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Abstract
We review the history of elliptic curves and show that it is possible to form a group law using
the points on an elliptic curve over some field L. We review various methods for computing
the order of this group when L is finite, including the complex multiplication method. We
then define and examine the properties of elliptic pairs, lists, and cycles, which are related
to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman
and Stange in [15]. We then use the properties of elliptic pairs to prove that aliquot cycles of
length greater than two exist for elliptic curves with complex multiplication, contrary to an
assertion of [15], proving that such cycles only occur for elliptic curves of j-invariant equal
to zero, and they always have length six. We explore the connection between elliptic pairs
and several other conjectures, and propose limitations on the lengths of elliptic lists.
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Chapter 1

Introduction

In [15], Silverman and Stange define an amicable pair for an elliptic curve E/Q to be a pair
of primes (p, q) such that #Ẽ(Fp) = q and #Ẽ(Fq). In Section 4.2 (which follows work I
completed in 2012 as part of an REU program, see [2]), we define the similar notion of an
elliptic pair (Definition 4.2.1) for a set of elliptic curves E/L (where L is an extension field
of Q) with complex multiplication (CM) by an imaginary quadratic order oK . We show that
we can recreate many of the results from [15] using elliptic pairs, in addition to a few new
results.

In [15], the notion of an aliquot cycle for E is introduced, in which a set of n primes
pi ≥ 5 is defined such that #Ẽ(Fpi) = pi+1 mod n for all 1 ≤ i ≤ n. We define an elliptic
cycle (Definition 4.2.14) to be the analogue of an aliquot cycle for elliptic pairs. Silverman
and Stange show that no aliquot cycles exist for elliptic curves with complex multiplication,
except in the case that j(E) = 0. They predict that no aliquot cycles with n ≥ 3 exist in
this case, and they prove this for n = 3. We use elliptic cycles to find that an elliptic cycle
exists of length n = 6, and then we use this result to find an aliquot cycle of length n = 6 for
E : y2 = x3 +15. We also show that cycles exist only for n = 1, 2, 6, and we place restrictions
on the primes p which can be part of 1- or 6-cycles.

We also suggest a heuristic for determining the number of elliptic pairs below a given
bound which utilizes the class number of K.

Chapter 2 introduces elliptic curves E, reviewing the historical motivation for the study
of elliptic curves and defining “addition” of points on E. We show that this operation forms
a group law, enabling the use of group theory in placing restrictions on the number of points
on the reduction of E over a finite field. In Section 2.4, we define complex multiplication
and list all the j-invariants of elliptic curves defined over Q that have CM by oK .

Chapter 3 explores the theory of CM, with a focus on determining the number of points on
the reduction of an elliptic curve with CM over a finite field. Section 3.1, we follow Chapter 13
of [8], in which Lang follows Max Deuring’s 1941 paper “Die Typen der Multiplicatorenringe
elliptischer Funktionenkörper” (“The types of multiplication rings of elliptic function fields”).
We rederive Deuring’s Reduction Theorem (Theorem 3.1.17), which forms the basis of the
CM method of Atkin and Morain (see [1], or Section 3.2). We conclude Chapter 3 by
considering the special cases of j(E) = 0, 1728.
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In Chapter 4, we introduce Größencharakter and use them, along with the CM method, to
prove our main results for elliptic pairs. Section 4.1, we closely follow Sections II.8-10 of [14]
(with additional background) to define and prove some basic results of Größencharakter. We
conclude the section with two Theorems involving Größencharakter from [15]. These results
are used to prove Theorem 4.2.7 and Corollary 4.2.10.

There exists a correspondence between monic quadratic prime-generating polynomials f
and elliptic lists (Definition 4.2.12). We use the properties of elliptic lists to place a limit
on the number of consecutive values of these polynomials which can be prime. We also find
that the density of primes represented by f(n) (n ∈ Z) should be zero (because the number
of primes less than X represented by f(n) is O(

√
X/ log2X) - it is a fraction the number of

elliptic primes (Definition 4.2.2) less than X, while the number of primes is Θ(X/ logX)).
In cryptography, elliptic curves may be used to establish a key (for use in a symmetric

key algorithm) via a protocol similar to the Diffie-Hellman key exchange. In order to use
them, however, we have to be able to create curves which will maximize the security of
the keys derived from them. If E has order m modulo p, then the relative security of a
key derived from an unknown multiple of a point is no more than ϕ(ϕ(m)). Since this is
in general maximized for prime m, and we are guaranteed that the point (so long as it is
not the identity) does not have a smaller order in this case, we seek the ability to quickly
generate elliptic curves of prime order. We can use elliptic pairs to find curves E of prime
order over some large prime p (see [4] for an algorithm based on a similar idea). In order to
improve upon existing algorithms, a better understanding of the distribution of elliptic pairs
will be required, since it is relatively fast and easy to find a representative curve given an
elliptic pair (see [4], [12]).

We find the first term in the (conjectured) asymptotic expansion for the number of
elliptic pairs less than X. If K = Q(

√
−d), where d is positive, square-free, and d ≡8 3,

then the number of elliptic pairs less than X is asymptotic to C
√
d

h(−d)2
X

log2X
for some positive

constant C ≈ 0.16 (see Subsection 4.2.4). In the future, an improved heuristic may enable
the increased ability to single out elliptic primes given K. Normally, we seek K with class
number at least 200 for added security, so it is important to be able to specify K in advance,
which is not possible in [4].

6



Chapter 2

Basics of Elliptic Curves

In Chapter 2 we review the basics of elliptic curves, beginning with the historical motivation
for their study (Section 2.1). We then define a group law (Section 2.2) enabling us to “add”
points on an elliptic curve E over a given field L. We then use the group law in Section
2.3 to determine the number of points on an elliptic curve over a finite field via Schoof’s
algorithm (Algorithm 2.3.3). We conclude the chapter with some basic results about the
theory of complex multiplication (Section 2.4), which will set the stage for the rest of the
paper.

2.1 Historical Motivation for Elliptic Curves
Historically, elliptic curves arose from the study of elliptic integrals, which determine arc
length on an ellipse. Let a be the semi-major axis, and let b be the semi-minor axis of an
ellipse. Then the circumference of the ellipse is 4aE(

√
1− (b/a)2), where

E(k) =

π/2∫
0

√
1− k2 sin2 θ dθ =

1∫
0

y dx

and y comes from the elliptic curve E : y2 = (1− x2)(1− k2x2) (0 < k < 1) [13].
We say that two curves C1 and C2 are birationally equivalent if there exist rational

functions transforming points on C1 into points on C2, and vice versa. Such curves share
many similar features, regardless of the field over which they are studied. It is possible to
show that E, above, is birationally equivalent to E ′ : Y 2 = X(X − 1)(X − λ), which in turn
is birationally equivalent to E ′′ : Y 2 = X3 +AX +B (except in characteristic 2 and 3) [13].

If we try to compute
x∫
∞

dt√
t(t−1)(t−λ)

, then we see that because the square root function

branches in C, the integral is path-dependent. However, it can be shown that the integral is
unique up to the addition of n1ω1 +n2ω2 for some fixed ω1, ω2 ∈ C dependent upon E ′, with
n1, n2 ∈ Z [13]. We define a lattice Λ to be the set of all Z-linear combinations of ω1 and ω2.
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This motivates the study of elliptic functions, which are meromorphic functions f(z) on
C which satisfy f(z + ω) = f(z) for all ω ∈ Λ for some lattice Λ, and for all z ∈ C. If we fix
Λ, then the set of elliptic functions is finitely generated. Let

℘(z; Λ) =
1

z2
+

∑
ω∈Λ,ω 6=0

[
1

(z − ω)2
− 1

ω2

]
be the Weierstraß ℘-function. Then we have the following Theorem (Theorem 3.2 of Chapter
VI of [13]):

Theorem 2.1.1. Every elliptic function over a fixed lattice Λ is a rational combination of
℘(z; Λ) and ℘′(z; Λ).

It turns out that (℘′)2 = 4℘3−g2℘−g3, where g2 = 60
∑

ω∈Λ,ω 6=0

ω−4 and g3 = 140
∑

ω∈Λ,ω 6=0

ω−6,

the equation of another elliptic curve. This tells us that when considered over C, elliptic
curves have the nice property that they are isomorphic to a torus C/Λ.

In general, we can multiply ω1 and ω2 by some complex unit without changing any of the
features of the elliptic curve, although g2 and g3 will change. This enables us to construct
an infinite number of elliptic curves which are isomorphic to one another, so long as we
keep τ = ω1/ω2 fixed. Given an elliptic curve E : y2 = x3 + Ax + B, it is often difficult
to compute τ , however, so we need some mechanism for determining whether two elliptic
curves E and E ′ are isomorphic. To this end, we define the j-invariant of an elliptic curve
(or its corresponding lattice), which is fixed among all elliptic curves which are isomorphic
to one another. Let

J(τ) =
g3

2

∆τ

=
g3

2(τ)

g3
2(τ)− 27g2

3(τ)

and j(τ) = 1728J(τ). Then

J(E) =
4A3

4A3 + 27B2
=
−64A3

∆E

and j(E) = 1728J(E). The normalization j is more commonly used than J , due to the fact
that the coefficients of its Fourier series are integral [5].

Note that j is infinite when ∆ = 0. In this case, E is called singular, and then it is not
actually an elliptic curve. In this case, E either has a cusp or self-intersects at a point. As we
will see in Section 2.3, E, as written above, will be singular no matter what the coefficients
over certain fields. In this case (and others), we can write the more general

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

8



x

y

P Q
R = P ∗Q

S = P +Q

O

Figure 2.1: Point addition on E : y2 = x3 − 2x+ 4.

to represent non-singular elliptic curves E over any field. Then if

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

we can write

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4/∆

[5]. This will come in particularly handy when E is over a field of characteristic p = 2 or 3.

2.2 The Group Law
Define the operation ∗ : E × E → E,P ∗ Q 7→ R, where P,Q,R are collinear, and define
+ : E×E → E,P +Q 7→ S, where S is the reflection of R about the x-axis (see Figure 2.1).
Alternatively, we can choose any point O on E, including a point at infinity, denoted by O,
when E is written in Weierstraß form, to be our “identity point” (the reason for this name
will be elucidated when we prove that O is the identity for +). Then P +Q = (P ∗Q) ∗O.
In the case that O = O, we choose a vertical line through P ∗Q and take the other point of
intersection.

It is not obvious that ∗ (or +) is a well-defined operation (although + follows from ∗), but
this result follows from Bezout’s theorem, which states that two projective curves of degrees
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d1 and d2 intersect in d1 · d2 points (including multiplicity). Since lines are of degree 1 and
elliptic curves are of degree 3, they intersect in three points. If we fix P and Q, then there is
exactly one other point of intersection, P ∗Q, so ∗ is well-defined. We see immediately that
∗ is commutative, so + is commutative.

Theorem 2.2.1. The set of points on an elliptic curve E forms an abelian group under the
operation + defined above.

In order to prove Theorem 2.2.1, we have to show that ∀P,Q ∈ E,P + Q ∈ E, + is
associative, there is an identity element, and all points have inverses. That E is closed under
+ is obvious from the definition. The proof of associativity is more difficult, so we save it
for the end of the section. We have that P ∗O is collinear with P and O, so the line through
P ∗ O and O intersects E at P . Therefore P + O = (P ∗ O) ∗ O = P , so O is an identity
element. Next, we claim that the inverse of P is −P = P ∗ (O ∗O). The line through P and
−P intersects E at O ∗O, and (O ∗O) ∗O = O, so P + (−P ) = O. Note that to find O ∗O,
we use the line tangent to E at O and take the third point of intersection. For lines through
O, we use a vertical line, and we set O ∗ O = O (here, O is a flex point - i.e., a point P
such that P ∗ P = P ).

When we define the addition of points, we usually take O = O, and we follow this
convention in Figure 2.1 and for the rest of the paper. In this case, if P = (x1, y1), Q =
(x2, y2), P ∗Q = (x3, y3), and E is in minimal Weierstraß form E : y2 = x3 + Ax+ B, then
setting λ = y2−y1

x2−x1 , we find that y3 = y1 + λ(x3 − x1). Then

y2
3 = x3

3 + Ax3 +B

[y1 + λ(x3 − x1)]2 = x3
3 + Ax3 +B

0 = x3
3 − λ2x2

3 + (2λ(x1 − y1) + A)x3 + (−y2
1 + 2λx1y1 − λ2x2

1 +B),

and we can eventually compute

x3 = λ2 − x1 − x2, (2.1)
y3 = y1 + λ(x3 − x1) = y2 + λ(x3 − x2). (2.2)

Then, reflecting about the x-axis, we see that P +Q = (x3,−y3).
Unfortunately, our definition for λ is undefined in the case that P = Q (or −Q), so we

cannot use (2.1) and (2.2). If P = −Q, then P +Q = O, but if P = Q, then we have to find
the slope of the tangent line to E at P (see Figure 2.2). Differentiating y2 = x3 + Ax + B
implicitly at P , we see that 2y1 dy = (3x2

1 + A) dx, so

λ =
dy

dx

∣∣∣∣∣
P

=
3x2

1 + A

2y1

.

The rest of the argument used before holds, so now we can use (2.1) and (2.2), with x1 = x2.

10



P

2P

x

y O

Figure 2.2: Point doubling on E : y2 = x3 − 7x+ 6.

In order to compute the coordinates of multiples of points, we define the division poly-
nomials ψm to be:

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx− A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

...

ψ2m =
ψm
2y
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 (m ≥ 2).

The division polynomials are such that

n(x, y) =

(
φn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)
,

where φn = xψ2
n − ψn+1ψn−1 and ωn = 1

4y
(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1) [18]. Here,

nP = P + P + ...+ P︸ ︷︷ ︸
n times

.

The division polynomials will be especially useful in Section 2.3 when we discuss Schoof’s
algorithm.

We finish the section by proving associativity, and with it, finish the proof of Theorem
2.2.1.

Lemma 2.2.2. If P1, ..., P8 are points in P2, no 4 on a line, and no 7 on a conic, then there
is a unique 9th point Q such that any cubic through P1, ..., P8 also passes through Q.

