,0,0.5),  

large SD = √𝟎. 𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 107.4342 124.3044 124.0324 

Min 86.17369 96.18998 96.18998 

Max 129.4788 170.5216 170.5216 

SD 11.09719 23.51569 22.95412 

 

Table 8: Results for Case 6 
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Even mixture of p and q, random coefficients (1,0,1),  

small SD = √𝟎. 𝟏𝟓 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 54.721 95.04898 90.63482 

Min 26.98535 47.3221 42.07901 

Max 73.21344 195.5535 195.5535 

SD 14.23153 43.53112 44.23242 

 

Table 9: Results for Case 7 

 

Even mixture of p and q, random coefficients (1,0,1),  

large SD =  √0.5 

  

Best fit models 

AIC arima floor AIC arima ceiling AIC 

Mean 109.239 130.5417 130.5296 

Min 85.49435 87.69461 87.69461 

Max 128.4546 189.7017 189.7017 

SD 13.18627 26.50782 25.37934 

 

Table 10: Results for Case 8 

 

 As would be expected, the mean AIC was larger for all three methods for the time series 

data with more variability; this result can be seen by comparing the results for Case 1 and Case 

2, for example.  Also, the mean AIC was always lower when fitting separate models for each 

sequence compared to fitting the same model to each sequence. When comparing the AIC 

statistics in almost all of the cases, excluding Cases 3 and 7, it appears that there is not much 

difference in the AIC values between using the floor versus the ceiling function to estimate the 

number of terms to be used in the ARIMA model. There is a notable difference between the 

results in Cases 3 and 7, however. In these simulations the AIC statistics from using the ceiling 

function are closer to the AIC values from fitting separate best fit models. Therefore it appears 

that in some circumstances it can be more accurate to use the ceiling function instead of the floor 
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function to determine the number of AR and MA terms to fit to a sequence of simultaneous time 

series. To determine which specific circumstances call for the ceiling function, it is beneficial to 

consider the average percentage increase from the best fit models. These percentages are shown 

in Table 11.  

Percent increase from the average AIC from 

the best fit models 

Case Floor Method Ceiling Method 

1 25.59% 24.93% 

2 7.35% 7.60% 

3 49.53% 33.34% 

4 3.07% 2.45% 

5 28.17% 27.65% 

6 15.70% 13.57% 

7 73.70% 65.63% 

8 19.50% 19.49% 

 

Table 11: Percent increase from the best fit model 

 

The differences between the average AIC values ranged from 0.01% to 16.19%. There were 

smaller increases in the average AIC in cases where there was more variability (i.e, Cases 2, 4, 6 

and 8). In these cases there was little to no difference (less than 3%) in the AIC values between 

the floor and ceiling methods. On the other hand, when there was less variability such as in cases 

3 and 7, there was a larger difference. That is, using the ceiling function to determine the number 

of AR and MA terms in these cases produced a smaller average increase in average AIC 

compared to fitting separate models to each time series. Case 5 differs from Case 3 in that a 

narrower range of possible values was used for the AR and MA coefficients.  Therefore, based 

on the research done in this study, using the ceiling function to determine the number of AR and 

MA terms is more effective when there is less variability in the time series and when the AR and 

MA terms have a smaller range of possible values. 
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Conclusion 

The simulations for this study showed that in most of the situations tested both the ceiling 

and the floor functions were equally efficient in fitting the time series. Case 3 consisted of time 

series data that was generated using two autoregressive terms and one moving average term, all 

of which had random coefficients between 0 and 1, and a small standard deviation. Case 7 was 

made up of time series data created by an even mixture of varying numbers of AR and MA terms 

with random coefficients between 0 and 1, and a small standard deviation. In both of these cases, 

using the ceiling of the average number of AR and MA terms was the most effective method. It 

more accurately fit the data and would be more effective for explaining the behavior of the data. 

