
59 

 

 

 

 

 

AN APPLICATION OF SCREW THEORY FOR THE  

IDENTIFICATION OF SINGULARITIES IN A NOVEL  

RECONFIGURABLE PARALLEL ROBOT 
 

UNA APLICACIÓN DE TEORÍA DE TORNILLOS PARA LA 

IDENTIFICACIÓN DE SINGULARIDADES EN UN NOVEDOSO 

ROBOT PARALELO RECONFIGURABLE 
 

R.E. Sánchez-Alonso 
 

Universidad Nacional de Ingeniería. Managua, Nicaragua. 

rogersan1984@hotmail.es  
 

 

(recibido/received: 05-Septiembre-2016; aceptado/accepted: 10-Noviembre-2016) 
 

 

ABSTRACT 
 

This paper reports the application of the screw theory as a tool for the determination of the singular 

configurations of a reconfigurable parallel robot composed of two parallel sub-manipulators. The Jacobian 

matrices of the robot, key elements for the identification of singularities, are easily determined when the 

input-output equation of velocity of the robot is obtained by the application of some screw theory basic 

operations. Through this application, the inverse, direct and combined singularities are clearly identified, 

and their graphical representations can be obtained almost intuitively. 

 

Palabras claves: Screw theory, Jacobian matrix, Singularity analyses, Reconfiguration, Parallel robot. 

 

RESUMEN 
 

Este trabajo reporta la aplicación de teoría de tornillos como una herramienta para la determinación de las 

configuraciones singulares de un robot paralelo reconfigurable conformado por dos sub-manipuladores 

paralelos. Las matrices Jacobiana del robot, piezas fundamentales para la identificación de las 

singularidades, se determinan fácilmente cuando la ecuación de entrada y salida de velocidad del robot es 

obtenida a través de la aplicación de algunas operaciones básicas de teoría de tornillos. Mediante esta 

aplicación, las singularidades directas, inversas y combinadas son claramente identificadas, y su 

representación gráfica puede ser obtenida casi intuitivamente. 

 

Keywords: Teoría de tornillos, Matriz jacobiana, Análisis de singularidades, Reconfiguración, Robot 

paralelo. 
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1. INTRODUCTION 
 

A reconfiguration strategy is probably the most reasonable approach to enhance the flexibility of a 

manipulator robot. In the case of the parallel robots, the major progress in this area can be divided into two 

categories (Zhang and Shi, 2012); those based on a modular design and those based on a variable 

geometry approach. 

 

The modular design consists of a set of standardized modules which can be connected and disconnected in 

order to obtain different configurations (Xi et al., 2011; Yu et al., 2012; Plitea et al., 2013; Carbonari et 

al., 2014). On the other hand, in a variable geometry approach the dimensions of the geometric parameters 

of the robot are modified to achieve new configurations (Zhang and Shi, 2012; Bande et al., 2005; du 

Plessis and Snyman, 2006; Kumar et al., 2009; Borrás et al., 2009; Chen, 2012; Ye, 2014). The variable 

geometry approach is more used than the modular design because it offers the advantage of easy 

implementation during the operation of the robot. This approach is used for the reconfiguration of the 

robot under study in this work. 

 

Parallel robots have two major complications associated with the kinematic model: (i) a very difficult 

forward displacement analysis and (ii) the existence of multiple singular configurations. When a variable 

geometry reconfiguration is applied, the complexity of the forward displacement analysis is not 

necessarily increased, however, the singular configurations may be removed, relocated or new singular 

configurations may appear due to the modification of the geometry of the manipulator. For this reason the 

identification of these configurations is a very important task in the design stage of a reconfigurable 

manipulator. 

 

Many works addressed the identification of the singular configurations of parallel robots with multiloop 

architecture (Mayer and Gosselin, 2000; Huang and Cao, 2005; Bandyopadhyay and Ghosal, 2006; Jiang 

and Gosselin, 2009), however, given the importance of this issue, more efficient strategies for the 

identification of these singularities continue being developed. In this sense, the screw theory has proven to 

be a very useful tool for this purpose (Bonev et al., 2003; Gallardo-Alvarado et al., 2006), even for 

hexapods (Gallardo-Alvarado et al., 2013). 

 

Taking into account the aforementioned, in this paper the screw theory is used to identify the singular 

configurations of a novel reconfigurable parallel robot composed of two parallel sub-manipulators. 

