
University of Mary Washington
Eagle Scholar

Student Research Submissions

Spring 4-28-2016

The Ko-Lee Key Exchange Protocol with
Generalized Dihedral Groups
Christopher Lloyd

Follow this and additional works at: https://scholar.umw.edu/student_research

Part of the Mathematics Commons

This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by
an authorized administrator of Eagle Scholar. For more information, please contact archives@umw.edu.

Recommended Citation
Lloyd, Christopher, "The Ko-Lee Key Exchange Protocol with Generalized Dihedral Groups" (2016). Student Research Submissions.
53.
https://scholar.umw.edu/student_research/53

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eagle Scholar University of Mary Washington

https://core.ac.uk/display/233191338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.umw.edu?utm_source=scholar.umw.edu%2Fstudent_research%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research?utm_source=scholar.umw.edu%2Fstudent_research%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholar.umw.edu%2Fstudent_research%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.umw.edu/student_research/53?utm_source=scholar.umw.edu%2Fstudent_research%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:archives@umw.edu

 THE KO-LEE KEY EXCHANGE PROTOCOL WITH GENERALIZED DIHEDRAL GROUPS

An honors paper submitted to the Department of Mathematics

of the University of Mary Washington

 in partial fulfillment of the requirements for Departmental Honors

Christopher Lloyd

April 2016

 By signing your name below, you affirm that this work is the complete and final version
 of your paper submitted in partial fulfillment of a degree from the University of Mary
 Washington. You affirm the University of Mary Washington honor pledge: "I hereby declare
 upon my word of honor that I have neither given nor received unauthorized help on this
 work."

Christopher James Robert Lloyd
(digital signature)

04/28/16

The Ko-Lee Key Exchange Protocol with

Generalized Dihedral Groups

Christopher Lloyd

submitted in partial fulfillment of the requirements for Honors in
Mathematics at the University of Mary Washington

Fredericksburg, Virginia

April 2016

This thesis by Christopher Lloyd is accepted in its present form as satisfying the thesis require-
ment for Honors in Mathematics.

Date Approved

Randall D. Helmstutler, Ph.D.
thesis advisor

Janusz Konieczny, Ph.D.
committee member

Keith E. Mellinger, Ph.D.
committee member

Acknowledgments

I would like to thank Dr. Randall D. Helmstutler for his exceptional guidance and attention to detail.
Furthermore I greatly appreciate the work of my committee members, Dr. Janusz Konieczny and
Dr. Keith E. Mellinger. Lastly, I would like to thank my friend Pengcheng Zhang for his input at
various stages of this paper.

Contents

1 Introduction 1
1.1 The Diffie-Hellman Key Exchange Protocol . 1
1.2 The Ko-Lee Key Exchange Protocol . 2
1.3 Selecting a Platform Group . 3

2 Background 4
2.1 Generalized Dihedral Groups . 4
2.2 Strengths of D(A) . 6
2.3 Complexity Theory . 7

3 Analysis of Ko-Lee 8
3.1 Presentation of D(A) . 8
3.2 Normal Forms . 11
3.3 Ko-Lee with D(A) . 13
3.4 Conditions for Ko-Lee . 15
3.5 Conjugate Attack on Ko-Lee . 18

References 22

Abstract

Given an arbitrary abelian group A, one may form the generalized dihedral group D(A). As
D(A) is usually non-abelian, this makes it a possible candidate for use with certain non-
commutative key exchange protocols. Specifically, we examine the security of using D(A) with
the Ko-Lee key exchange protocol. An appropriate presentation for D(A) is developed alongside
methods for computing within the group in the context of the Ko-Lee protocol. Lastly we show
that for such groups Ko-Lee is susceptible to a polynomial time attack.

1 Introduction

1.1 The Diffie-Hellman Key Exchange Protocol

Key exchange protocols facilitate the construction of a common key between two parties over an
insecure channel. The Diffie-Hellman protocol was the first of such protocols, originally published
in 1976 [1]. We will present an implementation of the Diffie-Hellman protocol that operates on the
group of units Z∗p of the field Zp for a fixed prime p.

Diffie-Hellman Protocol:

1. Alice and Bob agree on some large prime p.

2. Alice and Bob publicly agree on some g ∈ Z∗p.

3. Alice secretly selects a ∈ Z and sends ga to Bob.

4. Bob secretly selects b ∈ Z and sends gb to Alice.

5. Alice computes KA =
(
gb
)a

= gba.

6. Bob computes KB = (ga)b = gab.

7. The resulting private key is K = KA = KB as ab = ba.

Example 1.1. Suppose Alice and Bob agree on p = 1049 and g = 876. Next they each decide
on secret elements a = 123 and b = 500. Working modulo 1049, Alice computes ga = 681 while
Bob computes gb = 551. Now Bob computes KB = (ga)b = 681500 = 8 and Alice computes
KA =

(
gb
)a

= 551123 = 8. Thus KA = KB as desired.

We will now highlight the main underlying assumption of the Diffie-Hellman protocol. It is
assumed that given g and ga that it is computationally infeasible to compute the value of a. If an
attacker could obtain a from g and ga the following attack would be possible.

Diffie-Hellman Attack:

Suppose that given g and ga an attacker could efficiently compute a. As gb is public, the
attacker would be able to obtain the secret key by computing

(gb)a = KA.

The problem of computing the value of a given g and ga is known as the discrete log problem.
Determining the computational complexity of the discrete log problem is still an open question,

1

although it is assumed to be computationally infeasible. This is all to say that research in cryp-
tography is very active and for good reason. For the interest of developing more secure protocols,
non-commutative key exchange protocols have been proposed. The simplest of such protocols is
the Ko-Lee protocol, which will be presented in the following section.

1.2 The Ko-Lee Key Exchange Protocol

The Diffie-Hellman protocol relies on modular exponentiation as the primary operation. The Ko-Lee
Protocol, which was originally published in 2000, utilizes conjugation as its primary operation [3].

Convention. Let x and y be elements of the group G. We write xy for the element y−1xy.

This is known as the conjugate of x by y. Here we will summarize some of the basic properties
of conjugation.

Proposition 1.2. Let G be a group. For any elements x, y, and z in G, the following statements
hold:

1. (zx)y = zxy

2. (zx)−1 =
(
z−1
)x

3. (zx)y = (zy)x whenever xy = yx

4. (zy)x = zxyx.

The above laws follow directly from the fact that conjugation defines an action of G on itself
by automorphisms [2]. Using these conjugates, we may now give a description of the Ko-Lee key
exchange protocol.