In conclusion, when fitting an ARIMA model to time series data it is important to consider the 

characteristics of the data and to test the efficiency of different methods in order to choose the 

best fit model.  

 

Future Studies 

 This project focused on eight specific cases. Further studies could be conducted to 

determine if one method is more efficient than the other for different types of data that were not 

considered here. Six of the eight cases focused on ARIMA sets of order (2,0,1). Therefore, it 

would be beneficial to explore ARIMA sets of other various orders such as, (2,0,2), (1,0,1), etc. 

Additionally, the last two cases which examined an even mixture of orders could be altered to be 

an uneven mixture to analyze the effects of added randomness. Other ranges of possible 

coefficients could be considered as well as different amounts of variability, including varying the 

standard deviation for each series. Further aspects that could be changed are the number of 

simultaneous sequences and the number of observations in each sequence.  
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 Other methods for simultaneously fitting a collection of time series data could be 

explored. There is a “grid search” method which is similar to the all possible subsets model 

selection in regression. This method could start with order (1,0,0) fit to all of the time series and 

tries all possible models up to order (𝑘1, 0, 𝑘2) for some specified 𝑘1 and 𝑘2. Another method 

would be to combine all of the sequences into one sequence and find a best fit model. This 

method can be used if the series have roughly the same average and seasonality. Finally, another 

method would be vector auto regression for panel data, which is often used in econometrics.  
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Appendix 

 

Program 1 

 

#Case 1- fixed p=2 and q=1, sd small 

 

library("forecast") 

 

simulation.matrix<-data.frame() 

p<-data.frame() 

q<-data.frame() 

fit.aic<-data.frame() 

 

for (i in 1:20){ 

data<-arima.sim(n=50,list(ar=c(0.1,0.5),ma=.2),sd=sqrt(0.15)) 

  fit<-auto.arima(data) 

  simulation.matrix<-rbind(simulation.matrix,data) 

   

  arma=fit$arma 

p<-rbind(p,arma[1]) 

  q<-rbind(q,arma[2]) 

  fit.aic <- rbind(fit.aic,fit$aic) 

} 

 

mean(fit.aic[,]) 

min(fit.aic[,]) 

max(fit.aic[,]) 

sd(fit.aic[,]) 

 

p.floor<-floor(mean((p[,]))) 

q.floor<-floor(mean(q[,])) 

p.ceiling<-ceiling(mean(p[,])) 

q.ceiling<-ceiling(mean(q[,])) 

 

 

# Method 1 Floor (Case 1) 

 

aic<-data.frame() 

 

for(i in 1:20) { 

data2<-t(simulation.matrix[i,]) 

fit2<-arima(data2,order=c(p.floor,0,q.floor)) 
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aic.value=fit2$aic 

aic<-rbind(aic,aic.value)   

} 

 

mean(aic[,]) 

min(aic[,]) 

max(aic[,]) 

sd(aic[,]) 

 

#Method 2 Ceiling (Case 1) 

 

aic2<-data.frame() 

 

for(i in 1:20) { 

data3<-t(simulation.matrix[i,]) 

fit3<-arima(data3,order=c(p.ceiling,0,q.ceiling)) 

   

aic.value2=fit3$aic 

aic2<-rbind(aic,aic.value2)  

} 

 

mean(aic2[,]) 

min(aic2[,]) 

max(aic2[,]) 

sd(aic2[,]) 

 

 

Program 2 

 

#Case 2- fixed p=2 and q=1, sd large 

 

library("forecast") 

 

simulation.matrixL<-data.frame() 

pL<-data.frame() 

qL<-data.frame() 

fit.aicL<-data.frame() 

 

for (i in 1:20){ 

dataL<-arima.sim(n=50,list(ar=c(0.1,0.5),ma=.2),sd=sqrt(0.5)) 

fitL<-auto.arima(dataL) 

simulation.matrixL<-rbind(simulation.matrixL,dataL) 