 

2. DESCRIPTION OF THE RECONFIGURABLE PARALLEL ROBOT 
 

The robot under study is based on a 6-DOF parallel robot, which hereafter will be called initial 

configuration model. The description of the initial configuration model and the reconfiguration strategy 

implemented are shown below. 

 

2.1. Initial Configuration Model 

 

The robot (patenting process: MX/a/2013/011009) consists of two 3-RUS parallel sub-manipulators, 

which share a common three-dimensional moving platform (Figure 1a), where R, U, and S denote the 

revolute, universal and spherical joints, respectively, and the underline represents the active joint. Unless 

otherwise specified, hereafter, the subscripts i = 1, 2, 3 refer to elements of the sub-manipulator M1, 

whereas the subscripts i = 4, 5, 6 refer to elements of the sub-manipulator M2. 

 

The fixed platform of the manipulator is represented by two parallel equilateral triangles A1A2A3 and 

A4A5A6, which are separated by a distance H. The fixed coordinate system is attached to the center O of the 

triangle A1A2A3, its X- and Z-axes lie on the plane defined by this triangle, and the Y-axis points upward. 



R.E. Sánchez-Alonso. 

61 
Nexo Revista Científica / Vol. 29, No. 02, pp. 59-68 / Diciembre 2016 

 

The active revolute joints, whose nominal positions Ai = (AXi, AYi, AZi) are located by vectors Ai, determine 

the vertices of the equilateral triangles A1A2A3 and A4A5A6, where R1 and R2 represent the circumradii of 

these triangles, and θi represents the orientation of the i-th kinematic chain (Figure 1b), which is measured 

from the X-axis direction to vector Ai for i = 1, 2, 3 and to the projection of vector Ai on the XZ plane for i 

= 4, 5, 6. On the other hand, Bi = (BXi, BYi, BZi) denotes the nominal position, which is located by vectors 

Bi, of the universal joint that connects the link of length LA to the link of length LB in the same kinematic 

chain. Similarly, Ci = (CXi, CYi, CZi) denotes the nominal position, which is located by vectors Ci, of the 

spherical joint that connects the moving platform to the link of length LB. Points Ci form a triangular 

prism of height h defined by the equilateral triangles C1C2C3 and C4C5C6, where r represents the 

circumradius of these triangles. The rotation axes of the active revolute joints, which are denoted by ˆiu , 

are tangential to the circumscribed circle of the triangles A1A2A3 and A4A5A6. Moreover, the rotation axes 

of the universal joints are ˆiu  and ˆiv , where ˆiv  is orthogonal to ˆiu  and to the direction ˆ
iw  of the link of 

length LB. For the spherical joints, the rotation axes are ˆiu , ˆiv  and ˆ
iw . Finally, point P = (PX, PY, PZ), 

which is located by vector P, is the interest point in the moving platform (end effector) and is conveniently 

located at the center of the triangle C4C5C6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                                (a)                                                                                                                                   (b) 

  

 
Figure 1. Initial configuration model. (a) General view. (b) i-th kinematic chain. 

 

2.2 Reconfiguration Strategy 

 

The reconfiguration strategy involves adding to the i = 1, 2, 3 kinematic chains of the sub-manipulator M1 

a link of length Rr, which will be called reconfiguration link. The angular positioning β of the 

reconfiguration link result in a relocation of the joints defined in points Ai, which can be seen as a 

simultaneous modification of the parameters R1 and H (Figure 2a). The nominal position Fi = (FXi, FYi, 

FZi) of the active revolute joint that allows the mobility of the reconfiguration link is defined by vector Fi, 

whose magnitude and orientation are Rf and θi, respectively. The aforementioned indicates that the fixed 

platform of the reconfigurable robot is represented by the parallel equilateral triangles F1F2F3 and A4A5A6. 
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Figure 2b shows a conceptual design for the reconfigurable robot. This design is based on incorporating a 

mechanism which is composed of three slider-crank sub-mechanisms. When the actuator located on the 

top of the reconfiguration mechanism is driven, a simultaneous angular positioning β of the 

reconfiguration links is performed. This strategy allows to modify the geometry of the robot by including 

only one degree of freedom to the mechanism. Additional information about this reconfiguration concept 

can be found in (Balmaceda-Santamaría et al., 2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                (a)                                                                                                                                   (b) 

 
Figure 2. Reconfiguration strategy. (a) Structure of the i-th and the i+3-th kinematic chain. (b) General view of the 

reconfigurable robot. 