Ko-Lee Protocol:

1. Alice and Bob publicly agree on a non-abelian group G with an abelian subgroup C.

2. They publicly agree on some w ∈ G.

3. Alice secretly selects a ∈ C and sends wa to Bob.

4. Bob secretly selects b ∈ C and sends wb to Alice.

5. Alice computes KA = (wb)a = wba.

6. Bob computes KB = (wa)b = wab.

7. The resultant private key is K = KA = KB as a, b ∈ C.

From the third item in Proposition 1.2 we see that if ab = ba, then (wb)a = (wa)b. Thus to
ensure that KA = KB, we must demand that C is an abelian subgroup.

Example 1.3. For this example we choose the platform group to be the symmetric group S4. We
will express the elements of S4 in cycle notation. We select the abelian subgroup C to be the cyclic
subgroup

C = {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)} .

It may be checked that C is generated by (1 2 3 4). Next the public element w = (1 2) is chosen.
Now Alice and Bob select their secret elements from C. Alice selects a = (1 4 3 2) and Bob selects

2

b = (1 3)(2 4). Next the conjugates wa and wb need to be computed. This requires the values of
a−1 and b−1. It may be checked that a−1 = (1 2 3 4) and b−1 = (1 3)(2 4). Now Alice computes

wa = (1 4 3 2)−1(1 2)(1 4 3 2)

= (1 2 3 4)(1 2)(1 4 3 2)

= (1 3 4)(1 4 3 2)

= (2 3)

and sends it to Bob. Next Bob computes

wb = ((1 3)(2 4))−1 (1 2)(1 3)(2 4)

= (1 3)(2 4)(1 2)(1 3)(2 4)

= (1 4 2 3)(1 3)(2 4)

= (3 4)

and sends it to Alice. The last step is for Alice and Bob to compute the secret key. Thus Alice
computes

KA = (wb)a

= (1 4 3 2)−1(3 4)(1 4 3 2)

= (1 2 3 4)(3 4)(1 4 3 2)

= (1 3 4)(1 4 3 2)

= (1 4).

Likewise Bob computes

KB = (wa)b

= ((1 3)(2 4))−1 (2 3)(1 3)(2 4)

= (1 3)(2 4)(2 3)(1 3)(2 4)

= (1 3 4 2)(1 3)(2 4)

= (1 4).

Hence KA = KB as desired.

1.3 Selecting a Platform Group

Every key exchange protocol relies on the selection of an appropriate platform group. If the group
is too small or has certain undesirable properties, then the resultant key exchange protocol may be
insecure. The Ko-Lee protocol was originally used with infinite braid groups [3]. The idea of using
infinite groups for key exchange protocols is very attractive. In an ideal implementation an attacker
would be forced to check an infinite amount of things, which would make the protocol impossible to
break by brute force. The question of the feasibility of using infinite groups for non-commutative
key exchange protocols is very much under investigation. The research monograph [4] explores this
question in great depth.

Here we will instead examine the use of an infinite class of finite non-abelian groups known
as the generalized dihedral groups. From a cryptographic viewpoint these groups are interesting
because they are easy to construct, are generally non-abelian, and contain a very large abelian
subgroup. This subgroup provides ample choices for the secret elements needed for the Ko-Lee
protocol.

3

2 Background

2.1 Generalized Dihedral Groups

Throughout this paper we will work mostly multiplicatively. Hence instead of using the additive
group Zn we will use the isomorphic multiplicative cyclic group Cn. In particular we may take C2

to be the set {−1, 1} under the operation of integer multiplication.

Definition 2.1. Let A be an abelian group. The set C2 ×A together with the operation

(a, b)(c, d) = (ac, bcd)

forms a group called the generalized dihedral group on A. We denote this group by D(A).

The requirement of A being abelian is non-negotiable, as without it D(A) fails to form a group.
It may be shown that D(Cn) is isomorphic to the classical dihedral group Dn; this explains the
terminology. A proof of this fact may be found in Proposition 3.13. From this definition it is
immediate that the order of D(A) is twice that of A. Under the given operation it is easy to check
that the identity element of D(A) is the element (1, e), where e is the identity element of A.

Convention. An element x of D(A) will always be given as x = (x1, x2).

Proposition 2.2. The computation of the inverse of an element x from D(A) comes in two cases:

(x1, x2)
−1 =

{(
x1, x

−1
2

)
, x1 = 1

(x1, x2), x1 = −1.

This may be checked through direct computation. Now we will characterize exactly when D(A)
is non-abelian.

Convention. Let A be an abelian group. We adopt the notation that A2 denotes the subgroup

A2 =
{
g ∈ A | g2 = e

}
.

Notice that the elements of A2 are precisely the elements that are their own inverses.

Proposition 2.3. Let A be an abelian group. The group D(A) is abelian if and only if A = A2.

Proof. Suppose that A = A2, so that every element of A is its own inverse. Let x and y be elements
of D(A). We may now compute as follows:

(x1, x2)(y1, y2) = (x1y1, x
y1
2 y2)

= (x1y1, x2y2) (x±12 = x2)

= (x1y1, x2y
x1
2) (y±12 = y2)

= (y1x1, y
x1
2 x2)

= (y1, y2)(x1, x2).

Thus D(A) is abelian. Conversely, suppose that D(A) is abelian and let x2 ∈ A. Then we have

(−1, e)(−1, x2) = (−1, x2)(−1, e)

(1, x2) = (1, x−12).

Thus we have x22 = e and thus x2 ∈ A2. As x2 is an arbitrary element of A we have shown that
A = A2.

4

There are four main types of elements of D(A) that we will concern ourselves with throughout
this paper. For the sake of discussion we give them names as follows:

D(A) Element Types

Name Form Condition

Type 1 (1, b) b2 = e

Type 2 (1, b) b2 6= e

Type 3 (−1, b) b2 = e

Type 4 (−1, b) b2 6= e

Notice that Type 2 and Type 4 elements only exist when D(A) is non-abelian. Next we examine
the commutativity of the various types of elements.

Proposition 2.4. The subgroup {(1, x2) | x2 ∈ A} of D(A) is isomorphic to A.

Proposition 2.5. Let x and y be elements of D(A). The elements x and y commute if and only
if one of the following conditions holds:

1. x = (1, x2), y = (1, y2)

2. x = (−1, x2), y = (−1, y2), and x22 = y22

3. x = (−1, x2), y = (1, y2), and y22 = e

4. x = (1, x2), y = (−1, y2), and x22 = e.

Proof. Suppose that any one of the above cases holds. Through direct calculation one may check
that the given elements commute. Conversely, suppose that xy = yx for some x and y from D(A).
This implies that xy12 y2 = yx12 x2. If x1 = 1 and y1 = 1, then the first case holds. Next, if x1 = −1
and y1 = −1, then x22 = y22 which means the second case holds. Next, if x1 = −1 and y1 = 1, then
x2y2 = y−12 x2. This simplifies to y22 = e, thus the third case holds. Lastly, if x1 = 1 and y1 = −1,
then x−12 y2 = y2x2. This simplifies to x22 = e, hence the fourth case holds.