   

armaL=fitL$arma 

pL<-rbind(pL,armaL[1]) 
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qL<-rbind(qL,armaL[2]) 

fit.aicL <- rbind(fit.aicL,fitL$aic) 

} 

 

mean(fit.aicL[,]) 

min(fit.aicL[,]) 

max(fit.aicL[,]) 

sd(fit.aicL[,]) 

 

p.floorL<-floor(mean((pL[,]))) 

q.floorL<-floor(mean(qL[,])) 

p.ceilingL<-ceiling(mean(pL[,])) 

q.ceilingL<-ceiling(mean(qL[,])) 

 

# Method 1 Floor (Case 2) 

 

aicL<-data.frame() 

 

for(i in 1:20) { 

data2L<-t(simulation.matrixL[i,]) 

fit2L<-arima(data2L,order=c(p.floorL,0,q.floorL)) 

   

aic.valueL=fit2L$aic 

aicL<-rbind(aicL,aic.valueL)  

} 

 

mean(aicL[,]) 

min(aicL[,]) 

max(aicL[,]) 

sd(aicL[,]) 

 

#Method 2 Ceiling (Case 2) 

 

aic2L<-data.frame() 

 

for(i in 1:20) { 

data3L<-t(simulation.matrixL[i,]) 

fit3L<-arima(data3L,order=c(p.ceilingL,0,q.ceilingL)) 

   

aic.value2L=fit3L$aic 

aic2L<-rbind(aicL,aic.value2L) 

} 

 

mean(aic2L[,]) 

min(aic2L[,]) 

max(aic2L[,]) 



19 

 

sd(aic2L[,]) 

 

 

Program 3  

 

#Case 3- fixed random p=2 and q=1, sd small, runif(1,0,1) 

 

library("forecast") 

 

simulation.matrixC2<-data.frame() 

pC2<-data.frame() 

qC2<-data.frame() 

fit.aicC2<-data.frame() 

 

for (i in 1:20){ 

dataC2<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=runif(1,0,1)),sd=sqrt(0.15)) 

fitC2<-auto.arima(dataC2) 

simulation.matrixC2<-rbind(simulation.matrixC2,dataC2) 

   

armaC2=fitC2$arma 

pC2<-rbind(pC2,armaC2[1]) 

qC2<-rbind(qC2,armaC2[2]) 

fit.aicC2 <- rbind(fit.aicC2,fitC2$aic) 

} 

 

mean(fit.aicC2[,]) 

min(fit.aicC2[,]) 

max(fit.aicC2[,]) 

sd(fit.aicC2[,]) 

 

p.floorC2<-floor(mean((pC2[,]))) 

q.floorC2<-floor(mean(qC2[,])) 

p.ceilingC2<-ceiling(mean(pC2[,])) 

q.ceilingC2<-ceiling(mean(qC2[,])) 

 

 

# Method 1 Floor (Case 3) 

 

aicC2<-data.frame() 

 

for(i in 1:20) { 

data2C2<-t(simulation.matrixC2[i,]) 

fit2C2<-arima(data2C2,order=c(p.floorC2,0,q.floorC2)) 

   

aic.valueC2=fit2C2$aic 
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  aicC2<-rbind(aicC2,aic.valueC2) 

} 

 

mean(aicC2[,]) 

min(aicC2[,]) 

max(aicC2[,]) 

sd(aicC2[,]) 

 

#Method 2 Ceiling (Case 3) 

 

aic2C2<-data.frame() 

 

for(i in 1:20) { 

data3C2<-t(simulation.matrixC2[i,]) 

fit3C2<-arima(data3C2,order=c(p.ceilingC2,0,q.ceilingC2)) 

   

aic.value2C2=fit3C2$aic 

aic2C2<-rbind(aicC2,aic.value2C2) 

} 

 

mean(aic2C2[,]) 

min(aic2C2[,]) 

max(aic2C2[,]) 

sd(aic2C2[,]) 

 

 

Program 4 

 

#Case 4- fixed random p=2 and q=1, sd large, runif(1,0,1) 