11



L1 L2 L3

M1

M2

M3

−(P +Q) O P +Q

Q −(Q+R) R

P Q+R X

Figure 2.3: A geometric proof that addition on E is associative. E intersects the grid at the
nine lattice points - and nowhere else. Therefore, X = −(P + (Q+R)) = −((P +Q) +R),
from which the fact that point addition on E is associative follows immediately.

Proof. This is a special case of the Cayley-Bacharach Theorem for two cubic curves (see, for
example, Appendix A of [16]).

Lemma 2.2.3. As defined above, + is associative on E.

Proof. Note that Lemma 2.2.3 is trivial in the case that any of the points is O, or the case
that all three points are the same. We shall prove associativity in the case that the three
points being added are distinct and not the identity, leaving the case that two of the points
are the same to the reader.

Note that points A, B, and −(A + B) are collinear, so P,Q,−(P + Q) all lie on a line,
say L1, and P + Q,−(P + Q), O all lie on a line, say M1. Also, Q,R,−(Q + R) lie on the
line M2, and Q+ R,−(Q+ R), O lie on L2. Then P +Q,R,−((P +Q) + R) lie on L3 and
P,Q+R,−(P + (Q+R)) lie on M3. See Figure 2.3 for a visualization of this set-up.

Since E is a cubic, it intersects each of the six lines three times, and on lines L1, L2,M1,M2,
we know that the points of intersection are the points we specified above, giving us 8 points.
We have that L1L2L3 = 0 and M1M2M3 = 0 are both of degree three, so by Lemma
2.2.2, E intersects them in their ninth point of intersection, and nowhere else (assuming

12



the conditions stated in the lemma, which we check below). Therefore, we must have that
−((P +Q) +R) = −(P + (Q+R)), so (P +Q) +R = P + (Q+R), as desired.

Now we check that no four points lie on a line, and no seven on a conic. By Bezout’s
Theorem, the intersection of any line with E contains 3 points, so no 4 points are collinear.
Likewise, the intersection of any conic with E contains 6 points, so no 7 points are on the
same conic.

2.3 Elliptic Curves over Finite Fields
In general, E is defined over some field, often C or Q, with coefficients in the ring of integers
of these fields. We can also study E over a field of characteristic other than zero, however.
When we consider E over Fpn , where p is prime and n ∈ Z+, then we say that we are
considering the reduction of E over Fpn , denoted by Ẽ. Points are found in the same way
as before: we choose x, y ∈ Fpn and check to see whether they satisfy the equation for E.

Since Fpn has only a finite number of elements, it makes sense to ask how many points
are on Ẽ. We denote this quantity by #Ẽ(Fpn). We know that the point at infinity (now
represented by Õ) is a point on Ẽ, so #Ẽ(Fpn) ≥ 1, and there can be no more than 2 values
of y for any given value of x such that (x, y) ∈ Ẽ, so #Ẽ(Fpn) ≤ 2pn + 1. It seems unlikely
that either of these extremes would ever be reached, since exactly half of the elements of F×pn
are squares. We expect that #Ẽ(Fpn) = pn + 1 + o(pn) - but can we find a better bound for
the error function? In fact, we can, as Hasse first did in 1936 (Theorem 2.3.1, below).

Thoerem 2.3.1. Let a = pn + 1 − #Ẽ(Fpn). Then |a| ≤ 2pn/2. The interval [pn + 1 −
2pn/2, pn + 1 + 2pn/2] is known as the Hasse interval.

Proof. Let q = pn and let πq be the qth-power Frobenius map:

πq : Ẽ → Ẽ, (x, y) 7→ (xq, yq).

Since the Galois group GF̄q/Fq
is topologically generated by πq on F̄q, we see that for a point

P ∈ Ẽ(F̄q) that P ∈ Fq if and only if πq(P ) = P [13]. Therefore, Ẽ(Fq) = ker(1 − πq) and
#Ẽ(Fq) = # ker(1 − πq) = deg(1 − πq) (because 1 − πq is separable). Because deg πq = q
and the degree map on End(E) is a positive definite quadratic form [13], we can use Lemma
2.3.2 below to obtain the desired result.

Lemma 2.3.2. Let A be an abelian group and d : E → Z be a positive definite quadratic
form. Then for all ψ, φ ∈ A,

|d(ψ − φ)− d(φ)− d(ψ)| ≤ 2
√
d(ψ)d(φ).

Proof. If ψ = 0, then the lemma is trivial, so set ψ 6= 0.
We see immediately that L(ψ, φ) = d(ψ − φ) − d(φ) − d(ψ) is bilinear. As d is positive

definite,
0 ≤ d(mψ − nφ) = m2d(ψ) +mnL(ψ, φ) + n2d(φ)

13



for integers m,n. We set m = −L(ψ, φ) and n = 2d(ψ) to obtain

0 ≤ d(ψ)[4d(ψ)d(φ)− L(ψ, φ)2].

Since ψ 6= 0, 4d(ψ)d(φ) ≥ L(ψ, φ)2. Taking square roots yields the desired inequality.

For n = 1, every possible value for a allowed by Theorem 2.3.1 is attained, although this
is not true for n > 1. We note that π2

q − aπq + q = 0 as an endomorphism of E [18], a result
that will be of use in computing the order of Ẽ later on.

2.3.1 Singular Reductions

Recall that the discriminant for the curve E : y2 = x3 + Ax + B is ∆ = −16(4A3 + 27B2).
If p|∆, then E has bad reduction at p, that is, when we consider Ẽ(Fpn), we no longer have
an elliptic curve. If p - ∆, then E has good reduction at p, so it is still an elliptic curve. It is
important to note that the cases p = 2, 3 cause problems, so E : y2 = x3 + Ax+ B will not
be an elliptic curve. We have to use the more general form from Section 2.1, instead. Due to
this difficulty, for the rest of the paper, we assume that p 6= 2, 3, unless otherwise indicated.
Note that all of the general results we prove can be used in characteristic 2 and 3.

It should be noted that if E has a singular reduction, we can still treat the points as
a group and use the same group law as in Section 2.2, so long as we remove the singular
point (there is exactly one). The type of group depends on the type of singular reduction.
E has a cusp if −c6 ≡p 0, a double point with tangents defined over L = Fpn if −c6 is a
quadratic residue modulo p, or a double point with tangents not defined over L if −c6 is
not a quadratic residue modulo p. In the case that E has a cusp, the group of non-singular
points G is isomorphic to the additive group (L,+) and the order is #Ẽ(L) = pn + 1. In the
case of a double point with tangents defined over L, G ∼= (L∗,×) and #Ẽ(L) = pn. We say
that E has split multiplicative reduction. In the remaining case, we say that E has non-split
multiplicative reduction. Then G is isomorphic to the cyclic subgroup of Fp2n of order pn+1,
so #Ẽ(L) = pn + 2 [5]. We no longer have an elliptic curve in the case of singular reduction,
however.

2.3.2 Schoof’s Algorithm

Given the bounds on the order in Theorem 2.3.1, it is natural to try to determine the number
of points on Ẽ exactly. For singular curves, we saw that #Ẽ(Fpn) ∈ {pn, pn + 1, pn + 2},
with the order being determined by the type of bad reduction.

The fastest general-purpose algorithm for determining #Ẽ(Fpn) is the Schoof-Elkies-
Atkin (SEA) algorithm, an improvement upon Schoof’s originial algorithm published in 1985
[9]. The complex multiplication method in Section 3.2 is faster, but it does not work for
every E. SEA runs in time Õ(log4 pn), and Schoof’s algorithm can be programmed to run in
Õ(log5 pn), although the version we give here will run inO(log8 pn). Efficient implementations
for p > 2, n = 1 and p = 2, n ∈ Z can be found in [10] and [11], respectively.
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Schoof’s algorithm is based on the idea that if S = {2, 3, 5, 7, ...,L} is a set of primes
such that

∏̀
∈S
` ≥ 4

√
pn, then by the Chinese Remainder Theorem and Theorem 2.3.1 (which

limits the number of orders E can take), we can determine a (from Theorem 2.3.1) uniquely
by determining a modulo ` for all ` ∈ S. For ` = 2, note that #Ẽ is even (we include O in
our count) if and only if f(x) = x3 +Ax+B has a root in Fpn . Recall that if deg f(x) ≤ 3,
then f(x) has a root in Fpn if and only if gcd(xp

n−x, f(x)) 6= 1, so we can use the Euclidean
algorithm to quickly determine a modulo 2.

For ` > 2, note that because π2
q − aπq + q = 0,(

xp
2n

, yp
2n
)

+ pn(x, y) = a
(
xp

n

, yp
n)
.

If (x, y) is a point of order ` (that is, `(x, y) = O), then

(x′, y′) :=
(
xp

2n

, yp
2n
)

+ (pn)`(x, y) = a
(
xp

n

, yp
n)
,

where (pn)` ≡` pn and |(pn)`| ≤ `
2
. As (xp

n
, yp

n
) is a point of order `, this relation determines

a modulo `.
Let j(x, y) = (xj, yj) for integers j, where we can compute xj and yj using the division

polynomials, as we did in Section 2.2. By equation (2.1),

x′ =

(
yp

2n − yq`
xp2n − xq`

)2

− xp2n − xq` .

We seek to find j such that (x′, y′) = (xp
n

j , y
pn

j ). Looking at the x-coordinates, we see that
(x′, y′) = ±(xp

n

j , y
pn

j ) if and only if x′ = xp
n

j . In this case, x′ − xp
n

j ≡ψ`
0 by the definition

of the division polynomials. We then determine the sign by examining Y = (y′ − yp
n

j )/y
modulo ψ`. If Y ≡ 0, then a ≡` j; otherwise, a ≡` −j [18].

We must consider the case where (xp
2n
, yp

2n
) = ±pn(x, y) (recall that `(x, y) = O) because

the x- and y-coordinates of the point at infinity are not well-defined, so we cannot define x′
and y′, as above.

Let ψ2
pn(x, y) =

(
xp

2n
, yp

2n
)

= pn(x, y), so aπpn(x, y) = π2
pn(x, y) + pn(x, y) = 2pn(x, y).

Therefore, a2pn(x, y) = (2pn)2(x, y) and a2 ≡` 4pn. In particular, this can only be the case
if pn is a quadratic residue modulo `, in which case we define w such that w2 = pn. Then

(πpn + w)(πpn − w)(x, y) = (π2
pn − pn)(x, y) = O,

so there exists a point P of order ` such that πpnP = ±wP , which implies that

O = (π2
pn ∓ aπpn + pn)P = (pn ∓ aw + pn)P.

Therefore, a ≡` ±2w. Since we are only considering one point of order ` and not all of them,
we take a gcd between ψ` and the appropriate polynomials (analogous to those given before
- see Algorithm 2.3.3) to determine which it is.

We are now ready to present Schoof’s algorithm:
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Algorithm 2.3.3. This algorithm takes an elliptic curve E : y2 = x3 +Ax+B over a finite
field L = Fpn and outputs the order #E(L).

1. Choose a set of primes S = {2, 3, 5, ...,L} (with p 6∈ S) such that
∏

`∈S ` > 4
√
pn.

2. If ` = 2, then a ≡2 0 if and only if gcd(x3 + Ax+B, xp
n − x) 6= 1.

3. For each odd prime ` ∈ S:
[(a)] Let q` ≡` pn, with |q`| < `/2.
[(b)] Compute x′ modulo ψ`, where

(x′, y′) =
(
xp

2n

, yp
2n
)

+ q`(x, y).

[(c)] For j = 1, 2, ..., (`− 1)/2, do the following:
[i.] Compute xj, where (xj, yj) = j(x, y).
[ii.] If x′ − xp

n

j ≡ψ`
0, go to step (iii). Otherwise, try the next value of j.

[iii.] Compute y′ and yj. If (y′ − yp
n

j )/y ≡ψ`
0, then a ≡` j. Otherwise, a ≡` −j.

[(d)] If all values of j have been tried without success, then if
(
pn

`

)
= −1, a ≡` 0.

[(e)] If
(
pn

`

)
= 1, then let w ≡`

√
pn, and compute

g = gcd(numerator(xp
n − xw), ψ`).

If g = 1, then a ≡` 0. If not, compute

g′ = gcd(numerator((yp
n − yw)/y), ψ`).

If g′ = 1, then a ≡` −2w. Otherwise, a ≡` 2w.

4. Use the Chinese Remainder Theorem and the values of amodulo ` to compute amodulo∏
`, and choose the value of a such that |a| ≤ 2

√
pn. Then #E(L) = pn + 1− a.

We now consider the elliptic curve E : y2 = x3 + 2x+ 1 over the field L = F52 . We check
the discriminant ∆E = −944 ≡5 1 6≡5 0 to make sure that E is not singular. We quickly
compute 4

√
52 = 20, so we take S = {2, 3, 7}.

For ` = 2, we compute gcd(x3 + 2x+ 1, x25−x) = gcd(x3 + 2x+ 1, 131x2−706x−347) =
gcd(131x2 − 706x− 347, 578215x+ 262143) = 1, so a ≡2 1.

For ` = 3, recall that ψ3 = 3x4 + 12x2 + 12x − 4. We compute q` ≡3 25 ≡3 1. Then
(x′, y′) = (x625, y625) + (x, y), so

x′ =

(
y625 − y
x625 − x

)2

− x625 − x = (x3 + 2x+ 1)

(
(x3 + 2x+ 1)312 − 1

x625 − x

)2

− x625 − x.

But x625 − x ≡ψ3,5 0, so its multiplicative inverse does not exist. Therefore, a root of ψ3 is
defined over L, so a ≡3 0. Therefore, a ≡6 3.

For ` = 7, we follow Schoof’s algorithm to compute a ≡7 5, although we omit the
computations here for the sake of brevity. Thus, a ≡42 33, so a = −9. Therefore, #E(L) =
25 + 1− (−9) = 35.
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2.4 Complex Multiplication
Since the set of points on E form a group, we can look at the ring of endomorphisms of
(E,+). Over C, it makes more sense to look at the torus C/Λ ∼= E. If we multiply points
by an integer n, nΛ ⊂ Λ, so this is an endomorphism of E. For most curves, End(E) = Z,
but some curves admit additional endomorphisms. Such curves are said to have complex
multiplication (CM) because the additional endomorphisms are multiplications of points
on Λ by complex numbers. We will see in Section 3.1 that if α ∈ End(E) and α /∈ Z, then
α = a+ b

√
−d for some square-free positive integer d.