Proposition 2.6. If D(A) is non-abelian, then its center is the set of all Type 1 elements.

This result follows directly from Proposition 2.5. Now recalling that {(1, x2) | x2 ∈ A} ∼= A, we
see that the center of D(A) is isomorphic to A2.

Proposition 2.7. The probability of an element (x1, x2) ∈ D(A) commuting with another randomly
chosen element is given by the function

P (x1, x2) =


1 x1 = 1, x22 = e
1
2 x1 = 1, x22 6= e
|A2|
|A| x1 = −1.

Proof. To begin we consider an element of the form (1, x2) where x22 = e. This element is in the
center and hence P (1, x2) = 1. Next, consider an element (1, x2) where x22 6= e. From Proposi-

tion 2.5 this element only commutes with elements of the form (1, y2), hence P (1, x2) = |A|
|D(A)| = 1

2 .

Lastly, consider an element of the form (−1, x2). This element commutes with an element of the

form (1, y2) only if y22 = e, hence P (−1, x2) ≥ |A2|
|D(A)| . Thus the only remaining possibility is that

5

(−1, x2) may commute with an element of the form (−1, y2). This occurs precisely when x22 = y22.
For convenience we define the set of all elements of A that square to the same value as y ∈ A by

Sq(y) =
{
z ∈ A | z2 = y2

}
.

This results in

P (−1, x2) =
|A2|
|D(A)|

+
Sq(x2)

|D(A)|
.

It may be checked that fy : A2 → Sq(y) defined by fy(t) = yt is a bijection, hence |A2| = |Sq(x2)|.
Thus we have the simplified expression

P (−1, x2) =
2|A2|
|D(A)|

=
|A2|
|A|

.

It is worth noting that |A2|
|A| is precisely the reciprocal of the index [A : A2].

2.2 Strengths of D(A)

In the Ko-Lee protocol we saw the need for specifying an abelian subgroup C from which the secret
elements a and b are selected. For many classes of non-abelian groups selecting an appropriate
abelian subgroup is challenging. In D(A) there is a very natural candidate for C, namely the
abelian subgroup A from Proposition 2.4. Furthermore as A is index two, A is a maximal normal
subgroup of D(A).

Definition 2.8. Let A be a finite abelian group. We say that A has signature [n1, n2, . . . , nk] if

A ∼= Cn1 × Cn2 × · · · × Cnk
.

Due to the Fundamental Theorem of Finite Abelian Groups, every finite abelian group is given
by some signature. It is important to note that the signature is by no means unique. There are
at least as many signatures for A as ways to factor |A| into powers of primes. This concept of
signature allows us to quickly define an abelian group, and in turn a generalized dihedral group.
Furthermore, with just the signature of A one may easily determine whether or not D(A) is abelian.

Example 2.9. Consider A = C2×C5×C10×C13. A valid signature for A is [2, 5, 10, 13]. Another
more compact signature is [10, 130], since Cn × Cm ∼= Cnm when n and m are relatively prime.

Proposition 2.10. Let A be a finite abelian group. The group D(A) is abelian if and only if A is
given by the signature [2, 2, . . . , 2].

Proof. Suppose that A has signature [2, 2, . . . , 2]. Then A = A2, hence A is abelian. Conversely,
suppose D(A) is abelian and A has signature [n1, n2, . . . , nk]. Let αi be a generator of Cni . As
D(A) is abelian, A = A2 by Proposition 2.3. Then the element (α1, α2, . . . , αk) ∈ A must have
order two. Thus we have α2

i = e for all i, hence Cni has order two.

Convention. For the remainder of this paper we will assume that D(A) is non-abelian unless
otherwise noted.

6

2.3 Complexity Theory

Complexity theory concerns itself with the techniques of categorizing the difficulty of computational
problems. One of the most common methods of categorization is asymptotic analysis, in which the
growth of the input length of a problem is compared to the time required to solve the problem on
that input. This is defined formally in terms of big-O notation. Let f and g be functions from the
natural numbers into the positive reals. We write f ∈ O(g) if there exist natural numbers d and N
such that f(n) ≤ dg(n) whenever n ≥ N . For an in-depth treatment of the basics of computational
complexity see [5].

Example 2.11. Consider the functions f and g defined on N by f(n) = 4n3+2n+1 and g(n) = n3.
Take d = 12 and N = 1. We may compute

dg(n) = 12n3

= 4n3 + 4n3 + 4n3.

Notice that for all n ≥ 1 we have that 4n3 ≥ 2n and 4n3 ≥ 1, hence for all n ≥ 1 we have that

dg(n) ≥ 4n3 + 2n+ 1

≥ f(n).

That is, 4n3 + 2n+ 1 ∈ O(n3).

Now we will examine an algorithm that takes an integer n and returns a list of all divisors.
Although seemingly simple, measuring this algorithm’s complexity is deceptively complicated.

Example 2.12. This algorithm works by checking if each positive integer less than or equal to n
divides n. Below is a sample implementation.

1: procedure FindFactors(n)
2: declare array[n]
3: i := 1
4: while i ≤ n do
5: if n mod i = 0 then
6: array[i] := True
7: else
8: array[i] := False
9: end if

10: i := i+ 1
11: end while
12: return array
13: end procedure.

Notice that the loop runs only n times, which makes the complexity O(n) with respect to the
input integer n. For any practical implementation the input would be an integer expressed in
binary, which means the proper way to measure the complexity of this algorithm would be with
respect to the length of the binary string. For convenience we will denote the binary representation
of n as nb2. Suppose the input to our algorithm is

nb2 = 1 0 . . . 0︸ ︷︷ ︸
l−1

.

Converting this binary string to base 10 we obtain n = 2l−1. That is, our algorithm must actually
perform at least 2l−1 steps. Thus its complexity must be at least O(2l−1) with respect to the length
of the binary string input.

7

3 Analysis of Ko-Lee

3.1 Presentation of D(A)

There are many ways to represent a group, however one of the most compact methods uses gener-
ators and relations. Roughly speaking, a presentation of a group G is a set X of generators and
their inverses, together with a set of relations R on X that define G. An element of R is simply
an equation involving elements of X. We denote this presentation as G = 〈X | R〉. For a rigorous
definition see [2].

Convention. Let G = 〈X | R〉. When enumerating such a presentation we will not list the inverses
of the generators in X.

Definition 3.1. Let G = 〈X | R〉. A product of elements from X is called a word over G.

Definition 3.2. Let w = x1x2 · · ·xn be a word over G = 〈X | R〉. The length of w, denoted |w|, is
defined to be n.

Example 3.3. The multiplicative cyclic group Cn of order n is given by a single generator g and
the single relation gn = e. Thus Cn is given by the presentation 〈g | gn = e〉. The elements of Cn
with this presentation may be enumerated as

g, gg, ggg, . . . , ggg · · · g︸ ︷︷ ︸
n−1 times

, e.