 

library("forecast") 

 

simulation.matrixLC2<-data.frame() 

pLC2<-data.frame() 

qLC2<-data.frame() 

fit.aicLC2<-data.frame() 

 

for (i in 1:20){ 

dataLC2<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=runif(1,0,1)),sd=sqrt(0.5)) 

fitLC2<-auto.arima(dataLC2) 

simulation.matrixLC2<-rbind(simulation.matrixLC2,dataLC2) 

 

  armaLC2=fitLC2$arma 

  pLC2<-rbind(pLC2,armaLC2[1]) 

  qLC2<-rbind(qLC2,armaLC2[2]) 
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fit.aicLC2 <- rbind(fit.aicLC2,fitLC2$aic) 

} 

 

mean(fit.aicLC2[,]) 

min(fit.aicLC2[,]) 

max(fit.aicLC2[,]) 

sd(fit.aicLC2[,]) 

 

p.floorLC2<-floor(mean((pLC2[,]))) 

q.floorLC2<-floor(mean(qLC2[,])) 

p.ceilingLC2<-ceiling(mean(pLC2[,])) 

q.ceilingLC2<-ceiling(mean(qLC2[,])) 

 

# Method 1 Floor (Case 4) 

 

aicLC2<-data.frame() 

 

for(i in 1:20) { 

data2LC2<-t(simulation.matrixLC2[i,]) 

fit2LC2<-arima(data2LC2,order=c(p.floorLC2,0,q.floorLC2)) 

  

aic.valueLC2=fit2LC2$aic 

aicLC2<-rbind(aicLC2,aic.valueLC2) 

} 

 

mean(aicLC2[,]) 

min(aicLC2[,]) 

max(aicLC2[,]) 

sd(aicLC2[,]) 

 

#Method 2 Ceiling (Case 4) 

 

aic2LC2<-data.frame() 

 

for(i in 1:20) { 

data3LC2<-t(simulation.matrixLC2[i,]) 

fit3LC2<-arima(data3LC2,order=c(p.ceilingLC2,0,q.ceilingLC2)) 

  

aic.value2LC2=fit3LC2$aic 

aic2LC2<-rbind(aicLC2,aic.value2LC2) 

} 

 

mean(aic2LC2[,]) 

min(aic2LC2[,]) 

max(aic2LC2[,]) 

sd(aic2LC2[,]) 
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Program 5 

 

#Case 5- fixed random p=2 and q=1, sd small, runif(1,0,0.5) 

 

library("forecast") 

 

simulation.matrixC3<-data.frame() 

pC3<-data.frame() 

qC3<-data.frame() 

fit.aicC3<-data.frame() 

 

for (i in 1:20){ 

dataC3<-arima.sim(n=50,list(ar=c(runif(1,0,0.5),runif(1,0,0.5)), 

ma=runif(1,0,0.5)),sd=sqrt(0.15)) 

  fitC3<-auto.arima(dataC3) 

  simulation.matrixC3<-rbind(simulation.matrixC3,dataC3) 

   

  armaC3=fitC3$arma 

  pC3<-rbind(pC3,armaC3[1]) 

  qC3<-rbind(qC3,armaC3[2]) 

  fit.aicC3 <- rbind(fit.aicC3,fitC3$aic) 

} 

 

mean(fit.aicC3[,]) 

min(fit.aicC3[,]) 

max(fit.aicC3[,]) 

sd(fit.aicC3[,]) 

 

p.floorC3<-floor(mean((pC3[,]))) 

q.floorC3<-floor(mean(qC3[,])) 

p.ceilingC3<-ceiling(mean(pC3[,])) 

q.ceilingC3<-ceiling(mean(qC3[,])) 

 

# Method 1 Floor (Case 5) 

 

aicC3<-data.frame() 

 

for(i in 1:20) { 

data2C3<-t(simulation.matrixC3[i,]) 

fit2C3<-arima(data2C3,order=c(p.floorC3,0,q.floorC3)) 