 

3. SINGULARITY ANALYSIS 
 

To identify the singularities it is necessary to develop the velocity model of the robot. Because of the 

reconfiguration mechanism is based on slider-crank sub-mechanisms, whose analysis does not imply any 

contribution, the velocity model will be performed only considering the angular positioning β of the 

reconfiguration links (Figure 2a), which, together with the angular positioning αi of the link length LA 

(Figure 1b), for i = 1, 2… 6, are the input parameters of the robot. Output parameters are defined by the 

pose (three translations and three orientations) of the moving platform. 

 

3.1 Velocity model 

 

The velocity model is addressed using screw theory. For a detailed explanation of the method of 

infinitesimal kinematics that we used here, please consult (Rico y Duffy, 2000). 

 

The screws that are associated with each joint of the i = 1, 2, 3 kinematic chains of the sub-manipulator 

M1 (Figure 3a) are: $
r

i
, which is associated with the active revolute joint defined in Fi; 

1
$

i
, which is 

associated with the active revolute joint defined in Ai; 
2

$
i
 and 

3
$

i
, which are associated with the universal 

joint defined in Bi, and finally 
4

$
i
, 

5
$

i
 and 

6
$

i
 are the screws associated with the spherical joint defined in 

Ci. These screws are also associated with the joints defined in Ai, Bi and Ci for the i = 4, 5, 6 kinematic 

chains of the sub-manipulator M2 (Figure 3b), however the screw $
r

i
 is not taken into account, and a screw 



R.E. Sánchez-Alonso. 

63 
Nexo Revista Científica / Vol. 29, No. 02, pp. 59-68 / Diciembre 2016 

 

$
f

i
, collinear to 

6
$

i
, is conveniently added as a screw associated with a virtual prismatic joint. As will be 

shown below, the inclusion of these virtual screws facilitates the systematic obtainment of an input-output 

equation of velocity in a useful form for the singularity analysis. 

 

A screw associated with a revolute joint is defined in Plücker coordinates as: ˆ$
T

OS S 
  , where the 

primal part, Ŝ , is a unit vector along the rotation axis of the joint associated with the screw, whereas the 

dual part, 
O

S , is the moment produced by Ŝ  about the reference pole O. On the other hand, a screw 

associated with a prismatic joint is defined in Plücker coordinates as: ˆ0$
T

S 
  , where Ŝ  is a unit vector 

along the translation axis of the prismatic joint. Taking into account the above: ˆ ˆ$
Tr

i ii
u u  

i
F , 

1
ˆ ˆ$

T

i ii
u u  

i
A , 

2
ˆ ˆ$

T

i ii
u u  

i
B , 

3
ˆ ˆ$

T

i ii
v v  

i
B , 

4
ˆ ˆ$

T

i ii
u u  

i
C , 

5
ˆ ˆ$

T

i ii
v v  

i
C , 

6
ˆ ˆ$

T

i ii
w w  

i
C , 

ˆ0$
Tf

ii
w   . 

 

 
                                                
                                                                         (a)                                                                          (b) 

 
Figure 3. Infinitesimal screws. (a) Kinematic chain of M1. (b) Kinematic chain of M2. 

 

The velocity state V of the moving platform may be expressed in screw form as: 

 

1 2 3 4 5 6

1 2 3 4 5 6
$ $ $ $ $ $ $

i r i i i i i i

r i i i i i i i
      

 
       

 


v
V


,              for i = 1, 2, 3           (1) 

1 2 3 4 5 6

1 2 3 4 5 6
$ $ $ $ $ $ $

i i i i i i i f

i i i i i i f i
      

 
       

 


v
V


,              for i = 4, 5, 6           (2) 

 

where 𝝎 and v are the angular and linear velocity vectors of the moving platform, respectively, with 

respect to the fixed platform, whereas i

r
 , 

i

n
  (n = 1, 2… 6) and 0

i

f
   are the joint velocity rates 

associated with the screws, with i

r
   and 

1

i

i
   as the generalized speeds of the robot. Note that the 

joint velocity rate associated with the virtual screws is zero, which prevents any effect in the velocity state 

due to the inclusion of these screws. 
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Moreover, we can see that the screw 
6