These expressions are words over the group Cn = 〈g | gn = e〉. It is worth noting that group
elements may be represented by many different words. For example, in the group C4 the words gg
and gggggg represent the same element.

Of course, we are not restricted to presenting groups with only one generator and one relation.

Example 3.4. A presentation of the classical dihedral group Dn of order 2n is given by

〈r, f | rn = e, f2 = e, frfr−1 = e〉.

The element r generates the rotations, the element f is a reflection, and the other elements come
from words of the form rkf .

Now we will examine a canonical presentation of an arbitrary finite abelian group.

Proposition 3.5. Let A be a finite abelian group with signature [n1, n2, . . . , nk]. If αi denotes a
generator of Cni then A may be presented as

A = 〈αi | αni
i = e, αiαj = αjαi〉 .

Example 3.6. Let A = C12 × C9. A valid signature for A is [12, 9]. Thus A may be presented as

〈α1, α2 | α12
1 = e, α9

2 = e, α1α2 = α2α1〉.

Notice that A also has signature [3, 4, 9], therefore A is also presented as

〈µ1, µ2, µ3 | µ31 = e, µ42 = e, µ93 = e, µ1µ2 = µ2µ1, µ1µ3 = µ3µ1, µ2µ3 = µ3µ2〉.

Now we will show how a presentation for D(A) may be constructed from a presentation for A.
For this we will need the following definition.

8

Definition 3.7. Let A = 〈X | R〉 be a finite abelian group, and choose c 6∈ A. We define the group
J(A) by

J(A) = 〈X ∪ {c} | R, c2 = e, cxcx = e, ∀x ∈ X〉.

In what follows it is important to remember that the generator c is specifically chosen not to
be an element of A. We will now show that D(A) is isomorphic to J(A).

Lemma 3.8. If w is a word over A then in J(A) we have cwc = w−1.

Proof. We will proceed by induction on the length of the word. If w is a word over A of length
one, then w must be an element of X, hence by the defining relations cwc = w−1. Now suppose
that cwc = w−1 for all words w of length n in A. Every word of length n+ 1 may be expressed as
wx, where w is a word of length n and x is an element of X. Then we may compute

cwxc = cwccxc (c2 = e)

= cwcx−1 (cxc = x−1)

= w−1x−1 (cwc = w−1)

= x−1w−1

= (wx)−1.

Thus we have shown by induction that cwc = w−1 for all words w over A.

Lemma 3.9. Let w be a word over J(A) containing only one c. The word w is equivalent to
another word w′ over J(A) of the form w′ = cx1x2 · · ·xn for xi ∈ X.

Proof. As w contains only a single c we have three cases to examine. If c takes the first position
then w is already in the correct form. In the other cases c is either at the end of the word or
somewhere in the middle of the word. If c appears at the end of the word we have that

w = x1x2 · · ·xnc
= ex1x2 · · ·xnc
= ccx1x2 · · ·xnc (c2 = e)

= c (x1x2 · · ·xn)−1 (Lemma 3.8)

= cx−1n · · ·x−12 x−11 .

Thus we have found w′ = cx−1n · · ·x−12 x−11 as required. Next we examine the more complicated case
when the c occurs somewhere in the middle of the word. In this case we have

w = x1x2 · · ·xjcxj+1 · · ·xn
= ex1x2 · · ·xjcxj+1 · · ·xn
= ccx1x2 · · ·xjcxj+1 · · ·xn (c2 = e)

= c (x1x2 . . . xj)
−1 xj+1 · · ·xn (Lemma 3.8)

= cx−1j · · ·x
−1
2 x−11 xj+1 · · ·xn.

Thus we have w′ = cx−1j · · ·x
−1
2 x−11 xj+1 · · ·xn.

Next we show that every word in J(A) reduces to a word of the form given in Lemma 3.9.

9

Proposition 3.10. Every word w over J(A) is equivalent to some word w′ over J(A) with at most
one c.

Proof. We will proceed by induction on the length of w. First note that the empty word contains
zero c’s and thus satisfies the statement. Next suppose that every word over J(A) of length n
satisfies the statement. Every word of length n+ 1 may be expressed as xw where x ∈ X ∪{c} and
w is a word of length n over J(A). By the inductive hypothesis w contains at most one c. Thus
if x is not c, then xw also contains at most one c. Now suppose that xw = cw. If w contains no
c, then cw contains at most one c. Lastly suppose that w contains one c. Then by Lemma 3.9 we
may write w = cx1x2 · · ·xn−1 where xi ∈ X. We may now compute

cw = ccx1x2 · · ·xn−1 = x1x2 · · ·xn−1.

Therefore cw has at most one c. We have thus shown that every word is equivalent to a word with
at most one c.

Lemma 3.11. For any finite abelian group A we have |J(A)| ≤ |D(A)|.

Proof. Since A is a finite abelian group we may choose an isomorphism

A ∼= Cn1 × Cn2 × · · · × Cnk
.

If we let αi denote a fixed generator of Cni , then A may be presented as

A = 〈αi | αni
i = e, αiαj = αjαi〉

by Proposition 3.5. Let w be an arbitrary word over J(A). By Lemma 3.9, Proposition 3.10, and
the fact αiαj = αjαi we have that

w = αβ11 α
β2
2 · · ·α

βk
k or w = cαβ11 α

β2
2 · · ·α

βk
k .

For the first type there are ni distinct choices for each βi, hence there are n1n2 · · ·nk = |A| words
of this type. Likewise there are |A| words of the second type. Thus we have that |J(A)| ≤ 2|A| =
|D(A)|.

Proposition 3.12. For any finite abelian group A = 〈X | R〉 there exists an isomorphism θ : J(A)→
D(A).

Proof. To begin we will define θ on the generators of J(A). For each x ∈ X we define θ(x) = (1, x)
and for the special generator c we define θ(c) = (−1, e). As the generators of J(A) satisfy the same
relations as their images under θ we may uniquely extend θ to a homomorphism θ : J(A)→ D(A).
Since the generators of D(A) are in the image of θ we see that θ is surjective.

By Lemma 3.11 we have |J(A)| ≤ |D(A)|. Since θ : J(A) → D(A) is surjective it follows that
|J(A)| = |D(A)|. Hence θ : J(A)→ D(A) is an isomorphism.

Convention. For the remainder of this paper D(A) is assumed to be written using the presentation

D(A) = 〈X ∪ {c} | R, c2 = e, cxcx = e, ∀x ∈ X〉

when A is presented as 〈X | R〉.

Now that we have a valid presentation for D(A) we may show that the generalized dihedral
groups really are a generalization of the classical dihedral groups.

10

Proposition 3.13. For any cyclic group Cn, we have D(Cn) ∼= Dn.