   

aic.valueC3=fit2C3$aic 

aicC3<-rbind(aicC3,aic.valueC3) 

} 
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mean(aicC3[,]) 

min(aicC3[,]) 

max(aicC3[,]) 

sd(aicC3[,]) 

 

#Method 2 Ceiling (Case 5) 

 

aic2C3<-data.frame() 

 

for(i in 1:20) { 

data3C3<-t(simulation.matrixC3[i,]) 

fit3C3<-arima(data3C3,order=c(p.ceilingC3,0,q.ceilingC3)) 

   

aic.value2C3=fit3C3$aic 

aic2C3<-rbind(aicC3,aic.value2C3) 

} 

 

mean(aic2C3[,]) 

min(aic2C3[,]) 

max(aic2C3[,]) 

sd(aic2C3[,]) 

 

Program 6  

 

#Case 6- fixed random p=2 and q=1, sd large, runif(1,0,0.5) 

 

library("forecast") 

 

simulation.matrixLC3<-data.frame() 

pLC3<-data.frame() 

qLC3<-data.frame() 

fit.aicLC3<-data.frame() 

 

for (i in 1:20){ 

dataLC3<-arima.sim(n=50,list(ar=c(runif(1,0,0.5),runif(1,0,0.5)), 

ma=runif(1,0,0.5)),sd=sqrt(0.5)) 

  fitLC3<-auto.arima(dataLC3) 

  simulation.matrixLC3<-rbind(simulation.matrixLC3,dataLC3) 

   

  armaLC3=fitLC3$arma 

  pLC3<-rbind(pLC3,armaLC3[1]) 

  qLC3<-rbind(qLC3,armaLC3[2]) 

  fit.aicLC3 <- rbind(fit.aicLC3,fitLC3$aic) 

} 

 

mean(fit.aicLC3[,]) 
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min(fit.aicLC3[,]) 

max(fit.aicLC3[,]) 

sd(fit.aicLC3[,]) 

 

p.floorLC3<-floor(mean((pLC3[,]))) 

q.floorLC3<-floor(mean(qLC3[,])) 

p.ceilingLC3<-ceiling(mean(pLC3[,])) 

q.ceilingLC3<-ceiling(mean(qLC3[,])) 

 

# Method 1 Floor (Case 6) 

 

aicLC3<-data.frame() 

 

for(i in 1:20) { 

data2LC3<-t(simulation.matrixLC3[i,]) 

fit2LC3<-arima(data2LC3,order=c(p.floorLC3,0,q.floorLC3)) 

   

aic.valueLC3=fit2LC3$aic 

aicLC3<-rbind(aicLC3,aic.valueLC3) 

} 

 

mean(aicLC3[,]) 

min(aicLC3[,]) 

max(aicLC3[,]) 

sd(aicLC3[,]) 

 

#Method 2 Ceiling (Case 6) 

 

aic2LC3<-data.frame() 

 

for(i in 1:20) { 

data3LC3<-t(simulation.matrixLC3[i,]) 

fit3LC3<-arima(data3LC3,order=c(p.ceilingLC3,0,q.ceilingLC3)) 

   

aic.value2LC3=fit3LC3$aic 

aic2LC3<-rbind(aicLC3,aic.value2LC3) 

} 

 

mean(aic2LC3[,]) 

min(aic2LC3[,]) 

max(aic2LC3[,]) 

sd(aic2LC3[,]) 

 

Program 7 

 

#Case 7- even mixture of random p and q, sd small  
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library("forecast") 

 

simulation.matrixC4<-data.frame() 

pC4<-data.frame() 

qC4<-data.frame() 

fit.aicC4<-data.frame() 

 

for (i in 1:5){ 

dataC4<-arima.sim(n=50,list(ar=c(runif(1,0,1)),ma=runif(1,0,1)),sd=sqrt(0.15)) 

fitC4<-auto.arima(dataC4) 

simulation.matrixC4<-rbind(simulation.matrixC4,dataC4) 