As in Section II.2 of [14], take the curves

E : y2 = x3 + 4x2 + 2x

and
E ′ : Y 2 = X3 − 8X2 + 8X,

both with j = 8000. Since j(E) = j(E ′), E ′ ∼= E, and in fact we have the isomorphism

ψ : E ′ → E, (X, Y ) 7→
(
−X

2
,− Y

2
√
−2

)
=: (x, y).

We also have the isogeny (surjective homomorphism)

φ : E → E ′, (x, y) 7→
(
x+ 4 +

2

x
, y

(
1− 2

x2

))
=: (X, Y ).

From these, we have

ψ ◦ φ : (x, y) =

(
−1

2

(
x+ 4 +

2

x

)
,− y

2
√
−2

(
1− 2

x2

))
,

so

(ψ ◦ φ)∗
dx

y
=

−dx
2

+ dx
x2

− y

2
√

2

(
1− 2

x2

) =
√
−2

dx

y
.

Thus, E and E ′ have CM in Q(
√
−2). We will work out an endormorphism α for elliptic

curves with CM in Q(
√
−1) in Section 3.3.

In general, we can only guarantee that elliptic curves with CM in Q(
√
−d) exist with

rational coefficients if the class number h(−d) = 1. This is because j is a rational function
of the coefficients of the terms in the formula for E, and j is an algebraic integer of degree
h(−d) [14]. However, over finite fields in which −d splits (i.e. E is not supersingular), we
can define curves with CM in Q(

√
−d) with coefficients in the field, regardless of how large

h(−d) is. This fact is not entirely obvious, and its proof goes beyond the scope of this work.
See [12] for an explicit formula of a curve with CM in Q(

√
−d).

There are 13 elliptic curves (up to isomorphism) over Q with CM. In Table 2.1, we give
d, j, the conductor f of R (the order by which E has CM), and a representative curve E/Q
with CM by the given order (see also Appendix A.3 of [14]).
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Table 2.1: Representative Elliptic Curves over Q with CM (in Q(
√
−d))

d j f E

1 1728 = 26 · 33 1 y2 = x3 + x
1 287496 = 23 · 33 · 113 2 y2 = x3 − 11x+ 14

2 8000 = 26 · 53 1 y2 = x3 + 4x2 + 2x

3 0 1 y2 + y = x3

3 54000 = 24 · 33 · 53 2 y2 = x3 − 15x+ 22
3 −12288000 = −215 · 3 · 53 3 y2 + y = x3 − 30x+ 63

7 −3375 = −33 · 53 1 y2 + xy = x3 − x2 − 2x− 1
7 16581375 = 33 · 53 · 173 2 y2 = x3 − 595x+ 5586

11 −32768 = −215 1 y2 + y = x3 − x2 − 7x+ 10
19 −884736 = −215 · 33 1 y2 + y = x3 − 38x+ 90
43 −884736000 = −218 · 33 · 53 1 y2 + y = x3 − 860x+ 9707
67 −147197952000 = −215 · 33 · 53 · 113 1 y2 + y = x3 − 7370x+ 243528
163 −262537412640768000 = −218 · 33 · 53 · 233 · 293 1 y2 + y = x3 − 2174420x+ 1234136692
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Chapter 3

The Complex Multiplication Method

In this chapter, we derive Deuring’s Reduction Theorem (Theorem 3.1.17) in Section 3.1.
We then use this result to find a formula for the number of points on an elliptic curve E/Fp
with CM in Q(

√
−d) in Section 3.2 (see Equation (3.1)). Finally, we consider the cases where

j(E) = 0, 1728 in Section 3.3.

3.1 `-adic Methods of Deuring
We closely follow Lang’s exposition of Deuring’s 1941 work “Die Typen der Multiplicatoren-
ringe elliptischer Funktionenkörper” from Chapter 13 of [8].

Either there are no points of order p on an elliptic curve E considered in a field of
characteristic p > 0, or the points of order p form a cyclic group Z/pZ [8]. In the first of
these cases, we say that E is supersingular, and in the latter, we say that E is singular or
generic, depending on whether the j-invariant of E is transcendental over the chosen field.

Using `-adic and p-adic representations, Deuring determined what happens to the en-
domorphism ring of an elliptic curve under reduction modulo p. Lang modifies Deuring’s
approach slightly to be better suited to modern notational preferences.

3.1.1 The `-adic spaces

Let E = E/F be an elliptic curve, and let F have characteristic p. We consider points of E
in a fixed algebraic closure F.

Definition 3.1.1. For prime number `, the `-adic module T`(E) (also called the Tate
module) is the set of infinite vectors

(a1, a2, ...)

with ai ∈ E`i (so `iai = 0) and `ai+1 = ai.

We define addition componentwise such that T`(E) is a group. Likewise, multiplication
by an `-adic number is defined componentwise, where we approximate the `-adic number
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by an integer modulo `i and multiply the ith component by this integer to get the new
component for all i ∈ N. We will denote the set of `-adic integers by Z`, and we will use
Z/`Z (or F` because ` is prime and we have a field) for the ring of integers modulo `.

Theorem 3.1.2. If ` 6= p, then T`(E) is a free Z`-module of dimension 2. On the other
hand, Tp(E) = 0, or is a free module of dimension 1 over Zp, according as we are in the
supersingular or singular case.

Proof. First let ` 6= p, and let x1, x2 ∈ T`(E) have first components a1,1, a2,1, respectively,
which are linearly independent over the field Z/`Z. Then x1, x2 are linearly independent
over Z` because otherwise the hypothesis on their first components could not be satisfied.

We shall use induction to prove that x1, x2 form a basis of T`(E) over Z`. Suppose that
∀w ∈ T`(E), we can write

w ≡ z1x1 + z2x2 mod `nT`(E)

for some z1, z2 ∈ Z. We let w = (b1, ..., bn, bn+1, ...), so that

z1(a1,1, ..., a1,n+1) + z2(a2,1, ..., a2,n+1) = (b1, ..., bn+1) + (0, ..., 0, cn+1)

for some point cn+1 of order `. By our choice of x1, x2, ∃d1, d2 ∈ Z such that

cn+1 = d1`
na1,n+1 + d2`

na2,n+1.

Replacing zi ← zi + di`
n extends the congruence

w ≡ z1x1 + z2x2 mod `kT`(E)

from k = n to k = n+ 1. As the case k = 1 was assumed, this completes the proof for ` 6= p.
Now we let ` = p and see that the set of points on E of order pi is cyclic of order pi in the

singular case, so Tp(E) is free over Zp. If there are no points of order p, then Tp(E) = 0.

As the ` = p case is relatively uninteresting, for the remainder of this section, we will
assume that ` 6= p.

If λ : E → E ′ is a homomorphism of elliptic curves, then λ induces a homomorphism

λ : T`(E)→ T`(E
′),

with a similar result for Tp. Then

λ(a1, a2, ...) = (λa1, λa2, ...).

Theorem 3.1.3. If endomorphisms λ1, ..., λr of E are linearly independent over Z, then as
endomorphisms of T`(E), they are linearly independent over Z`.
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Proof. Find c1, ..., cr ∈ Z` such that c1λ1 + · · · + crλr = 0. It suffices to prove that ∀i, `|ci,
because then we can divide by ` as needed to reach a contradiction (unless all ci = 0). Let
ci = mi + `di, with mi ∈ Z and di ∈ Z`. It will suffice to show that ∀i, `|mi (reducing to the
previous scenario).

Set λ = m1λ1 + · · ·mrλr ∈ End(E). Then because 0 = c1λ1 + · · ·+ crλr = (m1 + `d1)λ1 +
· · · (mr + `dr)λr, we have that λ = −`(d1λ1 + · · ·+ drλr). If δ is the identity endomorphism,
then this shows that λ factors through `δ, and so ∃α ∈ Emd(E), λ = `α. Since λ1, ..., λr
generate the space Qλ1 + · · ·+ Qλr over Q,

(Qλ1 + · · ·+ Qλr) ∩ End(E)

is a lattice of rank r in End(E) < Q. We know that α ∈ Zλ1 + · · ·Zλr, so ∀i, `|mi, as
desired.

By Theorem 3.1.3, we obtain the injection

Z` ⊗Z End(E)→ EndZ`
(T`(E));

we can see that our representation of End(E) on T`(E) corresponds to tensoring with Z`.
We let V`(E) ⊃ T`(E) with the first component a point on E of order a power of ` (let

us define the set of such points by E(`)). One can see that

V` ∼= Q` ⊗Z`
T`,

and in fact for any x ∈ V`, we can find s such that `sx has first component 0. Note that

0→ T`(E)→ V`(E)→ E(`) → 0

is an exact sequence, with the mapping on the right being projection onto the first component.
For arbitrary `,

Q⊗Z End(E) = End(E)Q → EndQ`
(V`)

is a faithful representation. Since dimQ`
(V`) = 2, dimQ`

EndQ`
(V`) = 4. This proves the

following theorem:

Theorem 3.1.4. In any characteristic, dimQ End(E)Q ≤ 4 and dimZ End(E) ≤ 4.

The dimension is either 1, 2 (commutative), or 4 (not commutative).

3.1.2 Representations in Characteristic p

Proposition 3.1.5. Let α ∈ End(E) be a non-trivial endomorphism. Then Q(α) is quadratic
imaginary.

Proof. As Q(α) is a commutative subfield of a division algebra of dimension 4 over Q, it
follows that [Q(α) : Q] = 2, so α is quadratic (because α is not just a multiplication-by-n
endomorphism when E has CM). In fact, α must be an automorphism of E other than the
identity. Since the only real automorphisms of E are ±1, α must be complex, and Q(α)
must be imaginary.
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Remark 3.1.6. For notational convenience, if λ : E → E ′ is a homomorphism, then we
will represent its degree by ν(λ). We list without proof some of the properties of ν(λ) when
λ : E → E is an endomorphism:

i. if E ∼= C/Λ, then ν(λ) = (Λ : λΛ) is the degree map for λ,

ii. there exists an involution (map which is it’s own inverse) of endomorphisms λ 7→ λ′

with the property that λλ′ = λ′λ = ν(λ)δ, where δ is the identity map,

iii. if Q(λ) is quadratic imaginary, as it is in Proposition 3.1.5, then λ′ = ν(λ)λ−1 is the
complex conjugate of λ, and ν(λ) is the norm of λ.

Theorem 3.1.7. Let E be defined over a finite field with q = pr elements, and let πq be its
Frobenius endomorphism. If πq ∈ Z, then Tp = 0. So if Tp 6= 0, then πq is a non-trivial
endomorphism.

Proof. The degree of πq = q. Assume that πq = nδ, so pr = q = ν(πq) = n2, and thus n = pm

for some m ∈ Z. Since Fq is finite, πq is purely inseparable, so pmδ has kernel 0. Therefore,
Tp = 0.

Theorem 3.1.8. Let E be an elliptic curve over a finite field F of characteristic p, and
assume that Tp(E) 6= 0. Then:

i. End(E)Q = K is a quadratic imaginary field, and End(E) = o is an order in K (o is
a Z-lattice such that K = Qo).

ii. The prime p does not divide the conductor c of o.

iii. The prime p splits completely in K.

Proof. By Theorem 3.1.7, πq is a non-trivial endomorphism of E. Since the representation
of End(E) on Tp is faithful, it gives rise to an embedding of End(E) in Zp, so End(E) is
commutative. Therefore, we know that End(E) has dimension two over Z. By Proposition
3.1.5, K = End(E)Q is a quadratic imaginary field. Because K can be embedded in Qp, p
must split completely in K.

It remains to show that p - c. Since Z ⊂ End(E), we know that o = Z+coK . There exists
m ∈ Z such that πq = m+ cα and π′q = m+ cα′ for some α ∈ oK . Then qδ = πqπ

′
q ≡coK m2.

If we try to embed oK in Zp, then we find that p|m, so πq kills the points of order p on E.
But this contradicts the fact that πq is purely inseparable, so p - m, and thus p - c.

Corollary 3.1.9. Let q = pr be the number of elements of F, and let π = πq be the Frobenius
endomorphism. If po = pp′ is the factorization of p in o = End(E), then πo = pr or
πo = (p′)r, and any other generator of πo is ±π.

Proof. As ππ′ = qδ, in the unique factorization in o, only divisors of p can occur as divisors
of π and π′. As p - π, it follows that ∃m ∈ N such that (after permuting p and p′, as
necessary)

πo = pm and π′o = (p′)m.
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Thus, ππ′o = pro, and m = r. Since E is not supersingular, the only automorphisms
are ±δ (the fourth or sixth roots of unity are automorphisms for jE = 1728 and jE = 0,
respectively), proving the corollary.

Now we consider the case that E is supersingular, so Tp(E) = 0. If E ′ is isogenous to E,
then Tp(E ′) = 0 as well. Since we will not need the next two results (we focus primarily on
the case where p splits in K), we state them without proof.

Theorem 3.1.10. Let E/Fq be an elliptic curve, with q = pr. If Tp(E) = 0, then jE = jp
2

E .

We see that jE ∈ Fp2 if Tp(E) = 0, and therefore, there exist only finitely many isomor-
phism classes of elliptic curves E in characteristic p such that Tp(E) = 0.

Corollary 3.1.11. Assume that E is supersingular, with invariant j, and that E is defined
over Fp(j) = F. Then for p 6= 2, 3 we have:

π2
p = −pδ if j ∈ Fp,

πp2 = ±pδ if j 6∈ Fp.

The formulas are similar for characteristic 2 or 3, but we are not interested in such cases,
so we neglect these cases.

3.1.3 Representations and Isogenies

Recall that an isogeny is a surjective homomorphism between two elliptic curves E and E ′.

Theorem 3.1.12. Let λ : E → E ′ be an isogeny and ν(λ) = pr. The map End(E) 3 α 7→
λαλ−1 ∈ End(E ′) is an isomorphism between End(E) and End(E ′).

Proof. It will suffice to prove the theorem in the case that r = 1 because we can decompose
λ into r isogenies, each of degree p. Furthermore, it suffices to show that for α ∈ End(E),
λαλ−1 ∈ End(E ′) because we then have the inverse map

λ′λαλ−1λ′−1 = pαp−1 = α.