Proof. Recall that Cn = 〈g | gn = e〉. Then a presentation for D(Cn) is given by

D(Cn) =
〈
g, c | gn = e, c2 = e, cgcg = e

〉
.

This is precisely the presentation for Dn given in Example 3.4.

3.2 Normal Forms

The idea of a normal form for elements of a group may be described as finding a standard presen-
tation of an element. For a motivating example consider that 27 and 162 are congruent modulo
5. One may ask which representation is better. One would naturally prefer to represent these
elements as 2 modulo 5. This is the key idea behind normal forms. If two elements are equivalent
under some relation their normal forms should be the same. Furthermore this normal form should
be simple and natural. The need for a normal form becomes even more apparent when we consider
that every element in D(A) has an infinite number of words that represent it. The importance of
normal forms is amplified in the context of cryptography. A carefully chosen normal form allows
for the hiding of information.

Example 3.14. Given an integer one may choose from a multitude of normal forms. One possible
candidate for a normal form is the base ten representation, while another is its prime factorization.
In the first normal form it is not clear at all by inspection which prime pair formed the composite
integer 16637, while it is obvious in the second form, namely 127 · 131.

With this example in mind we wish to choose a normal form for elements of D(A) that hides
as much information as possible. The normal form will depend on the chosen signature for A: if
the signature changes the normal form for the words will also change.

Convention. Given a finite abelian group A with signature [n1, n2 . . . , nk], the element αi will
denote a fixed generator of Cni .

Definition 3.15. Let A be a finite abelian group with signature [n1, n2 . . . , nk]. A word w over A
is said to be in normal form if

w = αβ11 α
β2
2 · · ·α

βk
k

where each βi is reduced modulo ni.

Definition 3.16. Let A be a finite abelian group with signature [n1, n2 . . . , nk]. A word w over
D(A) is said to be in normal form if

w = αβ11 α
β2
2 · · ·α

βk
k or w = cαβ11 α

β2
2 · · ·α

βk
k

where each βi is reduced modulo ni.

Example 3.17. Let A be a finite abelian group with signature [5, 16, 9]. We may consider the
word w = α3

1α
10
2 α

4
3. This word is clearly in normal form, however it is important to note that the

exponents are simply a typographical convenience. In practice the word is expressed as

w = α1α1α1α2α2α2α2α2α2α2α2α2α2α3α3α3α3.

The previous example exhibits that even when a word is given in normal form the value of βi
is not automatically apparent; it takes some computation to obtain its value. Specifically one must
count the occurrences of αi and then reduce this number modulo ni. The following lemma is a
formalization of this process.

11

Lemma 3.18. Let A be a finite abelian group with signature [n1, n2, . . . , nk]. Given a word w over
A and some fixed generator αi we may produce the corresponding βi in O(|w|) steps.

Proof. The value of βi is precisely the number of occurrences of αi in the word w, reduced modulo
ni. This procedure is captured in the following algorithm:

1: procedure CalcBeta(w = x1x2 · · ·xl, αi)
2: β := 0
3: j := 1
4: while j ≤ l do
5: if xj = αi then
6: β := β + 1
7: end if
8: j := j + 1
9: end while

10: return β mod ni
11: end procedure.

Notice that the main loop runs exactly l times. By recalling that l is the length of the word w we
see that the algorithm runs in O(|w|) steps.

Lemma 3.19. Let A be a finite abelian group with signature [n1, n2 . . . , nk]. Every word w over A
may be reduced to its normal form in polynomial time with respect to the length of w.

Proof. For any word w over A we may perform the following algorithm:

1: procedure NormalFormA(w = αm1αm2 · · ·αml
)

2: j := 1
3: while j ≤ l do
4: βmj := CalcBeta(w,αmj)
5: j := j + 1
6: end while
7: return αβ11 α

β2
2 · · ·α

βk
k

8: end procedure.

This algorithm is a formalization of the process of commuting all of the generators, while working
modulo the order of the respective cyclic groups. We will now examine its complexity. Notice that
the outer loop runs |w| times, while the CalcBeta operation itself runs in O(|w|) steps. This results
in a total complexity of O

(
|w|2

)
.

Lemma 3.20. Given a word w over D(A) we may in polynomial time produce an element w′ with
at most one c equivalent to w.

Proof. The methodologies utilized in the algorithm below are inspired from the inductive proof of
Proposition 3.10. Specifically the c’s are chosen in pairs and then removed by inverting all of the
elements between them. This is formally given by the following algorithm:

1: procedure RemoveExtraCs(w = x1x2 · · ·xl)
2: i := 1
3: while i ≤ l do
4: if xi = c then
5: j := i+ 1
6: while j ≤ l and xj 6= c do
7: j := j + 1

12

8: end while
9: Replace xixi+1 · · ·xj−1xj with x−1j−1 · · ·x

−1
i+1

10: end if
11: i := i+ 1
12: end while
13: end procedure.

Notice that both the outer and inner loops run at most |w| times, hence the algorithm runs in
O
(
|w|2

)
steps.

Proposition 3.21. Let A be a finite abelian group with signature [n1, n2 . . . , nk]. Every word w
over D(A) may be reduced to its normal form in polynomial time with respect to the length of w.

Proof. The first step in the procedure is to put the word in a form with at most one c. Then if the
word contains a c it is brought to the front. After that it suffices to put the remainder of the word
in the normal form over A using Lemma 3.19. The following algorithm makes these steps rigorous:

1: procedure NormalFormDA(w = x1x2 · · ·xl)
2: w := RemoveExtraCs(w)
3: w := RemoveExtraCs(cw)
4: w := RemoveExtraCs(cw)
5: if x1 = c then
6: return c ·NormalFormA(x2 · · ·xl)
7: end if
8: return NormalFormA(w)
9: end procedure.

By recalling that the algorithms RemoveExtraCs and NormalFormA both run in O
(
|w|2

)
steps,

we obtain a total complexity of O(
∣∣w|2).

We will now show that one may convert between the word form of an element and the tuple
form in polynomial time. This allows us to switch between the two forms within our algorithms.

Proposition 3.22. Given a word w over D(A) that corresponds to the element (x1, x2), the word
x2 over A may be produced in polynomial time.

Proof. Let w be a word over D(A). By Proposition 3.21 we may put w in normal form in O
(
|w|2

)
steps. Then x2 is given by θ(w).

3.3 Ko-Lee with D(A)

Now that we have a presentation for D(A) in which one may compute products and normal forms
efficiently, we may examine how one may use an arbitrary generalized dihedral group as a platform
group for the Ko-Lee protocol. First we will examine an implementation of this protocol with a
specific generalized dihedral group.

Example 3.23. Let A be the abelian group given by the signature [4, 9, 19, 31]. Alice and Bob
agree on choosing A as the abelian subgroup for selecting the secret elements. They then select the
public element w to be

w = cα3
1α

6
2α

15
3 α

12
4 .