   

armaC4=fitC4$arma 

  pC4<-rbind(pC4,armaC4[1]) 

qC4<-rbind(qC4,armaC4[2]) 

fit.aicC4 <- rbind(fit.aicC4,fitC4$aic) 

} 

 

for (i in 1:5){ 

dataC4<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=runif(1,0,1)),sd=sqrt(0.15)) 

fitC4<-auto.arima(dataC4) 

simulation.matrixC4<-rbind(simulation.matrixC4,dataC4) 

   

  armaC4=fitC4$arma 

  pC4<-rbind(pC4,armaC4[1]) 

  qC4<-rbind(qC4,armaC4[2]) 

  fit.aicC4 <- rbind(fit.aicC4,fitC4$aic) 

} 

 

for (i in 1:5){ 

  dataC4<-arima.sim(n=50,list(ar=c(runif(1,0,1)), 

ma=c(runif(1,0,1),runif(1,0,1))),sd=sqrt(0.15)) 

  fitC4<-auto.arima(dataC4) 

  simulation.matrixC4<-rbind(simulation.matrixC4,dataC4) 

   

  armaC4=fitC4$arma 

  pC4<-rbind(pC4,armaC4[1]) 

  qC4<-rbind(qC4,armaC4[2]) 

  fit.aicC4 <- rbind(fit.aicC4,fitC4$aic) 

} 

 

for (i in 1:5){ 

dataC4<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=c(runif(1,0,1),runif(1,0,1))),sd=sqrt(0.15)) 

fitC4<-auto.arima(dataC4) 
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simulation.matrixC4<-rbind(simulation.matrixC4,dataC4) 

   

armaC4=fitC4$arma 

pC4<-rbind(pC4,armaC4[1]) 

qC4<-rbind(qC4,armaC4[2]) 

fit.aicC4 <- rbind(fit.aicC4,fitC4$aic) 

} 

 

mean(fit.aicC4[,]) 

min(fit.aicC4[,]) 

max(fit.aicC4[,]) 

sd(fit.aicC4[,]) 

 

p.floorC4<-floor(mean((pC4[,]))) 

q.floorC4<-floor(mean(qC4[,])) 

p.ceilingC4<-ceiling(mean(pC4[,])) 

q.ceilingC4<-ceiling(mean(qC4[,])) 

 

# Method 1 Floor (Case 7) 

 

aicC4<-data.frame() 

 

for(i in 1:20) { 

data2C4<-t(simulation.matrixC4[i,]) 

fit2C4<-arima(data2C4,order=c(p.floorC4,0,q.floorC4)) 

   

aic.valueC4=fit2C4$aic 

aicC4<-rbind(aicC4,aic.valueC4) 

} 

 

mean(aicC4[,]) 

min(aicC4[,]) 

max(aicC4[,]) 

sd(aicC4[,]) 

 

#Method 2 Ceiling (Case 7) 

 

aic2C4<-data.frame() 

 

for(i in 1:20) { 

data3C4<-t(simulation.matrixC4[i,]) 

fit3C4<-arima(data3C4,order=c(p.ceilingC4,0,q.ceilingC4)) 

   

aic.value2C4=fit3C4$aic 

aic2C4<-rbind(aicC4,aic.value2C4) 

} 



27 

 

 

mean(aic2C4[,]) 

min(aic2C4[,]) 

max(aic2C4[,]) 

sd(aic2C4[,]) 

 

Program 8  
 

#Case 8- even mixture of random p and q, sd large 

 

library("forecast") 

 

simulation.matrixLC4<-data.frame() 

pLC4<-data.frame() 

qLC4<-data.frame() 

fit.aicLC4<-data.frame() 