We first prove the case in which λ is separable. Then λλ′ = pδ, so λ′ is purely inseparable,
and λ−1 = p−1λ′. Suppose λαλ−1 = 1

p
β for some β ∈ End(E). Then β = λαλ′. Since λ′ is

purely inseparable and λ is separable, ker β contains a point of period p. Hence, β = pγ for
some γ ∈ End(E ′), so γ = λαλ−1, proving the theorem for this case.

If λ is purely inseparable, then there exists an isomorphism ε such that λ = επ. Then
λ−1 = π−1ε−1, so λαλ−1 = επαπ−1ε−1. For each point x ∈ π(E), we have that

παπ−1(x) = π(α(x1/p)) = α(p)(x),

where α(p) is the image of α under the automorphism c 7→ cp of the universal domain.
Therefore, παπ−1 = α(p) ∈ End(πE), from which we find that επαπ−1ε−1 ∈ End(E ′).
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We want to see how the modules T` correspond under isogenies; we will see that they act
similarly to lattices Λ in C. If we let λ : E → E ′ be an isogeny, then we can find its inverse
λ−1 ∈ Hom(E ′, E)Q, the tensor of Hom(E ′, E) with Q.

Definition 3.1.13. Let R be a commutative ring, and let M be an R-module. If S ⊂ R is
multiplicatively closed, then the localization of M with respect to S (denoted by S−1M) is
the set of equivalence classes of ordered pairs (m, s) ∈M × S such that (m, s) and (n, t) are
considered equivalent if ∃u ∈ S such that u(sn− tm) = 0.

Lemma 3.1.14. Let S` be the multiplicative monoid of positive integers prime to `, let
o = End(E), and let o(`) = S−1

` o be the localization of o at `. Let α ∈ End(E)Q. Then
αT` ⊂ T` if and only if α ∈ o(`).

Proof. Let α ∈ o(`). Then αT` ⊂ T`. Conversely, if αT` ⊂ T`, then ∃λ ∈ o such that
m`rα = λ for some m ∈ Z prime to `. Then

m`rαT` ⊂ `rT`,

so λT` ⊂ `rT` and λ = `rβ for some β ∈ o. Therefore, m`rα = `rβ, so mα = β, and thus
α ∈ S−1

` o. So α is `-integral, as desired.

Lemma 3.1.15. Let λ : E → E ′ be an isogeny, and let M` be the set of vectors (a0, a1, ...)
in V`(E) such that a0 ∈ kerλ. Then λM` = T`(E

′).

Theorem 3.1.16. Let λ : E → E ′ be an isogeny, and let α ∈ End(E)Q. LetM` be the inverse
image of T`(E ′) in V`(E) under λ. We have λαλ−1 ∈ End(E ′) if and only if αM` ⊂ M` for
all `.

Proof. Let p|ν(λ). We can decompose λ into a product of an isogeny whose degree is prime
to p, and an isogeny whose degree is pr for some r. Using Theorem 3.1.12, we see that the
theorem follows immediately in this case.

Now assume that p - ν(λ), and suppose that λαλ−1 ∈ End(E ′). Then ∀`, αM` =
λ−1λαλ−1λM` ⊂ λ−1T`(E

′) ⊂M`. Conversely, suppose that ∀`, αM` ⊂M`, so

λαλ−1T`(E
′) = λαM` ⊂ λM` ⊂ T`(E

′).

By Lemma 3.1.14, λαλ−1 is `-integral for each `. It remains to show that λαλ−1 is also
p-integral. Suppose λαλ−1 = p−rβ for some β ∈ End(E ′), and let n = ν(λ). Then nβ =
prλαnλ−1 = prγ for some γ ∈ End(E ′), so λαλ−1 = 1

n
γ. For all `|n, 1

n
γT`(E

′) ⊂ T`(E
′),

and γ = mγ′ for some γ′ ∈ End(E ′) (by Lemma 3.1.14). Therefore, λαλ−1 = γ′ ∈ End(E ′),
proving our Theorem in the case p - ν(λ), and thus overall.

3.1.4 Reduction of the Ring of Endomorphisms

We now examine how the ring of endomorphism reduces when we switch from examining
elliptic curves in characteristic 0 to curves in characteristic p.
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Let E be an elliptic curve defined over a number field, and let P be a place (equivalence
class of absolute values) of Q with values in Fp. The place induces a discrete valuation ring.
We have an isomorphism

E(`) → Ẽ(`)
p ,

where E(`) denotes the group of points of E/Q whose order is a power of `, and Ẽp = E(P)
is the place of E over p. Consequently we have the isomorphism

T`(E)→ T`(Ē).

Although not an isomorphism,
Tp(E)→ Tp(Ẽp)

is a homomorphism. If Tp(Ē) 6= 0, then the kernel of this map is a 1-dimensional module
over Zp.

We now state Deuring’s Reduction Theorem [DRT], which will be useful in determining
the order of the group of points on E.

Theorem 3.1.17 (Deuring’s Reduction Theorem). Let E be an elliptic curve over a number
field, with End(E) ∼= o, where o is an order in an imaginary quadratic field K. Let P be
a place of Q over a prime number p, where E has non-degenerate reduction Ẽp. The curve
Ẽp is supersingular if and only if p has only one prime of K above it (p ramifies or remains
prime in K). Suppose that p splits completely in K. Let c be the conductor of o, and write
c = prc0, where p - c0. Then:

(i) End(Ẽp) = Z + c0oK is the order in K with conductor c0.

(ii) If p - c, then the map λ 7→ λ(P) is an isomorphism of End(E) onto End(Ẽp).

Proof. We will prove the theorem in the case that p splits in K, as this is the only case
needed in future sections. For a complete proof, see [8].

Let p split in K: poK = pp′ (p 6= p′, P ∩ oK = p). In order to show that Ẽp has a point
of period p (i.e. Ẽp is not supersingular), it suffices to do so for an elliptic curve isogenous
to Ẽp. Changing E via isogeny as necessary, we may assume that θ : K → End(E)Q is a
normalized embedding with θ(oK) = End(E). Choose m ∈ Z+ such that pm = µoK and
p′m = µ′oK are principal (note that µµ′ = pm). We note that µ′ 6∈ p. For a differential form
of the first kind ω, µ′ω 6≡P 0, and since θ is normalized, θ̃(µ′)p is separable. Because the
degree of θ(µ′) is a power of p, so is the degree of its reduction modulo P. We can thus
conclude that Ẽp has a non-trivial point of order p, and so it is not supersingular.

Let us now assume that End(E) ∼= o, where o is an order in K with conductor c =
prc0, and p - c0. It is clear that the reduction map End(E) → End(Ẽp) is injective, so
Ẽnd(E)p ⊂ End(Ẽp). By Theorem 3.1.8, End(Ẽp)Q is an imaginary quadratic field, so
End(E)Q∼=−→End(Ẽp)Q is an isomorphism induced by induction.

Suppose that p - c. For every prime ` 6= p, we have an isomorphism T`(E)∼=−→T`(Ẽp),
and by Lemma 3.1.14, End(E) and End(Ẽp) have the same localization at `. Because p - c,
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o(p) = oK,(p), so it is integrally closed and coincides with the localization of End(Ẽp) at p.
Because their localizations at each prime are the same, End(E) ∼= End(Ẽp).

We shall conclude this section by stating the Deuring Lifting Theorem, which is histori-
cally significant, but which will not be used in this paper.

Theorem 3.1.18 (Deuring Lifting Theorem). Let E0 be an elliptic curve in characteristic p,
with an endomorphism α0 which is non-trivial. Then there exists an elliptic curve E defined
over a number field, an endomorphism α of E, and a non-degenerate reduction of E at a
place P lying above p, such that E0 is isomorphic to Ẽp, and α0 corresponds to α(P) under
the isomorphism.

3.2 The CM Method
The CM method is used to find elliptic curves of a given order. Since it is relatively easy
to compute the order of an elliptic curve with CM in Q(

√
−d), we can determine a value of

d which produces an elliptic curve with a desired property (such as prime order), and then
find an explicit formula for an elliptic curve with the desired number of points, as in [12].

In the CM method, first appearing in [1], we take a prime p ≥ 5 and square-free positive
integer d 6= 1, 3, p and find integers a, b such that

4p = a2 + db2.

Then we output an elliptic curve E/Fp having CM in Q(
√
−d) with order

#E(Fp) = p+ 1− a. (3.1)

Note that a and b are unique up to choice of sign, so #E(Fp) = p + 1 + a is also possible,
and in fact, half of the quadratic twists of E have this order. The details of this method
are of tangential interest to this paper, so we refer the interested reader to [1] or [12] for the
details.

However, we will prove that (3.1) is valid, as it will be important in Section 4.2.

Theorem 3.2.1. Let E be an elliptic curve defined over a number field, and let o, p, and P
be defined as in Theorem 3.1.17. If E has good reduction modulo P, then ∃π ∈ o such that
p = ππ̄ and

#Ẽ(Fp) = p+ 1− (π + π̄).

Proof. By Theorem 3.1.17, EndC(E) ∼= EndFp
(Ẽ), and the isomorphism (induced by reduc-

tion) preserves degrees. Then ∃π ∈ EndC(E) that corresponds to the Frobenius endomor-
phism πp ∈ EndFp

(Ẽ) under reduction modulo p. Since degree is preserved,

deg(π) = deg(πp) = p.
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Over C, we know that the degree of π is its norm, so N(π) = p. Therefore, p = ππ̄.
Recall from the proof of Theorem 2.3.1 that

#Ẽ(Fp) = deg(1− πp).

Therefore,

#Ẽ(Fp) = deg(1− π) = N(1− π) = (1− π)(1− π̄)

= ππ̄ + 1− π − π̄ = p+ 1− (π + π̄),

as desired.

Note that

o =

{
Z
[

1+
√
−d

2

]
if d ≡4 1

Z[
√
−d] otherwise.

Because π is in the ring of integers ofQ(
√
−d) (recall that d 6= 1, 3), (3.1) follows immediately.

3.3 Special Cases: j = 0 and j = 1728

We noted in Section 3.2 that (3.1) does not apply when d = 1, 3. In fact, it applies in those
cases, except when j(E) = 0, 1728. For the other three cases (see Table 2.1), we can use
(3.1) to compute the order. When j(E) = 1728, Ẽ can take one of four orders, and when
j(E) = 0, it can take one of six orders, which can be computed using classical methods.

For j(E) = 1728, changing variables as necessary, we can write E : y2 = x3−kx for some
integer k. Then (x, y) 7→ (−x, iy) is an endomorphism (in fact, an isomorphism), and it is
contained in the ring of integers of Q(i) = Q(

√
−1), so d = 1. It should be noted that this

endomorphism does not constitute multiplication by a real integer because it is of order 4 -
so it is a fourth root of unity (i.e. ±i).

Theorem 3.3.1. Let E : y2 = x3− kx be an elliptic curve. If p ≥ 5, p ≡4 3, then #Ẽ(Fp) =
p+ 1. Otherwise (p ≡4 1), find integers a, b such that p = a2 + b2 with b even and a+ b ≡4 1.
Then

#Ẽ(Fp) =


p+ 1− 2a if

(
k
p

)
4

= 1,

p+ 1 + 2a if
(
k
p

)
4

= −1,

p+ 1± 2b otherwise,

where
( ·
·

)
4
is the quartic residue symbol.

Proof. We leave the proof of this result to [18], as it will not be used later in this paper
(because the order is only prime when #Ẽ(F5) = 2).
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For j(E) = 0, changing variables as necessary, we can write E : y2 = x3 + k for some
integer k.

In order to determine the orders, we will need two lemmas. We define a multiplicative
character χ by choosing a primitive root g modulo p. Then for all k|(p − 1), we set
χk(g

j) = e2ijπ/k.

Lemma 3.3.2. Let p ≡3 1 be prime and let x ∈ F×p . Then

#{u ∈ F×p |ut = x} =
t−1∑
`=0

χt(x)`

for t ∈ {2, 3, 6}.

Proof. Since p ≡3 1, we also have that p ≡6 1, and so there are 6 sixth roots of 1 in F×p .
Therefore, if there is a solution to u6 ≡ x, there are 6 solutions. Write x ≡ gj mod p. Then
x is a sixth power modulo p if and only if j ≡6 0. We have

5∑
`=0

χ6(x)` =
5∑
`=0

eij`π/3,

which evaluates to 6 if j ≡6 0, and to 0 otherwise, giving us exactly the number of u for which
u6 ≡ x. This proves the case for t = 6; the proofs for t = 2 and t = 3 follow similarly.

Note that Lemma 3.3.2 holds true for all t|(p − 1), although we only need the cases
given above. In general, we have to consider χgcd(p−1,t) to determine the number of roots for
arbitrary t.

Lemma 3.3.3. Let p ≡3 1 be prime. Then

∑
b∈F×p

χ6(b)` =

{
p− 1 if ` ≡6 0,

0 otherwise.

Proof. If ` ≡6 0, all the terms in the sum are 1, so the sum is p−1. If ` 6≡6 0, then χ6(g)` 6= 1.
Multiplying by g permutes the elements of F×p , so

χ6(g)`
∑
b∈F×p

χ6(b)` =
∑
b∈F×p

χ6(gb)` =
∑
c∈F×p

χ6(c)`,

which is the original sum. As χ6(g)` 6= 1, the sum must be 0.

Theorem 3.3.4. Let p > 3 be an odd prime and let k 6≡p 0. Let E be the elliptic curve
y2 = x3 + k.

1. If p ≡3 2, then #Ẽ(Fp) = p+ 1.
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2. If p ≡3 1, write p = a2 + 3b2,1 where a, b are integers with b positive and a ≡3 −1.
Then

#Ẽ(Fp) =


p+ 1 + 2a if k is a sixth power mod p
p+ 1− 2a if k is a CR, but not a QR, mod p
p+ 1− a± 3b if k is a QR, but not a CR, mod p
p+ 1 + a± 3b if k is neither a QR nor a CR mod p.

Here, QR and CR denote quadratic residue and cubic residue, respectively.

Proof. The case where p ≡3 2 is easy. Since every value modulo p is a cubic residue (since
3 is coprime to p − 1), then over all x ∈ Fp, f(x) = x3 + k takes on every value modulo p.
Of these, f(x) = 0 is a special case, corresponding to the point (x, 0), and the other values
of f(x) are split evenly into groups: quadratic residues (QR), and quadratic non-residues
(QNR). Each QR corresponds to two points on E, whereas each QNR corresponds to zero
points on E. Summing, we get p points. Adding the point at infinity O, this gives us

#Ẽ(Fp) = p+ 1.