Now Alice and Bob select their secret elements from A. Alice selects

a = α3
1α

4
2α

17
3 α

26
4

13

while Bob selects
b = α2

1α
3
2α

14
3 α

15
4 .

Now Alice computes wa by

wa =
(
α3
1α

4
2α

17
3 α

26
4

)−1 (
cα3

1α
6
2α

15
3 α

12
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= cc

(
α3
1α

4
2α

17
3 α

26
4

)−1
c
(
α3
1α

6
2α

15
3 α

12
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= c

(
α3
1α

4
2α

17
3 α

26
4

) (
α3
1α

6
2α

15
3 α

12
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= cα9

1α
14
2 α

49
3 α

64
4

= cα1
1α

5
2α

11
3 α

2
4.

Next Bob computes the value of wb by

wb =
(
α2
1α

3
2α

14
3 α

15
4

)−1 (
cα3

1α
6
2α

15
3 α

12
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= cc

(
α2
1α

3
2α

14
3 α

15
4

)−1
c
(
α3
1α

6
2α

15
3 α

12
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= c

(
α2
1α

3
2α

14
3 α

15
4

) (
α3
1α

6
2α

15
3 α

12
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= cα7

1α
12
2 α

43
3 α

42
4

= cα3
1α

3
2α

5
3α

11
4 .

Now Alice computes the secret key by

KA = (wb)a

=
(
α3
1α

4
2α

17
3 α

26
4

)−1 (
cα3

1α
3
2α

5
3α

11
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= cc

(
α3
1α

4
2α

17
3 α

26
4

)−1
c
(
α3
1α

3
2α

5
3α

11
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= c

(
α3
1α

4
2α

17
3 α

26
4

) (
α3
1α

3
2α

5
3α

11
4

) (
α3
1α

4
2α

17
3 α

26
4

)
= cα9

1α
11
2 α

39
3 α

63
4

= cα1α
2
2α3α4.

Next Bob computes the secret key by

KB = (wa)b

=
(
α2
1α

3
2α

14
3 α

15
4

)−1 (
cα1

1α
5
2α

11
3 α

2
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= cc

(
α2
1α

3
2α

14
3 α

15
4

)−1
c
(
α1
1α

5
2α

11
3 α

2
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= c

(
α2
1α

3
2α

14
3 α

15
4

) (
α1
1α

5
2α

11
3 α

2
4

) (
α2
1α

3
2α

14
3 α

15
4

)
= cα5

1α
11
2 α

39
3 α

32
4

= cα1α
2
2α3α4.

Thus KA = KB as desired.

Convention. For the remainder of this paper we assume that the Ko-Lee key exchange protocol
has been properly set up on D(A). We let w denote the public element from step two of the Ko-Lee
protocol, and we let a and b denote Alice’s and Bob’s secret elements chosen from the abelian
subgroup C.

We have seen how a secret key may be established using a generalized dihedral group as a
platform group for the Ko-Lee protocol, however we have not yet analyzed how secure this really
is. We will start by exhibiting a general attack on the Ko-Lee protocol.

14

Conjugate Attack on Ko-Lee:

Suppose that from w and wa one may obtain some x ∈ C such that wx = wa. Then we may
compute (

wb
)x

= x−1b−1wbx.

As x ∈ C, we have that x and b commute, thus:(
wb
)x

= x−1b−1wbx

= b−1x−1wxb

= (wx)b (wx = wa)

= (wa)b = KB.

Thus an attacker may always produce the secret key if they can find such an x. The problem
of finding such an x is known as the conjugacy search problem. Notice that the condition that x is
an element of the commuting subgroup C may be weakened to demanding that x simply commutes
with the secret element b. At a glance this observation seems frivolous, as how could one demand
that x commutes with b without knowing the value of b? From Proposition 2.5 we see that certain
types of elements always commute while others never do. In the next section we will see how it is
not the value of b that matters, but only its type.

3.4 Conditions for Ko-Lee

In the Ko-Lee protocol the secret elements a and b are demanded to commute. From Proposition 2.5
it is evident that only a few combinations of element types commute. This places restrictions on
the possible choices for a and b. These restrictions are displayed in the table below.

Type 1 Type 2 Type 3 Type 4

Type 1 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 3 Yes No Yes No

Type 4 Yes No No Maybe

Based on the table above we are able to discard all cases in which a and b do not commute.
Next we will eliminate a few more cases on the grounds that they result in the public transmission
of the secret key.

Lemma 3.24. If a is Type 1, then the secret key is the public element wb.

Proof. As a is Type 1 it is in the center of D(A). Hence,

wa = a−1wa = wa−1a = w.

Then the secret key is given by
KB = (wa)b = wb.

The previous argument was made on the secret element a, however without loss of generality
the same is true when one chooses b to be Type 1. This completely eliminates the feasibility of
either Alice or Bob selecting a Type 1 secret element. We will now show that two other cases result
in the public transmission of the secret key.

15

Lemma 3.25. If a and b are both Type 3, then the secret key is the public element w.

Proof. We will consider two cases for w. If w1 = 1 then we have

wa = (−1, a2)
−1(1, w2)(−1, a2)

= (−1, a2)(1, w2)(−1, a2)

= (−1, a2w2)(−1, a2)

=
(
1, w−12 a−12 a2

)
=
(
1, w−12

)
= w−1.

Similarly one may show that wb = w−1, therefore wa = wb. Bob computes the key

KB = (wa)b

= (wb)b

= wb
2

= we = w. (b is Type 3)

Hence KB = w as claimed. Now we will consider the case when w1 = −1. We compute

wa = (−1, a2)
−1(−1, w2)(−1, a2)

= (−1, a2)(−1, w2)(−1, a2)

=
(
1, a−12 w2

)
(−1, a2)

=
(
−1, w−12 a2a2

)
.

Now recall that as a is Type 3 we have a22 = e, hence wa =
(
−1, w−12

)
. Thus similarly we have that

wb =
(
−1, w−12

)
. Therefore wa = wb and by the previous argument we see that KB = w.

Lemma 3.26. If a and b are both Type 4, then the secret key is the public element w.

Proof. As a and b commute and are both Type 4 we have by Proposition 2.5 that a22 = b22. If
w1 = 1 then

wa = (−1, a2)
−1(1, w2)(−1, a2)

= (−1, a2)(1, w2)(−1, a2)

= (−1, a2w2)(−1, a2)

= (1, w−12 a−12 a2)

=
(
1, w−12

)
= w−1.

By a similar computation we find that wb = w−1 also. Now Bob computes the key by

KB = (wa)b

=
(
w−1

)b
=
(
wb
)−1

=
(
w−1

)−1
= w.