$
i
 is reciprocal to all screws in the same kinematic chain, except the 

screws $
r

i
 and 

1
$

i
 for i = 1, 2, 3, and the screws 

1
$

i
 and $

f

i
 for i = 4, 5, 6. Taking into account the above, 

the application of the Klein form  ;   of the screw 
6

$
i
 to both sides of Eqs. (1) and (2) with the reduction 

of terms yields the following 

 

     6 6 1 6;$ $ ;$ $ ;$r

i i i i ii
  V ,                                     for i = 1, 2, 3         (3) 

     6 1 6 6;$ $ ;$ $ ;$
i f

i i i i ii f
  V ,                            for i = 4, 5, 6         (4) 

 

For a quick review of the screw theory basic operations, including the Klein form, please consult 

(Gallardo-Alvarado et al., 2006). 

 

Taking into account that 0
i

f
   and  6$ $ 1;

f

i i
  (collinear screws), Eqs. (3) and (4) can be presented in a 

matrix-vector form to represent the input-output equation of velocity of the robot as: 

 
T

 
x q β q α

,
J V J q J q                                                                            (5) 

 

 

where the inverse Jacobian matrices are:      6 6 6

1 1 2 2 3 3diag $ ;$ $ ;$ $ ;$ 1 1 1
r r r

  
 q

J
,

 and  

           1 6 1 6 1 6 1 6 1 6 1 6

1 1 2 2 3 3 4 4 5 5 6 6diag $ ;$ $ ;$ $ ;$ $ ;$ $ ;$ $ ;$  
 q

J , whereas 6 6 6 6 6 6

1 2 3 4 5 6$ $ $ $ $ $   x
J  is the direct 

Jacobian matrix. Furthermore, 
 
 
 


0

0

I

I
  is an operator of polarity in terms of the 3×3 identity matrix I 

and the 3×3 zero matrix 0. Finally, 0 0 0
T

     β
q  and 

1 2 3 4 5 6

T

        α
q  are the 

first-order driver matrices of the robot. 

 

The Eq. (5) has a suitable matrix-vector form for the singularity analysis due in large part to the inclusion 

of the virtual screws $
f

i
. The above does not mean that the velocity model of the robot cannot be 

performed via screw theory with-out the inclusion of the virtual screws. The sole aim in the use of these 

screws is to allow the matrices 
,

q
J  and 

q
J  to have the same size. 

 

3.2 Singularity analysis 

 

For parallel robots, singularities are configurations where the moving platform gains or loses degrees of 

freedom. Singular configurations may be classified into three types, each of which has a specific physical 

interpretation (Gosselin y Angeles, 1990). 

 

Singularity type 1. This inverse singularity occurs when det (
q

J ) = 0, which arises when any diagonal 

element of 
q

J  vanishes. Physically, this condition implies that in at least one kinematic chain the links of 

length LA and LB are in a full extended or contracted configuration, which makes 
1

$
i
 and 

6
$

i
 reciprocal and 

 1 6
$ ;$ 0i i  . An example of this type of singularity is shown in Figure 4a, where the links of length LA and 

LB of the sub-manipulator M1 are in a full extended configuration. 
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An inverse singularity can also occur when det (
,

q
J ) = 0, which arises when any diagonal element of  

,

q
J  

vanishes. This condition implies that in at least one kinematic chain of the sub-manipulator M1 the links of 

length Rr and LB are collinear. This situation can occur in three cases: (i) when the links of length Rr, LA 

and LB are in a full extended configuration (Figure 4b), (ii) when the links of length Rr and LA are in a full 

extended configuration forming a segment in a full contracted configuration with respect to the link of 

length LB, (iii) when the links of length LA y LB are in a full extended configuration forming a segment in 

a full contracted configuration with respect to the link of length Rr. Note that in all three cases the links of 

length LA and LB are in a full extended or contracted configuration, therefore a singularity associated with 

q
J

,
  can occur only if a singularity associated with 

q
J  also occurs. This is: det (

,

q
J ) = 0   det (

q
J ) = 0. 

 

 
 
                                                    (a)                                                                                                                                   (b) 

 

Figure 4. Some inverse singularities. (a) 
q

J  is singular. (b) 
,

q
J  is singular. 