Now we consider p ≡3 1. For this case, we choose a primitive root g modulo p to define
χ6(gj) = eijπ/3. Then χ2

6 = χ3 and χ3
6 = χ2.

We now show that the number of points on E can be expressed in terms of Jacobi sums.
By separating out the terms where x = 0 and y = 0, we find that the number of points is

#{O}+ #{y|y2 = k}+ #{x|x3 = −k}+
∑

a+b=k;a,b 6=0

#{y|y2 = a}#{x|x3 = −b}

By Lemma 3.3.2, the first three terms are 1,
1∑
j=0

χ2(k)j, and
2∑
l=0

χ3(−k)l, respectively.

The latter summation expands to

∑
a6=0,k

1∑
j=0

χ2(a)j
2∑
l=0

χ3(a− k)l

=
∑
a6=0,k

[χ2(a)0 + χ2(a)1][χ3(a− k)0 + χ3(a− k)1 + χ3(a− k)2]

=
∑
a6=0,k

[1 + χ2(a) + χ3(a− k) + χ2(a)χ3(a− k) + χ3(a− k)2 + χ2(a)χ3(a− k)2]

=(p− 2)− χ2(k)− χ3(−k) +
∑
a6=0,k

χ2(a)χ3(a− k)− χ3(−k)2 +
∑
a6=0,k

χ2(a)χ3(a− k)2.

1It is common to formulate this theorem using p = a2 − ab+ b2 instead, although the notational
choice given in Thoerem 3.3.4 is more consistent with the CM method.
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We have used Lemma 3.3.3 to replace the sums of single characters χ with the negative of
the value χ(±k) that was omitted from the sum. Combining with the terms from before,
this simplifies to:

p+ 1 +
∑
a6=0,k

χ2(a)χ3(a− k) +
∑
a6=0,k

χ2(a)χ3(a− k)2

= p+ 1 + χ6(−1)2
∑
a6=0,k

χ2(a)χ3(k − a) + χ6(−1)4
∑
a6=0,k

χ2(a)χ3(k − a)2

= p+ 1 + χ6(−1)2χ6(k)−1
∑

a/k 6=0,1

χ2(a/k)χ3((k − a)/k)

+ χ6(−1)4χ6(k)−1
∑

a/k 6=0,1

χ2(a/k)χ3((k − a)/k)2

= p+ 1 + χ6(k)−1J(χ2, χ3) + χ6(k)−1J(χ2, χ
2
3),

where J(χ2, χ3) is the Jacobi character, and the last equality holds because χ6(−1)2 =
χ3(−1). −1 = (−1)3, so χ6(−1)2 = χ6(−1)4 = 1.

We note that if we write
#E(Fp) = p+ 1− α− ᾱ,

then α = −χ6(k)−1J(χ2, χ3). In [3], a3 and b3 are defined such that a2
3 +3b2

3 = p and a3 ≡ −1
mod 3 (p. 103). Then, in Table 3.1.2 (p. 107), it is stated that J(χ2, χ3) = a3 + ib3

√
3.

If k is a sextic residue, then α = −a3 − ib3

√
3, so #Ẽ(Fp) = p + 1 + 2a3. If k is a cubic

residue, but not a quadratic residue, then #Ẽ(Fp) = p+ 1− 2a3. If k is a quadratic residue,
but not a cubic residue, then α = −1±i

√
3

2
· (a3 + ib3

√
3) = −a3∓3b3

2
+ −b3

√
3±a3

√
3

2
i. Thus,

#Ẽ(Fp) = p+ 1−a3±3b3. The final case, where k is neither a quadratic residue nor a cubic
residue, follows the same way, and we find that #Ẽ(Fp) = p+ 1 + a3 ∓ 3b3.

The end result is that #Ẽ(Fp) = p + 1 − π − π̄, where π = −χ6(k)−1J(χ2, χ3). This
Jacobi sum is evaluated as J(χ2, χ3) = a+ ib

√
3, with a ≡3 −1 [3].
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Chapter 4

Elliptic Reciprocity

We will use Größencharakter to prove our main results in Section 4.2. Section 4.1 will be
devoted to the introduction of Größencharakter (also known as Hecke characters), including
the proofs of several results which will be of use in Section 4.2. Section 4.2 closely follows
[2].

4.1 Größencharakter
Let K be a number field, and define Kν to be the completion of K at the absolute value ν.
Then we let Rν be the ring of integers of Kν for non-archimedean ν, and Rν = Kν otherwise.
We define the idèle group of K to be

A∗K =
∏
ν

′
K∗ν ,

where the product is over all possible absolute values ν and the prime means that the product
is restricted relative to the Rν ’s. Thus, the ν-component of an idèle s, sν , is an element of
Rν , for all but finitely many ν.

The ideal of s is a fractional ideal of K:

(s) =
∏
p

pordpsp ,

where p denotes a prime ideal. When K = Q, we can define Ns ∈ Q∗ such that (s) = sZ =
NsZ and sign(Ns) = sign(s∞), where s∞ is the value of s at the archimedean component.
The cyclotomic character

χ : Gal(Kab/K) −→ ô×K
∼= A∗K ,

where Kab is the maximal abelian extension of K, is defined as σ(ζ) =: ζχ(σ) [6]. From its
inverse, we can define the continuous homomorphism

A∗K −→ Gal(Kab/K), s 7→ [s,K].
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If (s) is not divisible by any primes ramifying in L, an extension field of K, then [s,K]|L =
((s), L/K) is the Artin map of (s) and we call [·, K] the reciprocity map for K [14].

We now state the Main Theorem of Complex Multiplication:

Theorem 4.1.1. Fix a quadratic imaginary field K over Q with ring of integers oK, an
elliptic curve E/C with End(E) ∼= oK, σ ∈ Aut(C), and s ∈ A∗K such that [s,K] = σ|Kab.
Let a be a fractional ideal of K, and fix a complex analytic isomorphism

f : C/a −→ E(C).

Then there exists a unique complex analytic isomorphism

f ′ : C/s−1a −→ Eσ(C)

such that the following diagram commutes:

K/a K/s−1a

E(C) Eσ(C).

s−1

f ′f

σ

The proof is long and unenlightening, so we omit it here, but the interested reader may
find it in Section II.8 of [14].

We define a Größencharakter
ψ : A∗L −→ C∗

to be a continuous homomorphism such that ψ(L∗) = 1. If L = Q, ψ(s) = Nss
−1
∞ is a

Größencharakter [14]. We will use Theorem 4.1.1 to define a Größencharakter ψ which is
associated to an elliptic curve E with CM.

Theorem 4.1.2. Let E/L be an elliptic curve with CM by oK for K = Q(
√
−d) ⊂ L. Let

x ∈ A∗L and s = NL
Kx ∈ A∗K. Then ∃!α = αE/L(x) ∈ K∗ such that

(i) αoK = (s), the ideal of s,

(ii) for any fractional ideal a ⊂ K and any analytic isomorphism

f : C/a→ E(C),

the following diagram commutes:
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K/a K/a

E(Lab) E(Lab).

αs−1

ff

[x, L]

Proof. Let L′ = L(Etors), so that Kab ⊂ L′ ⊂ Lab [14]. Choose σ ∈ Aut(C) such that

σ
∣∣∣
Lab

= [x, L]. (4.1)

By Artin reciprocity, σ
∣∣∣
Kab

= [s,K]. By 4.1.1, we find analytic isomorphism f ′ such that

K/a K/s−1a

E(C) Eσ(C)

s−1

f ′f

σ

is a commutative diagram. Since σ fixes L, Eσ = E, so a and s−1a are homothetic. Therefore,
∃β ∈ K∗ such that βs−1a = a and our commutative diagram becomes

K/a K/a

E(C) E(C).

βs−1

f ′′f

σ

We note that [ξ] = f ′′ ◦ f−1 ∈ Aut(E), and we set α = ξβ. Now (ii) follows immediately
from 4.1. Furthermore,

αs−1a = βs−1a = a,

so αoK = (s), proving (i).
It remains to show that α is unique and independent of choice of f . Suppose α′ also

satisfies (i) and (ii). Because f and [x, L] are isomorphisms,

K/a

K/a K/a

αs−1 α′s−1
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is a commutative triangle. From this we see that [α′α−1] is the identity map on K/a, so
α′ = α, and α is unique. Now, suppose that f ′ : C/a′ → E(C) is an analytic isomorphism
with a = γa′ for some γ ∈ K∗. Then [ξ] = f ′ ◦ f−1 ∈ Aut(E), so f ′(z) = f(ξγz), and (ii)
implies that ∀t ∈ K/a,

f ′(t)[x,L] = f(ξγt)[x,L] = f(αs−1ξγt) = f ′(αs−1t).

Hence (ii) is true for f ′, and α does not depend on f .

Theorem 4.1.2 tells us that the map

αE/L : A∗L → K∗ ⊂ C∗

is a homomorphism, and furthermore, we can compute αE/L(xβ) = NL
Kβ, where β ∈ L∗

and xβ is the corresponding idèle [14]. This means that αE/L cannot be a Größencharakter
(because α 6= 1 on L∗), although we can make it one via a slight modification.

Theorem 4.1.3. Assume the same hypotheses as in Theorem 4.1.2, and for any s ∈ A∗K,
let s∞ ∈ C∗ be the component of s corresponding to the unique archimedean absolute value
on K. Then

(a) The map
ψE/L : A∗L → C∗, ψE/L(x) = αE/L(x)NL

K(x−1)∞

is a Größencharakter of L.

(b) Let P be a prime of L. Then ψE/L is unramified (ψ(o∗P) = 1) at P if and only if E
has good reduction at P.

Proof. See Theorem II.9.2 of [14].

We can use ψ to compute the order of an elliptic curve over a finite field.

Lemma 4.1.4. Assume the same hypotheses as in Theorems 4.1.2 and 4.1.3, and assume
that E has good reduction at P. Let Ẽ be the reduction of E modulo P, and let πP be the
NL

QP-power Frobenius endomorphism. Then

E E

Ẽ Ẽ

[ψE/L(P)]

∼∼

πP

commutes, where ∼ denotes reduction modulo P.
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Proof. Let x ∈ A∗L such that ψE/L(P) = ψE/L(x) = αE/L(x). By Theorem 4.1.2ii, ∀t ∈ K/a,

f(t)[x,L] = [ψE/L(x)]f(NL
Kx
−1t).

Fix m ∈ Z such that P - m. It can be shown that ∀t ∈ m−1a/a, NL
Kx
−1t = t [14] Theorem

II.9.3. Therefore,
f(t)[x,L] = [ψE/L(P)]f(t)

and because [x, L] reduces to the qP-power Frobenius map,

πP(f̃(t)) = ˜f(t)[x,L] = [ ˜ψE/L(P)]f̃(t).

Since our choice of m was arbitrary, and we can define an endomorphism of Ẽ by specifying
its value on the torsion points, we determine that πP = [ψ̃E/L(x)], from which the fact that
the diagram commutes is immediate.

Theorem 4.1.5. With notation as in Lemma 4.1.4,

(a) NL
QP = NK

Q (ψE/L(P)),

(b) #Ẽ(FP) = NL
QP + 1− ψE/L(P)− ψE/L(P),

(c) aP = ψE/L(P) + ψE/L(P).

Proof. For (a), we compute

NL
QP = deg πP = deg[ ˜ψE/L(P)] = deg[ψE/L(P)] = NK

Q (ψE/L(P)).

For (b),

#Ẽ(FP) = # ker(1− πP) = deg(1− πP)

= deg[ ˜1− ψE/L(P)] = deg[1− ψE/L(P)]

= NK
Q (1− ψE/L(P)) = (1− ψE/L(P))(1− ψE/L(P))

= 1− ψE/L(P)− ψE/L(P) +NL
QP.

Part (c) is an immediate consequence of (b) and the definition of aP.

We now focus in on the case that L = Q. Note that aP is the trace of the Frobenius
endomorphism, and we can also use Tr(ψE/L(P)) to represent the same quantity [15]. Recall
from Section 3.1 that if p splits in K, then we can write poK = pp̄, so Fp = Fp and

q = #Ẽp(Fp) = #Ẽp(Fp) = NK
Q (1− ψE/L(P)). (4.2)

This tells us that q also splits in K (qoK = qq̄), so

q = NK
Q (ψE/L(Q)). (4.3)
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From Equations (4.2) and (4.3), we immediately see that

ψE/L(Q) =

{
u(1− ψE/L(P)) or
u(1− ψE/L(P)) for some u ∈ o∗K .

(4.4)

For K 6= Q(
√
−1),Q(

√
−3), o∗K = {±1}, so

Tr(ψE/L(Q)) = ±Tr(1− ψE/L(P)) (4.5)
= ±(2− Tr(ψE/L(P))) (by linearity) (4.6)
= ±(2− (p+ 1− q)) = ±(q + 1− p). (4.7)

From this we immediately notice the following convenient result, which is Theorem 6.1 of
[15]. Recall that if p does not split in oK , then E is supersingular, and in particular, its
order over Fp is p+ 1.

Theorem 4.1.6. Let E/L have CM, and let j(E) 6= 0. If #Ẽ(Fp) = q is prime for some
prime p ≥ 5 of good reduction, and if q ≥ 5 is also of good reduction for E, then

#Ẽ(Fq) =

{
p or
2q + 2− p.

This is a generalization of Theorem 6.1 of [15], which only considers the case that E is
defined over Q (although nothing in the proof requires this restriction), which would limit
us to the curves (up to isomorphism/twist) in Table 2.1. By generalizing to defining E over
L, we allow fields K with class number other than one.

Proof. Note that by Theorem 3.3.1, if E has CM in Q(
√
−1), then its order is even, so it is

not prime. We also note that if j(E) = −12288000, E has CM in Q(
√
−3), but Equation

(4.7) still holds [15]. By Equation (4.7) and Theorem 4.1.5,

#Ẽ(Fq) = q + 1− Tr(ψE/L(Q)) = q + 1∓ (q + 1− p).

The theorem follows immediately.

For j(E) = 0, we have a similar result, although it is more complicated because o∗K is the
set of sixth roots of unity in this case. We have that for E : y2 = x3 +k, its Größencharakter

ψE/L(P) = −
(

4k
p

)−1

π, where π is the generator from Corollary 3.1.9 [14], [15]. Since π is
primary, π ≡3oK 2.