16

Next we will consider the other case. If w1 = −1 then

wa = (−1, a2)
−1(−1, w2)(−1, a2)

= (−1, a2)(−1, w2)(−1, a2)

=
(
1, a−12 w2

)
(−1, a2)

=
(
−1, w−12 a22

)
.

A similar computation yields wb =
(
−1, w−12 b22

)
. Then since a22 = b22, we have wa = wb. Thus Bob

computes the key as

KB = (wa)b

= (wb)b

= wb
2

= we = w. (b is Type 4)

In all cases we have shown the private key to be the public element w.

In short, we have the following proposition.

Proposition 3.27. If either secret element a or b is not Type 2, then the private key is publicly
transmitted.

From the above proposition we see that the only hope for a secure protocol is the case when
both secret elements are Type 2. Returning to Example 3.23 we see that a and b were both
Type 2. Furthermore, it is apparent that the secret key was never publicly transmitted. The next
proposition shows that the private key generated when a and b are Type 2 is dependent on the
values of both secret elements. In the interest of security this is precisely what one would hope for.

Proposition 3.28. If the public element w is of the form w = (−1, w2) and the private elements
a and b are both Type 2, then the private key is given by

K =
(
−1, a22b

2
2w2

)
.

Proof. We obtain the value for K through direct computation. First we compute

wa = (1, a2)
−1(−1, w2)(1, a2)

=
(
1, a−12

)
(−1, w2)(1, a2)

= (−1, a2w2)(1, a2)

=
(
−1, a22w2

)
.

Similarly we find that wb =
(
−1, b22w2

)
. Now Bob computes the secret key as

KB = (wa)b

= (1, b2)
−1 (−1, a22w2

)
(1, b2)

= (1, b−12)
(
−1, a22w2

)
(1, b2)

=
(
−1, b2a

2
2w2

)
(1, b2)

=
(
−1, a22b

2
2w2

)
.

Thus K =
(
−1, a22b

2
2w2

)
as claimed.

Notice that within this secret key it is the squares of the secret elements that matter, and not
the elements themselves. This suggests that it may be sufficient for an attacker to find an element
x ∈ D(A) that satisfies x2 = a2 in order to recover the secret key.

17

3.5 Conjugate Attack on Ko-Lee

In this section we will reduce the problem of finding x ∈ D(A) such that wx = wa to the problem
of solving a quadratic equation over the finite abelian group A. To begin we will explore when the
equation x2 = g has a solution for x ∈ A given a fixed element g ∈ A. We will then construct an
algorithm that produces such a solution. We will now consider a motivating example.

Example 3.29. Consider the abelian group A with signature [5, 16, 9]. One may ask whether the
equation

x2 = α1
1α

4
2α

5
3

is solvable over A. One may be inclined to believe that this equation has no solution as not all of
the exponents are even. However the equation does in fact have a solution. It is easily checked that
x = α3

1α
2
2α

7
3 is a solution by computing

x2 =
(
α3
1α

2
2α

7
3

) (
α3
1α

2
2α

7
3

)
= α6

1α
4
2α

14
3

= α1
1α

4
2α

5
3.

Lemma 3.30. Let g = αβ11 α
β2
2 · · ·α

βk
k be an element of a finite abelian group A with signature

[n1, n2, . . . , nk]. If x2 = g has a solution in A, then either βi is even or βi + ni is even.

Proof. Suppose that x0 = αλ11 α
λ2
2 · · ·α

λk
k is a solution to x2 = g. We now compute

x20 = αβ11 α
β2
2 · · ·α

βk
k

α2λ1
1 α2λ2

2 · · ·α2λk
k = αβ11 α

β2
2 · · ·α

βk
k .

Thus βi ≡ 2λi (mod ni) for each i. Therefore there exists some qi ∈ Z such that

βi = niqi + 2λi.

If ni is even then βi is even. Thus we may assume that ni is odd. We are left with two cases, either
qi is even or odd. If qi is even, then βi is once again even. Thus we may take qi to be odd. Since
qi is odd there exists some integer li such that qi = 2li + 1. We see that βi + ni is even, since

βi + ni = (niqi + 2λi) + ni

= 2 (ni(li + 1) + λi) .

Thus in all cases either βi or βi + ni is even.

Lemma 3.31. Let A be a finite abelian group with signature [n1, n2, . . . , nk]. Suppose that g =

αβ11 α
β2
2 · · ·α

βk
k is a word over A. We may determine if x2 = g has a solution in A in polynomial

time with respect to the length of g.

Proof. By the contrapositive of Lemma 3.30, if βi and βi+ni both fail to be even, then the equation
does not have a solution. This fact yields the following algorithm:

1: procedure IsSolvable(g = αm1αm2 · · ·αml
)

2: i := 1
3: while i ≤ l do
4: βmi = CalcBeta(αmi)

18

5: if βmi is odd and βmi + nmi is odd then
6: return False
7: end if
8: i := i+ 1
9: end while

10: return True
11: end procedure.

As l is the length of g the main loop runs |g| times. Recalling that the CalcBeta procedure runs in
O(|g|) steps, we see that the overall complexity is O

(
|g|2
)
.

Proposition 3.32. Let g = αβ11 α
β2
2 · · ·α

βk
k be an element of A with signature [n1, n2, . . . , nk]. If

x2 = g is solvable over A, we may produce a solution in polynomial time with respect to the length
of g.

Proof. It is easy to see that x = αλ11 α
λ2
2 · · ·α

λk
k is a solution of x2 = g if and only if βi ≡ 2λi

(mod ni); one may follow the same proof techniques from Lemma 3.30. Thus to find a solution
it suffices to find each λi of the correct form. As x2 = g is assumed to be solvable we have by
Lemma 3.30 that either βi or βi + ni is even. In the first case we have that βi = 2l for some l ∈ Z.
Thus we may take λi = l = βi

2 . If βi is not even, then βi +ni must be, hence βi +ni = 2m for some

m ∈ Z. Thus we may take λi = m = βi+ni

2 . This method of selecting the correct λi is the basis for
the following algorithm:

1: procedure ProduceSolution(g = αm1αm2 · · ·αml
)

2: i := 1
3: while i ≤ l do
4: βmi = CalcBeta(αmi)
5: if βmi is even then

6: λmi :=
βmi
2

7: else
8: λmi :=

βmi+nmi
2

9: end if
10: end while
11: return αλ11 α

λ2
2 · · ·α

λk
k

12: end procedure.

As l is the length of g the main loop runs at most |g| times. Recalling that the CalcBeta procedure
runs in O(|g|) steps we see that the overall complexity is O

(
|g|2
)
.

Now we have the algorithms necessary to solve any quadratic of the form x2 = g over an abelian
group A with a known signature. Next we prove a small result that shows if a Type 2 element
exists in D(A) one may find it quickly.