 

for (i in 1:5){ 

dataLC4<-arima.sim(n=50,list(ar=c(runif(1,0,1)),ma=runif(1,0,1)),sd=sqrt(0.5)) 

fitLC4<-auto.arima(dataLC4) 

simulation.matrixLC4<-rbind(simulation.matrixLC4,dataLC4) 

   

armaLC4=fitLC4$arma 

pLC4<-rbind(pLC4,armaLC4[1]) 

qLC4<-rbind(qLC4,armaLC4[2]) 

fit.aicLC4 <- rbind(fit.aicLC4,fitLC4$aic) 

} 

 

for (i in 1:5){ 

dataLC4<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=runif(1,0,1)),sd=sqrt(0.5)) 

fitLC4<-auto.arima(dataLC4) 

simulation.matrixLC4<-rbind(simulation.matrixLC4,dataLC4) 

   

armaLC4=fitLC4$arma 

pLC4<-rbind(pLC4,armaLC4[1]) 

qLC4<-rbind(qLC4,armaLC4[2]) 

fit.aicLC4 <- rbind(fit.aicLC4,fitLC4$aic) 

} 

 

for (i in 1:5){ 

dataLC4<-arima.sim(n=50,list(ar=c(runif(1,0,1)), 

ma=c(runif(1,0,1),runif(1,0,1))),sd=sqrt(0.5)) 

fitLC4<-auto.arima(dataLC4) 

simulation.matrixLC4<-rbind(simulation.matrixLC4,dataLC4) 
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armaLC4=fitLC4$arma 

pLC4<-rbind(pLC4,armaLC4[1]) 

qLC4<-rbind(qLC4,armaLC4[2]) 

fit.aicLC4 <- rbind(fit.aicLC4,fitLC4$aic) 

} 

 

for (i in 1:5){ 

dataLC4<-arima.sim(n=50,list(ar=c(runif(1,0,1),runif(1,0,1)), 

ma=c(runif(1,0,1),runif(1,0,1))),sd=sqrt(0.5)) 

fitLC4<-auto.arima(dataLC4) 

simulation.matrixLC4<-rbind(simulation.matrixLC4,dataLC4) 

   

armaLC4=fitLC4$arma 

pLC4<-rbind(pLC4,armaLC4[1]) 

qLC4<-rbind(qLC4,armaLC4[2]) 

fit.aicLC4 <- rbind(fit.aicLC4,fitLC4$aic) 

} 

 

mean(fit.aicLC4[,]) 

min(fit.aicLC4[,]) 

max(fit.aicLC4[,]) 

sd(fit.aicLC4[,]) 

 

p.floorLC4<-floor(mean((pLC4[,]))) 

q.floorLC4<-floor(mean(qLC4[,])) 

p.ceilingLC4<-ceiling(mean(pLC4[,])) 

q.ceilingLC4<-ceiling(mean(qLC4[,])) 

 

# Method 1 Floor (Case 8) 

 

aicLC4<-data.frame() 

 

for(i in 1:20) { 

data2LC4<-t(simulation.matrixLC4[i,]) 

fit2LC4<-arima(data2LC4,order=c(p.floorLC4,0,q.floorLC4)) 

   

aic.valueLC4=fit2LC4$aic 

aicLC4<-rbind(aicLC4,aic.valueLC4)  

} 

 

mean(aicLC4[,]) 

min(aicLC4[,]) 

max(aicLC4[,]) 

sd(aicLC4[,]) 

 

#Method 2 Ceiling (Case 8) 
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aic2LC4<-data.frame() 

 

for(i in 1:20) { 

data3LC4<-t(simulation.matrixLC4[i,]) 

fit3LC4<-arima(data3LC4,order=c(p.ceilingLC4,0,q.ceilingLC4)) 

   

aic.value2LC4=fit3LC4$aic 

aic2LC4<-rbind(aicLC4,aic.value2LC4) 

} 

 

mean(aic2LC4[,]) 

min(aic2LC4[,]) 

max(aic2LC4[,]) 

sd(aic2LC4[,]) 
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