Corollary 7.6 of [15] will give us an analogous result to Theorem 4.1.6 for curves with
j(E) = 0:

Theorem 4.1.7. Let E/L be an elliptic curve with j(E) = 0, and let p, q ≥ 5 be primes of
good reduction for E. If #Ẽ(Fp) = q, then:
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(a) there exists A ∈ Z such that

A2 =
2pq + 2p+ 2q − p2 − q2 − 1

3
,

(b) the trace aq(E) = q + 1−#Ẽ(Fq) is one of six values:

aq(E) =

{
±(q + 1− p)
±(q+1−p)±3A

2
.

Proof. We know from the proof of Theorem 3.3.4 that p = ψE/L(P) ∈ oK = Z
[

1+
√
−3

2

]
,

and since Tr(ψE/L(P)) = ap(E), so ∃A ∈ Z such that ψE/L(P) = ap(E)+A
√
−3

2
. Since p =

NK
Q (P) = ap(E)2+3A2

4
, we find that A2 = 4p−(p+1−q)2

3
, which proves part (a).

For (b), we see from the proof of Theorem 3.3.4 and from Equation (4.4) that

Tr(ψE/L(Q)) = Tr(ζ(1− ψE/L(P))),

where ζ is a sixth root of unity. Using the value of ψE/L(P) above, we get the six values
listed for (b).

4.2 Aliquot Cycles for Elliptic Curves with Complex Mul-
tiplication

4.2.1 Elliptic Pairs

As always, all prime numbers p and q are without further comment assumed to be at least
5. We let L be an extension field of Q, and for a square-free positive integer d, we let
K = Q(

√
−d) and oK be the ring of integers in K.

Definition 4.2.1. For a square-free positive integer d, define an elliptic pair over d to
be an ordered pair (p, q) of prime numbers such that there exists an elliptic curve E/L with
complex multiplication (CM) by oK having order q when considered over Fp. We write (p, q)d
to denote the fact that the ordered pair (p, q) is an elliptic pair over d. The witnessing curve
E is referred to as a representative curve of the pair.

For example, (7, 13)3 is an elliptic pair because the representative curve E : y2 = x3 + 3
has order 13 when considered over the field F7.

As stated, Definition 4.2.1 is not symmetric with respect to p and q. We will see in
Theorem 4.2.7 below that we may treat it as symmetric, however.

Definition 4.2.2. An elliptic prime (over d) is a prime number which is the first entry
in an elliptic pair over d.

37



In Definition 4.2.1, p is an elliptic prime over d. In the example following Definition 4.2.1,
7 is an elliptic prime over 3.

Lemma 4.2.3. Let E be an elliptic curve CM by oK. If d 6≡8 3, then #Ẽ(Fp) is composite.

In other words, if p is an elliptic prime over d, then d ≡8 3.

Proof. If d 6≡4 3, then any representative curve E/L trivially has two-torsion by the CM
method (#Ẽ(Fp) = p+ 1± 2a, where p = a2 + db2), so p cannot be an elliptic prime over d.

Let d ≡4 3, and let p be a prime. We may assume d > 3. Assuming that p is not prime
in oK , let a and b be the unique positive integers such that 4p = a2 + db2.

Let E be a representative curve witnessing that p is an elliptic prime over d. If E has
CM by oK , then #Ẽ(Fp) = p+ 1±a. Then, as p+ 1 is even and #Ẽ(Fp) is a prime number,
a must be odd. If it were the case that d ≡8 7, then 4 ≡8 4p = a2 +db2 ≡8 a

2− b2. But since
a is odd, a2 ≡8 1, implying b2 ≡8 5. But the congruence x2 ≡8 5 does not have a solution, a
contradiction. Thus, as d ≡4 3 we must have d ≡8 3.

We must treat the case of d = 3 separately. The curves E with CM in K = Q(
√
−3) are

precisely those with j(E) ∈ {0, 54000,−12288000} [14]. Curves with j(E) = 54000 trivially
have 2-torsion, but some curves with j(E) = 0,−12288000 have trivial torsion (over Q), so
we must consider those. Curves with j = −12288000 are covered fully in [15], and they can
be treated in exactly the same way as other curves with CM, so we omit a full discussion of
them here. When j(E) = 0, E has the form E : y2 = x3 + k for k ∈ Z, gcd(k, p) = 1. Since
these cases exhibit strikingly different behavior, for the rest of the paper we will write d = ∗
to specify that d = 3 and j = 0. Now, p = a2 + 3b2 and #Ẽ(Fp) takes on one of six values:

Theorem 4.2.4. Let p > 3 be an odd prime and let k 6≡p 0. Let E be the elliptic curve
y2 = x3 + k.

(a) If p ≡3 2, then #Ẽ(Fp) = p+ 1.

(b) If p ≡3 1, write p = a2 + 3b2, where a, b are integers with b positive and a ≡3 −1. Then

#Ẽ(Fp) =


p+ 1 + 2a if k is a sixth power mod p
p+ 1− 2a if k is a CR, but not a QR, mod p
p+ 1− a± 3b if k is a QR, but not a CR, mod p
p+ 1 + a± 3b if k is neither a QR nor a CR mod p.

Here, QR and CR denote quadratic residue and cubic residue, respectively.

Proof. This is a restatement of Theorem 3.3.4, and the proof can be found there.

Corollary 4.2.5. Let p ≡3 1 be a prime and let E : y2 = x3 + k be an elliptic curve with
k 6≡p 0. If #Ẽ(Fp) is prime, then k is neither a QR nor CR, except in the case where p = 7
and k ≡7 4 (in which case #Ẽ(F7) = 3).
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Corollary 4.2.6. Let p > 7 be a prime, and let E : y2 = x3 + k be an elliptic curve. Then
#Ẽ(Fp) can take on at most 2 prime values (namely p + 1 + a ± 3b from Theorem 4.2.4),
both of which are congruent to 1 modulo 3.

We note that p can be in an elliptic pair with at most two primes given d. Note that the
primes for d = 3 (for j(E) 6= 0) are a subset of those for d = ∗ because if j(E) 6= 0, at most
one of the two possible orders can be prime (see Theorem 4.2.21).

Theorem 4.2.7 (The Law of Elliptic Reciprocity). Let E have CM by oK, and let p, q be
primes such that j(E) is defined both modulo p and modulo q. If (p, q)d is an elliptic pair,
then so too is (q, p)d.

Proof. This follows immediately from Theorems 4.1.6 and 4.1.7. Let E be a representative
curve of (p, q)d. We find an appropriate quadratic (or sextic if d = ∗) twist of E modulo q,
and then we use the Chinese remainder theorem to set the coefficients.

Note that (p, q) is an amicable pair (see [15] for definition, as this fact will not be used
later in this paper) for the chosen twist of E.

One consequence of Theorem 4.2.7 is the following:

Theorem 4.2.8. Let (p, q)d be an elliptic pair with p < q and d 6= ∗, and ap, bp, aq, bq be the
unique positive integers such that 4p = a2

p + db2
p and 4q = a2

q + db2
q. Then aq = ap + 2 and

bq = bp.

Proof. We know that q = p+1+ap and by Theorem 4.2.7 that p = q+1−aq, so aq = ap+2.
Then because 1

4
(a2
p + db2

p) = p and 1
4
(a2
q + db2

q) = q,

a2
p + db2

p

4
+ 1 + ap =

a2
q + db2

q

4
,

(ap + 2)2 + db2
p = a2

q + db2
q,

from which it follows that bq = bp.

The corresponding case of the above Theorem for d = ∗ will be covered in Subsection
4.2.2. As we shall remark below, the number Apq treated in the following three results is
very useful in analyzing the relation (p, q)d.

Theorem 4.2.9. Let (p, q)∗ be an elliptic pair. There exists an integer A = Apq such that

A2 =
2pq + 2p+ 2q − p2 − q2 − 1

3
.

Choose the sign on A such that A ≡4 p + q + 1. Then E : y2 = x3 + gm, where g is a
particular primitive root modulo q, can have one of six orders over Fq:

1. If m ≡6 0: #Ẽ(Fq) = 1
2
(p+ q + 1 + 3A),
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2. If m ≡6 1: #Ẽ(Fq) = p,

3. If m ≡6 2: #Ẽ(Fq) = 1
2
(p+ q + 1− 3A),

4. If m ≡6 3: #Ẽ(Fq) = 1
2
(−p+ 3q + 3− 3A),

5. If m ≡6 4: #Ẽ(Fq) = 2q + 2− p,

6. If m ≡6 5: #Ẽ(Fq) = 1
2
(−p+ 3q + 3 + 3A).

Proof. The existence of A is proven in Theorem 4.1.7(a). The rest follows from comparing
the orders in terms of A (found in Theorem 4.1.7(b)) and in terms of the values given in
our Theorem 4.2.4. Note that if our choice of primitive root g does not make the order
of E : y2 = x3 + g over Fq equal to p, then we can take g ← g−1 to produce the desired
result.

Corollary 4.2.10. Let (p, q)∗ be an elliptic pair. If we write p = a2 + 3b2, with a ≡3 −1,
and we choose the sign on b such that q = p+ 1 + a− 3b, then Apq = a+ b.

Proof. A straightforward computation, plugging in p = a2 +3b2 and q = a2 +3b2 +1+a−3b,
shows that A2

pq = (a+b)2. Then, Apq ≡4 p+q+1 ≡4 p+(p+1+a−3b)+1 ≡4 2p+2+a−3b.
As p is odd, 4|(2p + 2), so A ≡4 a − 3b ≡4 a + b. We know that a + b is odd because p is
odd, so −(a+ b) 6≡4 a+ b. Therefore, A = a+ b.

We can also state Corollary 4.2.10 for d 6= ∗.

Corollary 4.2.11. Let (p, q)d be an elliptic pair over d 6= ∗ with p 6= q. Then there exists
an integer Apq such that

A2
pq =

2pq + 2p+ 2q − p2 − q2 − 1

d
. (4.8)

Indeed, Apq = bp(= bq).

Proof. We write 4p = a2
p + db2

p. Using the fact that p < q and (p, q)d is an elliptic pair over
d, we have q = p+ 1 + ap. A straightforward computation shows that A = bp = bq.

The number Apq is useful: given p, q, and d, we can compute 2pq+2p+2q−p2−q2−1
d

, and
then we know immediately that if this number is not a perfect square, then (p, q)d is not
an elliptic pair. Moreover, given only p and q within each other’s Hasse intervals, we can
compute the numerator of the quantity in Equation (4.8) and factor out any perfect squares
to compute a d for which (p, q)d could be an elliptic pair. This provides a convenient proof
that p and q sufficiently close together form an elliptic pair for at most one square-free value
of d, depending on whether the appropriate elliptic curve is defined modulo p and q.
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4.2.2 Elliptic Lists and Elliptic Cycles

Definition 4.2.12. The symbol (p1, p2, ...pn)d denotes an elliptic list of length n over d
if each of (p1, p2)d, (p2, p3)d, ..., (pn−1, pn)d is an elliptic pair. If p1, p2, ..., pn are all distinct
primes, then the elliptic list is a proper elliptic list of length n over d.

Theorem 4.2.13. Let (p1, p2, p3, p4, p5)∗ be an elliptic list with p1, p5 6= p3 and p2 6= p4, then

p1 − p2 = p5 − p4.

This theorem also holds when p1 = p3 = p5 and p2 = p4, in which case (p, q) is an
“amicable pair.” The particular form given in Theorem 4.2.13 will be necessary to prove
Theorem 4.2.15, however.

Proof. Let p3 = a2 + 3b2, and choose b so that Ap3p4 = a + b (Corollary 4.2.10). Then we
apply Theorem 4.2.4 to p4 to compute that p5 = p3 + 3 + 3a− 3b. Likewise, Ap2p3 = a− b, so
p1 = p3 +3+3a+3b. Thus, p1−p5 = 6b. By Theorem 4.2.4, p2−p4 = 6b, so p1−p5 = p2−p4.
Rearrangement of terms gives the stated result.

Alternatively, the orders can be read off of Corollary 4.2.17, and this result computed
directly.

Definition 4.2.14. Let (p1, p2, ...pn)d form an elliptic n-cycle over d (or elliptic cycle
of length n over d) if (p1, p2, p3, ..., pn)d forms an elliptic list and (pn, p1)d forms an elliptic
pair. If the list is proper, then we say that we have a proper elliptic n-cycle.

Theorem 4.2.15. If a proper elliptic n-cycle over d exists for n ≥ 3, then d = ∗ and n = 6.

Proof. When d 6= ∗, this result strengthens Corollary 6.2 of [15], although it utilizes the
exact same proof. Recall that if j 6= 0, then #Ẽ(Fp) = p+ 1± a. In particular, one of these
values is greater than p, and the other is no larger than p. If we have a proper elliptic cycle
over d, it has a least element. Let p be this least element, and let (p, q)d and (r, p)d be the
elliptic pairs it is part of. Then either q or r is less than p, a contradiction.

Now let d = ∗. We note that by Theorem 4.2.13, p1−p2 = p5−p4. Suppose that p1 = p4,
so that we have a 3-cycle. Then

p5 − p4 = p1 − p2 = p4 − p5,

so p4 = p5, and the cycle is not proper.
Suppose instead that n = 4. then p1 − p2 = p5 − p4. But because we have a 4-cycle,

p1 = p5, so p2 = p4, and the cycle is not proper.
Now we let n = 5. We have that p1 − p2 = p5 − p4 and p2 − p3 = p6 − p5, so

p6 − p4 = p1 − p3.

Setting p1 = p6 implies that p3 = p4, so the cycle is not proper.
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Now let n ≥ 6. Again, p1 − p2 = p5 − p4 and p2 − p3 = p6 − p5, so

p6 − p4 = p1 − p3.

But now, p3 − p4 = p7 − p6, so
p1 − p4 = p7 − p4,

and thus p1 = p7. This means that if a proper n-cycle has length at least 6, then it has
length exactly equal to 6.

Given only a single case left to check to see if there exist any proper elliptic cycles other
than elliptic pairs (and cycles of length n = 1 - which arise from the anomalous primes), we
looked for elliptic cycles over d = ∗, using the next three results to narrow our search:

Theorem 4.2.16. Let (p1, p2, p3, p4)∗ be a proper elliptic list. If p1 = a2 +3b2, with a ≡3 −1,
then p4 = (−a− 2)2 + 3b2.