Lemma 3.33. Let A be a finite abelian group with signature [n1, n2, . . . , nk]. If D(A) is non-abelian
one may produce a Type 2 element in polynomial time with respect to k.

Proof. As D(A) is non-abelian, by Proposition 2.10 there exists an ni where ni 6= 2. This means
that α2

i 6= e, hence (1, αi) is Type 2. We show that this element may be found in polynomial time
with respect to the length of the signature by the following algorithm:

1: procedure FindType2([n1, n2, . . . , nk])
2: i := 1

19

3: while i ≤ k do
4: if ni 6= 2 then
5: return αi
6: end if
7: end while
8: end procedure.

The main loop will run at most k times, thus the algorithm has complexity O(k).

Now we will show that the problem of finding an element x such that wx = wa reduces to
the problem of solving a quadratic over A. This shows that the conjugate attack described in
Section 3.3 may be implemented in polynomial time.

Proposition 3.34. Let w and wa be public elements of D(A) where A has signature [n1, n2, . . . , nk].
If it is known that the secret element a is Type 2, then an attacker may produce in polynomial time
a Type 2 element x such that wx = wa.

Proof. First, if w1 = 1 then we have

wa = (1, a2)
−1(1, w2)(1, a2)

= (1, a−12)(1, w2)(1, a2)

= (1, a−12 w2a2)

= (1, w2) = w.

As the value of wa is not actually dependent on the value of a, any other Type 2 element x will
satisfy wx = w. By Lemma 3.33 we may produce a Type 2 element in polynomial time with respect
to the length of the signature; that is, we may produce such an x.

In the second case, if w1 = −1 then we have

wa = (1, a2)
−1(−1, w2)(1, a2)

=
(
1, a−12

)
(−1, w2)(1, a2)

= (−1, a2w2)(1, a2)

= (−1, a2w2a2)

=
(
−1, a22w2

)
.

As w and wa are public we may obtain a22 by multiplying a22w2 on the right by w−12 . Now notice
that the value of wa is determined completely by a22 and w2, thus it suffices to find an element
x = (1, x2) such that x22 = a22. As this equation is known to have a solution, namely a2, we
may invoke the algorithm from Proposition 3.32. This produces a solution x for this equation in
polynomial time. As a is Type 2 by definition a22 6= e, hence x22 6= e. This means that x is Type 2
and wx =

(
−1, x22w2

)
=
(
−1, a22w2

)
= wa as desired.

Recall from Proposition 3.28 that the case in which both secret elements are Type 2 results in
the construction of a secret key that is dependent on both secret elements. Although this seemed
relatively secure, our next theorem presents an attack that is guaranteed to produce the secret key
in polynomial time.

Theorem 3.35. Let w, wa, and wb be public elements from D(A). If the secret elements a and b
are selected to be Type 2, then an attacker may produce the secret key in polynomial time.

20

Proof. As a is Type 2 and wa is public, by Proposition 3.34 an attacker may produce in polynomial
time a Type 2 element x ∈ D(A) such that wx = wa. From Proposition 2.5 all Type 2 elements
commute with one another, hence x must commute with b. The attacker may then compute

(wb)x = (wx)b = (wa)b = wab = KA.

That is, an attacker may produce the secret key in polynomial time.

Thus we have proven that the Ko-Lee key exchange protocol is never secure when the plat-
form group is a generalized dihedral group. We conclude by returning to the key exchange from
Example 3.23 from the perspective of an attacker.

Example 3.36. Recall that the platform group was D(A) where A had signature [4,9,19,31]. The
only public elements were:

w = cα3
1α

6
2α

15
3 α

12
4 wa = cα1

1α
5
2α

11
3 α

2
4 wb = cα3

1α
3
2α

5
3α

11
4 .

This is precisely the information an attacker would have. With the knowledge that the secret
elements must be Type 2, the attacker may invoke Proposition 3.34. Notice that w1 = −1 since w
begins with a c. This means that wa takes the form wa =

(
−1, a22w2

)
. Recall from Proposition 3.22

that w2 is given by θ(w), hence w2 = α3
1α

6
2α

15
3 α

12
4 and (wa)2 = α1

1α
5
2α

11
3 α

2
4. Thus an attacker may

compute the value of a22 by

a22 = a22w2w
−1
2

= (wa)2w
−1
2

=
(
α1
1α

5
2α

11
3 α

2
4

) (
α3
1α

6
2α

15
3 α

12
4

)−1
=
(
α1
1α

5
2α

11
3 α

2
4

) (
α1α

3
2α

4
3α

19
4

)
= α2

1α
8
2α

15
3 α

21
4 .

Now recall that if an attacker finds x2 ∈ A such that x22 = a22 = α2
1α

8
2α

15
3 α

21
4 , then (1, x2) is

a solution to wx = wa. This may be accomplished in polynomial time by the algorithm from
Proposition 3.32. Simply put, the attacker divides βi by two when it is even, and divides βi + ni
by two when βi is odd. Thus the attacker obtains

x2 = α1α
4
2α

17
3 α

26
4 .

Now notice that θ−1(1, x2) = α1α
4
2α

17
3 α

26
4 . By Theorem 3.35 the attacker may compute the key as

follows:

(wb)x =
(
α1α

4
2α

17
3 α

26
4

)−1 (
cα3

1α
3
2α

5
3α

11
4

) (
α1α

4
2α

17
3 α

26
4

)
= cc

(
α1α

4
2α

17
3 α

26
4

)−1
c
(
α3
1α

3
2α

5
3α

11
4

) (
α1α

4
2α

17
3 α

26
4

)
= c

(
α1α

4
2α

17
3 α

26
4

) (
α3
1α

3
2α

5
3α

11
4

) (
α1α

4
2α

17
3 α

26
4

)
= cα5

1α
11
2 α

39
3 α

63
4

= cα1α
2
2α3α4 = K.

By returning to Example 3.23, we see this is precisely the secret key computed by Alice and Bob.
In short, the attacker is able to produce the secret key solely from public elements.

21

References

[1] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans. Informa-
tion Theory IT-22 (1976), no. 6, 644–654.

[2] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag,
New York-Berlin, 1980, Reprint of the 1974 original.

[3] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, and Choonsik
Park, New public-key cryptosystem using braid groups, Advances in cryptology—CRYPTO 2000
(Santa Barbara, CA), Lecture Notes in Comput. Sci., vol. 1880, Springer, Berlin, 2000, pp. 166–
183.

[4] Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov, Group-based cryptography, Ad-
vanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2008.

[5] Michael Sipser, Introduction to the theory of computation, 3rd ed., Course Technology, 2012.

22

	University of Mary Washington
	Eagle Scholar
	Spring 4-28-2016

	The Ko-Lee Key Exchange Protocol with Generalized Dihedral Groups
	Christopher Lloyd
	Recommended Citation

	tmp.1521219027.pdf.lyu5P