 

Singularity type 2. This direct singularity occurs when det (
x

J ) = 0, which arises when the reciprocal 

screws 
6

$
i
 are linearly dependent. Because of the arrangement of the spherical joints in two parallel planes, 

the probability of occurrence of this condition is notably low. However, the manipulator can be in a 

singular con-figuration if the screws  6 6 6

1 2 3
$ $ $  or  6 6 6

4 5 6
$ $ $  are linearly dependent; the former is 

because the robot may be seen as two parallel sub-manipulators. This situation may occur, e.g., when for 

any sub-manipulator, the links of length LB are located in the same plane and their reciprocal screws 

converge to a common point or are parallel, as happens in a plane mechanism (Bonev et al., 2003). An 

example of this situation is shown in Figure 5. To prevent this situation, the following relation must be 

satisfied: LB + r > LA + R, where R = Rf + Rrcosβ for the sub-manipulator M1 and R = R2 for the sub-

manipulator M2. If this condition is only satisfied for one sub-manipulator, this sub-manipulator can pull 

or push the other to avoid a singularity in the robot or release it if it already exists. 

 

A special case of this type of singularity occurs when a row or column of 
x

J  vanishes, e.g., when the 

equilateral triangles F1F2F3 and A4A5A6 (fixed platform) and C1C2C3 and C4C5C6 (moving platform) 

coincide, i.e., they are concentric and have identical orientations. Naturally, this condition can only arise 

along the negative Y direction. If this condition is satisfied, the second element in the dual part of the 

screws 
6

$
i
 of 

x
J  is zero, which makes det (

x
J ) = 0 because the direction of 

6
$

i
 (primal part) and the 

location vector Ci of each spherical joint form an orthogonal plane to the XZ plane, which makes the dual 
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part of 
6

$
i
 a vector of the plane XZ without the Y component. This singular configuration may be easily 

avoided if the orientations of F1F2F3 and A4A5A6 are properly selected to prevent all triangles from 

coinciding, considering the following condition: θi ≠ θi+3. 

 

 
 

Figure 5. A direct singularity. 

 

Singularity type 3. This combined singularity occurs when exist simultaneously inverse and direct 

singularities. This situation can occur in two cases: (i) det (
q

J ) = det (
x

J ) = 0, (ii) det (
,

q
J ) = det (

q
J ) = det 

(
x

J ) = 0. The option where only det (
,

q
J ) = det (

x
J ) = 0 cannot exist, remember that: det (

,

q
J ) = 0   det (

q
J ) = 0. An example of the first case can arise if in any kinematic chain of a sub-manipulator the links of 

length LA and LB are in a full extended or contracted configuration, whereas in the other sub-manipulator, 

the reciprocal screws are coplanar and converge to a common point. The second case can arise if the fixed 

and the moving platforms are identical in size, i.e., F1F2F3 = A4A5A6 = C1C2C3 = C4C5C6, and the 

kinematic chains are all vertical (naturally parallel), which occurs only if the moving platform is located 

between triangles F1F2F3 and A4A5A6, which is a meaningless configuration for the robot (Figure 6). 

 

 
 

Figure 6. A combined singularity. 

4. CONCLUSIONS 
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Screws theory was applied as a tool to identify the singular configurations of a novel reconfigurable 

parallel robot. The process involves solving the velocity model of the robot to obtain the Jacobian 

matrices. Subsequently, the study of these matrices allows to identify the singular configurations. 

 

With classical approaches, Jacobian matrices are functions of the sums and products of sines and cosines 

of the angles formed by active and passive joints, where finding the singular configurations is somewhat 

complicated. However, using screw theory, this task becomes notably easy because these matrices are 

functions of infinitesimal screws which are intuitively associated with a vector direction. 

 

The implemented method is systematic and the singularity analysis was successfully performed for the 

robot under study. This work allows to highlight some advantageous features of the robot associated with 

the reduced singular regions. In the case of the inverse singularities, which are associated with the full 

extended or contracted configuration of the kinematic chains, it was found that the inclusion of the 

reconfiguration links in the robot does not generate independent singularities. On the other hand, for the 

direct singularities, which are associated with the linear dependence of the screws related to the direction 

of the links of length LB, all these singularities can be avoided by properly selecting the dimensions of the 

robot. Finally, the combined singularities can be avoided if the direct or in-verse singularities are also 

avoided. 
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