Proof. See [2]. Note that the proof is purely computational and follows from Corollary 4.2.10.

Corollary 4.2.17. Let (p1, p2, p3, p4, p5, p6)∗ be a proper elliptic list, and let p1 = a2 + 3b2,
with a ≡3 −1. Then:

p2 =

(
a+ 3b− 1

2

)2

+ 3

(
a− b+ 1

2

)2

,

p3 =

(
−a+ 3b− 3

2

)2

+ 3

(
a+ b+ 1

2

)2

,

p4 = (−a− 2)2 + 3b2,

p5 =

(
−a− 3b− 3

2

)2

+ 3

(
a− b+ 1

2

)2

,

p6 =

(
a− 3b− 1

2

)2

+ 3

(
a+ b+ 1

2

)2

.

Proof. The proof is again computational, with the orders being the same as the ones found
in the proof of Theorem 4.2.16 (see [2]).

Theorem 4.2.18. If p = a2+3b2 is part of a proper elliptic 6-cycle over d = ∗, then a ≡7 −1
and 7|b.

Proof. The proof is entirely computational, taking the orders found in Corollary 4.2.17 and
then computing all the primes modulo 7. We find that a ≡7 −1 and 7|b, or else at least one
prime in the cycle is divisible by 7. The cases are given in Table A.1 in Appendix A.1.
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Due to the structure imposed by Corollary 4.2.17, it is clear that we can determine all
the primes in a proper elliptic 6-cycle given a single prime in the cycle. Using divisibility by
7 to eliminate possible cases, we wrote a computer program to search the remaining values
of a and b to find 6-cycles. It found them almost immediately, with the smallest being

(275269, 274723, 275227, 276277, 276823, 276319)∗,

corresponding to (a, b) = (251, 266) (see Corollary 4.2.17 for notation).
The concept of a proper elliptic 6-cycle is similar to the notion of an aliquot cycle

defined by Silverman and Stange [15], except that an aliquot cycle fixes a curve E (defined
over L = Q, although this can easily be generalized to arbitrary extension of Q) such that
#Ẽ(Fp1) = p2,#Ẽ(Fp2) = p3, ...,#Ẽ(Fpn) = p1. It is not too difficult to see that any proper
elliptic cycle can be made into an aliquot cycle. Find curves Ei/Fpi , 1 ≤ i ≤ n such that
#Ei(Fpi) = pi+1 for 1 ≤ i ≤ n − 1 and #Ei(Fpn) = p1. The coefficients of Ei are only
defined uniquely modulo pi, so we can use the Chinese Remainder Theorem to find the

unique coefficients modulo
n∏
i=1

pi which are equivalent to the coefficients of Ei modulo pi for

all 1 ≤ i ≤ n. In the case of the list above, we can rewrite it as

(274723, 275269, 276319, 276823, 276277, 275227)∗

to get the smallest (normalized) aliquot cycle corresponding to the curve E : y2 = x3 + 15.
In the course of computing the cycle above, we also found other 6-cycles with 3 primes

represented, each twice. Here, p1 = p2, p4 = p5, and p3 = p6, so that p1 and p4 are the
so-called anomalous primes. We found three cycles of this form with primes less than one
million. They are:

(114661, 114661, 115249, 115837, 115837, 115249)∗,

(169219, 169219, 169933, 170647, 170647, 169933)∗,

(283669, 283669, 284593, 285517, 285517, 284593)∗.

After these cycles, the next smallest one has primes greater than ten million.

4.2.3 Properties of Proper Elliptic Lists

We saw in Subsection 4.2.2 that proper elliptic lists over d = ∗ have length no longer than
six. In this section, we explore proper elliptic lists over d 6= 3. Such lists are either increasing
or decreasing (because #Ẽ(Fp) = p + 1 ± a; see the proof of Theorem 4.2.15), so we will
assume throughout that lists are written in ascending order.

Theorem 4.2.8 allows us to describe any proper elliptic list over d 6= ∗ if we have just
one of its members. The following Theorem is an extension of Theorem 4.2.8, and follows
immediately from it and the definition of an elliptic list:

Theorem 4.2.19. Let (p1, . . . , pn)d be a proper elliptic list over d 6= ∗, and let ap1 , . . . , apn
and bp1 , . . . , bpn be the unique positive integers such that 4pi = a2

pi
+db2

pi
for each i = 1, . . . , n.

Then api = ap1 + 2i− 2 and bpi = bp1 for each i = 1, . . . , n.
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Theorem 4.2.20. Let d 6= 3 be a square-free positive integer. Consider a prime number
p1 which is of the form 4p1 = a2 + db2. If p1 is the initial term of a proper elliptic list of
length n over d, then the quadratic polynomial x2 + ax + p1 has n consecutive prime values
for x = 0, 1, . . . , n− 1.

Theorem 4.2.19 implies that any proper elliptic list (p1, . . . , pn)d over d 6= ∗ is generated
by n consecutive prime values of the quadratic polynomial in i

1

4
((2i+ a1)2 + db2

1)

= i2 + a1i+ p1

for i = 0, 1, . . . , n− 1. Conversely, any such polynomial will generate an elliptic list. There-
fore, the problem of finding proper elliptic lists over d 6= ∗ is equivalent to finding prime-
generating polynomials of the form above.

The longest proper list we’ve found so far is:

(41, 43, 47, 53, 61, 71, 83,97, 113, 131, 151, 173, 197, 223, 251, 281, 313,

347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911,

971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601)163.

This list corresponds to the famous polynomial n2+n+41, which is prime for n = 0, 1, . . . , 39.
It is still unclear whether proper elliptic lists of arbitrarily long length exist, although we

have an upper bound for the length given d in Theorem 4.2.21.

Theorem 4.2.21. Let d ≡8 3, d 6= ∗. Let z be the smallest prime such that
(−d
z

)
6= −1.

Then there are no proper elliptic lists over d of length n ≥ z.

Proof. Let (p1, . . . , pn)d be an elliptic list of length n. Let ai, bi be the unique positive integers
such that 4pi = a2

i + db2
i , and note that for all 1 ≤ i ≤ n, ai = a1 + 2i − 2, bi = b1 = b

(Theorem 4.2.8).
First consider the case

(−d
z

)
= 0. Assume that n ≥ z. The numbers a1, a2, . . . , an take

every value modulo z because z is odd and the ai’s increment by two, so one of them, say
aj, will be divisible by z. Therefore,

4pj = a2
j + db2 ≡z 0 + 0 · b ≡z 0,

and thus z|pj, a contradiction unless z = pj, which we cover below.
Now consider the case

(−d
z

)
= 1. Assume that n ≥ z. As before, the numbers

a1, a2, . . . , an take every value modulo z, so one of them, say aj, will satisfy aj ≡z b
√
−d.

Therefore,
4pj = a2

j + db2 ≡z −db2 + db2 ≡z 0,

implying that z|pj, a contradiction unless z = pj, which we cover below.
It remains only to consider the case that one of the elements in the cycle is in fact z.

The smallest number which can be written as 1
4
(a2 + db2) for a, b ∈ N is at least d+1

4
, and

z is never more than this value, so we only have to look at the case p1 = z = d+1
4
. In this

case, a1 = b1 = 1, so pi = (2i−1)2+d
4

, and pz = (2z−1)2+(4z−1)
4

= z2 is composite.
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In particular, we see that for d = 3,
(−d

3

)
= 0, so we cannot construct any proper elliptic

lists of length n ≥ 3 in this case - only elliptic pairs.

Corollary 4.2.22. Assume that d ≡8 3, and d 6= ∗. If d 6≡24 19, then there do not exist any
proper elliptic lists of length n ≥ 3 over d.

Proof. By hypothesis, d ≡24 3 or 11. In the first case,
(−d

3

)
= 0, and in the latter case,(−d

3

)
= 1.

Definition 4.2.23. Restrict d to be a positive and square-free integer.

M(d) =

{
min{z > 1 : z prime and

(−d
z

)
6= −1} ifd ≡8 3

1 otherwise

M(d) is the maximum allowable list-length function.

For d 6≡8 3, there are no lists of any length, motivating our definition ofM(d) = 1. For
d ≡8 3, the value of M(d) is motivated by Theorem 4.2.21. Note that in the case d = ∗,
there exist proper elliptic lists of length up to 6, soM(∗) = 7.

Currently we have no reason to believe that a list of lengthM(d)−1 exists over d (except
in the case that the class number h(K) = 1), motivating our next definition:

Definition 4.2.24. Restrict d to be a positive and square-free integer. Define

L(d) = max{n|(p1, ..., pn)d is a proper elliptic list}.

Also define
f(d) =M(d)− L(d).

We have L(d) <M(d) and f(d) > 0. We suspect that f(d) is related to the class number
h(−d) = h(K) in some way, but we have not been able to prove any results so far, other
than the fact that f(d) = 1 if h(−d) = 1.

4.2.4 The Relationship between Elliptic Pairs and Current Conjec-
tures

We now lump d = ∗ and d = 3 into a single case, since they take on the same elliptic pairs
(even though d = ∗ admits more elliptic lists and cycles).

The distribution of elliptic pairs is of primary importance because it determines the time
and space complexity of algorithms for generating elliptic curves of prime order (see [4], for
example). Although thus far nobody has explicitly formulated a conjecture for this, many
similar heuristics and conjectures (see [4],[7],[15],[19]) suggest that the number of elliptic
pairs (p, q)d with primes p ≤ q less than X should be asymptotic to

Cd
X

log2X
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for some constant Cd as X →∞. It is believed that Cd is greater than zero for all positive
square-free integers d ≡8 3, but so far it is not even known if the number of elliptic pairs for
any given d is infinite.

The remark at the end of Section 4.2.1 indicates that for every pair of primes within each
other’s Hasse interval, we have an elliptic pair. By the prime number theorem, for any given
p, the probability that another number q near it is prime is approximately 1/ log p, so p forms
an elliptic pair with about 4

√
p/ log p primes, of which roughly 2

√
p/ log p are greater than p

(so that we only consider unique elliptic pairs, since Theorem 4.2.7 indicates that the order
of p and q does not matter). Since d ≤ 4p− 1 and d ≡8 3, we have roughly p/2 values of d
which could make (p, q)d an elliptic pair, but each square-free d is equivalent to b1

2

√
p
d
c of

these values (obtained by multiplying d by the squares of odd numbers), so we’d expect any
particular d to be chosen with probability about (2

√
p/ log p)/

(
p
2
/
(

1
2

√
p
d

))
= 2/

√
d log p.

Since π(X) ∼ X
logX

, this suggests to us that for any given d, the number of elliptic pairs with
primes less than sufficiently large X should be about

∑
p≤X

2√
d log p

∼
X/ logX∑
n=1

2√
d log(n log n)

∼
X/ logX∑
n=1

2√
d log n

� 1√
d

X

log2X
.

Because the above sum diverges as X →∞, we see that for at least one value of d, there must
be an infinite number of elliptic pairs. Furthermore, we would expect that Cd/Cd′ ≈

√
d′/d

as a first-order approximation. Unfortunately, this contradicts experimental data obtained
by Silverman and Stange in Section 9 of [15], which shows a reciprocal relationship for
d’s with class number h(−d) = 1. As −d grows larger, however, the frequency of elliptic
pairs decreases in general. Our (implicit) assumption of a uniform distribution of elliptic
primes among the d’s must therefore be false, so our heuristic must be altered in some way.
In his proof of the prime number theorem in 1896, de la Vallée Poussin showed that the
number of primes less than X represented by a binary quadratic form Q of discriminant
−d is πQ(X) = 1

2h(−d)
Li(X) + O(X exp(−cQ

√
logX)), where Li(X) is the usual logarithmic

integral [17]. Since (p, q)d corresponds to a quadratic form of discriminant −d, p and q
are each chosen from a set of primes of Dirichlet density 1

2h(−d)
. Therefore, we expect the

number of elliptic pairs given d to be proportional to 1
[h(−d)]2

(since we have two primes).
In order to have the correct number of primes, however, we need Cd � 1√

d
� n(d)

[h(−d)]2
. As

a first-order approximation, n(d) ≈
√
d, so Cd ∼

√
d

[h(−d)]2
, gives very similar results to the

data we collected. Higher order terms probably replace n(d) by n(d) logk d for k = 1, 2, 3, ...,
although we have not performed any numerical tests to verify this.

We computed d for every possible pair of primes (p, q), each less than 107, and examined
the results for all d ≡8 3 such that h(−d) = 1, 2, 3, 4, neglecting the possibility that the
representative curve might not be defined (which we would expect to change the results by
a factor depending on h). We found that Cd ∼ C

√
d

[h(−d)]2
, in agreement with our guess, with

C ≈ 0.16. Unfortunately, our results are ineffective in computing the actual value of Cd, since
we currently do not know how to find the higher-order terms, although it may be possible
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√
d

h(−d)2

# elliptic pairs with
p ≤ q < X = 107

Figure 4.1: Plot of the number of elliptic pairs (p, q)d with p, q < X = 107 divided by
X

log2X
as a function of

√
d

[h(−d)]2
for d ≡8 3 and h(−d) ≤ 4 (neglecting the possibility that all

representative curves might be undefined over Fp or Fq). Note that we had to treat the d = 3
case (open diamond) separate from the others, as always. The linear fit suggests that our
asymptotic relation, Cd �

√
d

[h(−d)]2
is reasonable.

to compute n(d) for small d. Also, the value C3 ≈ 1.757 is about 6.26 times greater than
expected, so it is likely that the d = 3 case must be examined using a different heuristic, just
as it had to be treated separately earlier. Dirichlet’s class number formula requires division
by an extra factor of 3 for d = 3, so this could potentially account for the discrepancy, along
with the fact that n(d) appears to grow a little faster than

√
d. Our results are given in

Figure 4.1, with the data listed in Appendix A.2.
Elliptic pairs are also related to the Bouniakowsky conjecture for quadratic polynomi-

als. The Bouniakowsky conjecture states that all irreducible polynomials p(x) with integer
coefficients of degree greater than or equal to two such that there does not exist a prime
m which divides p(x) for all integers x take on an infinite number of prime values. Such
polynomials are called Bouniakowsky polynomials. The case for polynomials of degree
one was proven by Dirichlet.

Theorem 4.2.25. The Bouniakowsky conjecture (for quadratic polynomials) implies that
there are an infinite number of anomalous primes (and thus elliptic pairs) over any d ≡8 3.

Proof. Let d = ∗, and let (p, p)∗ be an elliptic pair. Then p = p+ 1 + a− 3b, so a = 3b− 1.
As p = a2 + 3b2, we have that

p(b) = (3b− 1)2 + 3b2 = 12b2 − 6b+ 1,

which is easily checked to be a Bouniakowsky polynomial.
If d 6= ∗, then (p, p)d is an elliptic pair if and only if p = p + 1 − a, or a = 1. Thus,

p = 1
4
(1 + db2). We know that b must be odd so that p is an integer, so we set b = 2c + 1

and then
p(c) =

1

4
(1 + d(2c+ 1)2) = dc2 + dc+

1 + d

4
.

Since 4|(1 + d), this polynomial has integer coefficients, and it is easy to check that it is a
Bouniakowsky polynomial.
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Appendix A

Supplementary Information for Section
4.2

A.1 Proof of Theorem 4.2.18
Let p1 = a2 + 3b2, with a ≡3 −1 and the sign on b chosen such that p2 = p1 + 1 + a − 3b,
and assume that (p1, p2, p3, p4, p5, p6)∗ is a proper elliptic cycle. By Corollary 4.2.17, a and b
determine the cycle uniquely. We enumerate over all the possible choices of a and b modulo

7 in Table A.1. In the last column, we take
6∏
i=1

pi mod 7. If this is 0, then at least one pi is

not prime (since 7 is not part of a proper elliptic cycle of length 6). Only when a ≡7 6 ≡7 −1
and b ≡7 0 do we get a 1 in the last column and the possibility of a non-trivial proper elliptic
cycle.

A.2 Data for Asymptotic Evaluation of Cd
We conjecture that the number of elliptic pairs (p, q)d with p ≤ q less than some given upper
bound X is asymptotic to Cd X

log2X
as X → ∞, with Cd �

√
d

[h(−d)2]2
as Cd → ∞. Of course,

Cd is bounded, and it is frequently very small, so this relation is computationally ineffective.
The data, shown in Figure 4.1, support this conjecture, however. The rest of this appendix
consists of a table (Table A.2) of the data we collected for values of d with class number
h(−d) ≤ 4.
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Table A.1: Primes in Elliptic Cycles Modulo 7

a mod 7 b mod 7 p1 mod 7 p2 mod 7 p3 mod 7 p4 mod 7 p5 mod 7 p6 mod 7
6∏

i=1
pi mod 7

0 0 0 1 3 4 3 1 0
0 1 3 1 3 0 2 0 0
0 2 5 0 2 2 0 5 0
0 3 6 5 0 3 4 2 0
0 4 6 2 4 3 0 5 0
0 5 5 5 0 2 2 0 0
0 6 3 0 2 0 3 1 0
1 0 1 3 0 2 0 3 0
1 1 4 3 0 5 6 2 0
1 2 6 2 6 0 4 0 0
1 3 0 0 4 1 1 4 0
1 4 0 4 1 1 4 0 0
1 5 6 0 4 0 6 2 0
1 6 4 2 6 5 0 3 0
2 0 4 0 6 2 6 0 0
2 1 0 0 6 5 5 6 0
2 2 2 6 5 0 3 4 0
2 3 3 4 3 1 0 1 0
2 4 3 1 0 1 3 4 0
2 5 2 4 3 0 5 6 0
2 6 0 6 5 5 6 0 0
3 0 2 6 0 4 0 6 0
3 1 5 6 0 0 6 5 0
3 2 0 5 6 2 4 3 0
3 3 1 3 4 3 1 0 0
3 4 1 0 1 3 4 3 0
3 5 0 3 4 2 6 5 0
3 6 5 5 6 0 0 6 0
4 0 2 0 3 1 3 0 0
4 1 5 0 3 4 2 6 0
4 2 0 6 2 6 0 4 0
4 3 1 4 0 0 4 1 0
4 4 1 1 4 0 0 4 0
4 5 0 4 0 6 2 6 0
4 6 5 6 2 4 3 0 0
5 0 4 3 1 0 1 3 0
5 1 0 3 1 3 0 2 0
5 2 2 2 0 5 5 0 0
5 3 3 0 5 6 2 4 0
5 4 3 4 2 6 5 0 0
5 5 2 0 5 5 0 2 0
5 6 0 2 0 3 1 3 0
6 0 1 1 1 1 1 1 1
6 1 4 1 1 4 0 0 0
6 2 6 0 0 6 5 5 0
6 3 0 5 5 0 2 2 0
6 4 0 2 2 0 5 5 0
6 5 6 5 5 6 0 0 0
6 6 4 0 0 4 1 1 0
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Table A.2: Y = the Number of Elliptic Pairs (p, q)d with p ≤ q < X = 107

d h(−d)
√
d

[h(−d)]2
Y Y

X/ log2 X

3 1 1.732051 67619 1.756694
11 1 3.316625 10125 0.263040
19 1 4.358899 21466 0.557672
43 1 6.557439 38158 0.991318
67 1 8.185353 49662 1.290184
163 1 12.76715 78517 2.039817
35 2 1.479020 4545 0.118076
51 2 1.785357 7054 0.183258
91 2 2.384848 12324 0.320169
115 2 2.680951 14274 0.370829
123 2 2.772634 12669 0.329132
187 2 3.418699 19490 0.506337
235 2 3.832427 21643 0.562270
267 2 4.085034 19062 0.495217
403 2 5.018715 29974 0.778704
427 2 5.165995 30647 0.796188
59 3 0.853461 2456 0.063805
83 3 1.012270 3238 0.084121
107 3 1.149342 3845 0.099890
139 3 1.309981 6503 0.168943
211 3 1.613982 8458 0.219733
283 3 1.869178 10504 0.272887
307 3 1.946824 10947 0.284395
331 3 2.021489 10676 0.277355
379 3 2.163102 11513 0.299100
499 3 2.482034 13267 0.344667
547 3 2.598670 15323 0.398081
643 3 2.817494 16295 0.423333
883 3 3.301702 20009 0.519820
907 3 3.346271 19969 0.518781
155 4 0.778119 2541 0.066013
195 4 0.872765 3510 0.091187
203 4 0.890488 3019 0.078432
219 4 0.924916 3678 0.095552
259 4 1.005842 5135 0.133404
291 4 1.066170 4255 0.110542
323 4 1.123263 3944 0.102462
355 4 1.177590 6290 0.163410
435 4 1.303541 5661 0.147069
483 4 1.373579 6076 0.157850
555 4 1.472402 6347 0.164891
595 4 1.524539 8283 0.215187
627 4 1.564998 7084 0.184037
667 4 1.614146 9325 0.242257
715 4 1.671218 9364 0.243270
723 4 1.680541 7687 0.199703
763 4 1.726403 10009 0.260027
795 4 1.762234 7752 0.201392
955 4 1.931442 10565 0.274471
1003 4 1.979386 11738 0.304945
1027 4 2.002928 11536 0.299697
1227 4 2.189285 10072 0.261664
1243 4 2.203513 13164 0.341992
1387 4 2.327653 14006 0.363866
1411 4 2.347705 12649 0.328612
1435 4 2.367587 13188 0.342615
1507 4 2.426256 14544 0.377843
1555 4 2.464593 14049 0.364983
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Appendix B

Code used to Generate Plots of Elliptic
Curves

// ECTC. cpp
// Created 19−20 December 2012 by Thomas Morre l l

#inc lude <c s td l i b >
#inc lude <iostream>
#inc lude <fstream>
#inc lude <cmath>

us ing namespace std ;

i n t main ( i n t argc , char ∗argv [ ] )
{

cout << "y^2 = x^3 + Ax + B" << endl ;
f l o a t a , b ;
cout << "A = " ;
c in >> a ;
cout << "B = " ;
c in >> b ;

cout << endl << "RANGES:" << endl ;
f l o a t xMin , xMax , yMin , yMax , r a t e ;
cout << "x_min = " ;
c in >> xMin ;
cout << "x_max = " ;
c in >> xMax ;
cout << "For y−range to func t i on proper ly , s e t y_min < 0 , y_max > 0\n " ;
cout << "y_min = " ;
c in >> yMin ;
cout << "y_max = " ;
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c in >> yMax ;
// Sample ra t e i s how o f t en po in t s are found with r e sp e c t to x .
cout << "Sample ra t e = " ;
c in >> rat e ;

// Sca l e t rans forms x , y in to s c a l e ∗x , s c a l e ∗y f o r p r i n t i n g to the f i l e
cout << endl << " Sca l e = " ;
f l o a t s c a l e ;
c in >> s c a l e ;

cout << endl << "FINDING EXTREMA. . . " ;
f l o a t min1 , max1 , min2 , maxY2 ;
min1 = xMin−1;
max1 = xMax+1;
min2 = xMin−1;
maxY2 = yMin ∗ yMin ;
i f (maxY2 < yMax ∗ yMax) { maxY2 = yMax ∗ yMax ; }
f o r ( i n t i = 0 ; i <= (xMax−xMin)/ ra t e ; i++)
{

f l o a t x = xMin + i ∗ r a t e ;
f l o a t y2 = x ∗ x ∗ x + a ∗ x + b ;
i f ( y2 >= 0 . 0 )
{

i f (min1 < xMin) { min1 = x ; }
e l s e i f (max1 < xMax) { min2 = x ; }

}
i f ( y2 < 0)
{

i f (min1 > xMin) { max1 = x − r a t e ; }
}

}
i f (max1 > xMax) { max1 = xMax ; }

cout << endl << "PLOTTING POINTS . . . " ;
o f s tream myf i l e ;
my f i l e . open ("EC. tab l e " ) ;
my f i l e << "# y^2 = x^3 + " << a << " ∗ x + " << b << endl ;
my f i l e << "# x y Comments" << endl ;
i n t s i z e = in t ( (max1−min1 )/ ra t e ) + 1 ;
f l o a t yVals [ s i z e ] ;
f o r ( i n t i = 0 ; i < s i z e ; i++)
{

f l o a t x = min1 + i ∗ r a t e ;
f l o a t y2 = x ∗ x ∗ x + a ∗ x + b ;
yVals [ i ] = sq r t ( y2 ) ;
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}
f o r ( i n t i = 0 ; i < s i z e ; i++)
{

i f ( yVals [ s i z e − 1 − i ] <= −yMin)
{

myf i l e << (min1 + ( s i z e − 1 − i ) ∗ r a t e ) ∗ s c a l e << " "
<< 0 − s c a l e ∗ yVals [ s i z e − 1 − i ] << endl ;

}
}
f o r ( i n t i = 0 ; i < s i z e ; i++)
{

i f ( yVals [ i ] <= yMax)
{

myf i l e << (min1 + i ∗ r a t e ) ∗ s c a l e << " "
<< s c a l e ∗ yVals [ i ] << endl ;

}
}
myf i l e . c l o s e ( ) ;

cout << endl << "SECOND SEGMENT? . . . " ;
i f (min2 > xMin)
{

ofstream myf i l e2 ;
myf i l e2 . open ("EC2 . t ab l e " ) ;
myf i l e2 << "# y^2 = x^3 + " << a << " ∗ x + " << b << endl ;
myf i l e2 << "# Second segment" << endl ;
myf i l e2 << "# x y Comments" << endl ;
s i z e = in t ( (xMax−min2 )/ ra t e ) + 1 ;
f l o a t yVals [ s i z e ] ;
f o r ( i n t i = 0 ; i < s i z e ; i++)
{

f l o a t x = min2 + i ∗ r a t e ;
f l o a t y2 = x ∗ x ∗ x + a ∗ x + b ;
yVals [ i ] = sq r t ( y2 ) ;

}
f o r ( i n t i = 0 ; i < s i z e ; i++)
{

i f ( yVals [ s i z e − 1 − i ] <= −yMin)
{

myf i l e2 << (min2 + ( s i z e − 1 − i ) ∗ r a t e ) ∗ s c a l e << " "
<< 0 − s c a l e ∗ yVals [ s i z e − 1 − i ] << endl ;

}
}
f o r ( i n t i = 0 ; i < s i z e ; i++)
{
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i f ( yVals [ i ] <= yMax)
{

myf i l e2 << (min2 + i ∗ r a t e ) ∗ s c a l e << " "
<< s c a l e ∗ yVals [ i ] << endl ;

}
}
myf i l e2 . c l o s e ( ) ;

}

cout << endl << "GENERATING TikZ CODE. . . " ;
o f s tream myf i l e3 ;
myf i l e3 . open ("TikZ . txt " ) ;
myf i l e3 << "\\ begin { cente r }\n\\ begin { f i g u r e }\n"

<< "\\ begin { t i k z p i c t u r e } [ domain=" << xMin ∗ s c a l e − r a t e
<< ":" << xMax ∗ s c a l e + ra t e << "]\n"
<< "\\draw[−>] (" << xMin ∗ s c a l e − r a t e << " ,0) −− ("
<< xMax ∗ s c a l e + ra t e << " ,0) node [ r i g h t ] {$x$ } ;\ n"
<< "\\draw[−>] (0 ," << yMin ∗ s c a l e − r a t e << ") −− (0 ,"
<< yMax ∗ s c a l e + ra t e << ") node [ above ] {$y$ } ;\ n"
<< "\\draw p lo t [ smooth ] f i l e {EC. t ab l e } ;"
<< "% MAY NEED TO CHANGE! ! ! \ n " ;

i f (min2 > xMin)
{

myf i l e3 << "\\draw p lo t [ smooth ] f i l e {EC2 . t ab l e } ; "
<< "% MAY NEED TO CHANGE! ! ! \ n " ;

}
myf i l e3 << "\\end{ t i k z p i c t u r e }\n" << "\\ capt ion {$E : y^2 = x^3 + "

<< a << "x + " << b << "$} % MAY NEED TO CHANGE! ! ! \ n"
<< "\\end{ f i g u r e }\n\\end{ cente r }\n " ;

myf i l e3 . c l o s e ( ) ;

cout << endl << "FINISHED!" << endl ;

system ("PAUSE" ) ;
r e turn EXIT_SUCCESS;

}
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example of, 15
Schoof-Elkies-Atkin, 13

singular point, 13

Tate module, 18

Weierstraß ℘-function, 7
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