
Multiple Buffering for Parallel Approximate
Sequence Matching using Disk-based Suffix Tree

on Multi-core CPU
Yousuke Watanuki, Keiichi Tamura, Hajime Kitakami, and Yoshifumi Takahashi

Abstract—Suffix trees, which are trie structures that present
the suffixes of sequences (e.g., strings), are widely used for se-
quence search in different application domains such as, text data
mining, bioinformatics and computational biology. In particular,
suffix trees are useful in bioinformatics applications, because they
can search similar sub-sequences and extract frequent sequence
patterns efficiently. In recent years, efficient construction of a
suffix tree that allows faster sequence searches has become
one of the most important challenges, because the number
and size of the data that are stored in sequence databases
have been increasing exponentially. This paper proposes a novel
parallelization model for approximate sequence matching that
uses disk-based suffix trees, which are built on hard disks not on
memory, on a multi-core CPU. In the proposed parallelization
model, we divide an entire sequence database into two or more
sub-databases called partitions. For each partition, we build
a disk-based suffix tree and define a task as an approximate
sequence matching on one disk-based suffix tree. Moreover,
the proposed parallelization model involves a multiple buffering
management system to avoid conflicts among CPU-cores. We
evaluated the proposed parallelization model using an actual
amino acid sequence database on a PC. The experimental results
show a substantial improvement in computation performance.

Index Terms—parallel processing; suffix tree; multi-core CPU;
buffer management; approximate sequence matching

I. INTRODUCTION

S
UFFIX trees [1], [2], [3], which are trie structures that

present the suffixes of sequences (e.g., strings), are widely

used for sequence search in different application domains

such as, text mining, pattern matching, bioinformatics and

computational biology. In particular, suffix trees are useful in

bioinformatics applications, to search for sequence patterns in

genome and amino acid sequences. Bioinformatics researchers

have focused on developing efficient suffix tree structures and

improving the performance of sequence searches on suffix

trees.

In recent years, efficient construction of a suffix tree that

allows high-speed sequence searches has become one of the

most important challenges, because the number and size of

the data that are stored in sequence databases have been

increasing exponentially [4], [5], [6]. For example, because

of the various sequencing efforts and the development of

sequencing techniques, as well as the current trend toward

lower prices of hard disk systems, genome sequence databases

Y.Watanuki, K.Tamura, H.Kitakami and Y.Takahashi are with the Graduate
School of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-
Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan; corresponding e-mail:
(ktamura@hiroshima-cu.ac.jp).

have been growing at exponential rates. As a result of the

enormous data size and extreme growth rate, researchers on

suffix trees has met new challenges including the need for

effective data structures and efficient algorithms for various

sequence searches on suffix trees.
This study focuses on parallel approximate sequence match-

ing using disk-based suffix trees on a multi-core CPU. An

approximate sequence matching is one of the most impor-

tant similarity searches on sequence databases. Approximate

sequence matching is a common real world problem in a

variety of application domains such as, signal recovery, DNA

sequence matching, and pattern matching for text data. Disk-

based suffix trees are suffix trees that nodes of the suffix trees

are stored in pages on hard disks. Suffix trees quickly outgrow

the main memory on a PC or workstation for sequence

collections in the order of gigabytes. Therefore, almost all

modern practical works construct disk-based suffix trees for

large-scale sequence databases.
The goal of this study is to develop a efficient parallelization

model for parallel approximate sequence matching for large-

scale sequence databases on a multi-core CPU. Nowadays,

PCs and workstations have one or more multi-core CPUs. A

multi-core CPU is a single microprocessor with two or more

independent CPU cores on a die, which are the units that read

and execute program instructions [7]. It is necessary to develop

an efficient parallelization model for the parallel approximate

sequence matching using disk-based suffix trees on a multi-

core CPU, because a multi-core CPU has some characteristics

that are different from a conventional CPU.
The main contributions of this study are as follows.

• A novel parallelization model for the parallel approximate

sequence matching on disk-based suffix trees using data

partition-based parallelism is proposed. The proposed

parallelization model divides an entire sequence databases

into two or more sub-databases called partitions. For each

partition, we build a suffix tree on hard disks, and a task

is defined as an approximate sequence matching on one

disk-based suffix tree, which is built from a partition.

• A multiple buffering designed for multi-core CPUs is

involved in the proposed parallelization model. The nodes

of a disk-based suffix tree are stored in pages on hard

disks. If a node in a disk-based suffix tree is accessed

during the processing of a matching, the node is read

from the hard disk. The disk-based suffix tree usually

requires a buffering management system to handle disk

input/output (I/O). The multiple buffering has a buffer on

DOI: 10.5176/2251-3043_3.3.271

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

51 © 2013 GSTF

each CPU-core and thus can avoid conflict between I/O

requests from CPU-cores.

• The proposed parallelization model is evaluated by using

an actual amino acid sequence databases on two types

of PCs. We used a PC with a middle-spec multi-core

CPU and a low-spec hard disk system, as well as a PC

with a middle-spec multi-core CPU and a high-spec hard

disk system, which has a redundant array of inexpensive

disks (RAID) file system. The experimental results show

sufficient speed-up in proportion to the number of threads

in the PC with the high-spec hard disk system.

The remainder of this paper is organized as follows. In

Section 2, related work is reviewed. In Section 3, the data

structure of suffix trees and approximate sequence matching

are described. In Section 4, we propose a novel parallelization

model for parallel approximate sequence matching on a Multi-

core CPU. In Section 5, we discuss experimental results. In

Section 6, we conclude this paper.

II. RELATED WORK

In the last few decades, index and its parallel process-

ing have been the most important techniques for large-scale

databases [8]. In big-data era, these parallelization tech-

niques are critical for researchers to develop high-performance

database services in different application domains. Many

studies on index and its parallel processing the have been

conducting. In this session, related work is reviewed and the

aim of this study is specified.

In the long history of study on index and its parallel

processing, there has been considerable research on B-tree

[9], which is a well-known index for relational databases. The

task of developing parallelism of B-tree [10] is beneficial for

developing high-performance database services, because many

databases use B-tree or its subsequent indexes. R-tree [11] is

also a well-known index for spatial databases, and its parallel

processing is beneficial for large-scale geo-spatial databases

[12].

The highlight of study on index and its parallel processing

has varied with changes in modern CPU architecture trends.

One of the most important current CPU architectures is the

multi-core CPU [7]. Therefore, developing efficient paral-

lelization models on a multi-core CPU fascinates researchers

in many different application domains. For example, Goetz

et al. [13] proposed a new B-tree optimized for many-core

processors and modern memory hierarchies with flash storage

and nonvolatile memory.

Likewise, in the last few decades, many researchers have

tried to develop efficient data structures and construction

methods, parallel construction and its query processing, on

disk-based suffix trees as we see increasingly larger sequence

databases [14], [15], [16], [17]. Almost all studies focus on

efficient parallel construction methods and buffer management

to reduce I/O, because one of the most time-consuming tasks

on disk-based suffix trees is its construction time.

Amol et al. [16] proposed WAVEFRONT, which is a

construction algorithm that diverges from the partition-and-

merge approach to build disk-based suffix trees in a tiled

fashion. Essam et al. [17] developed a disk-based suffix tree

construction method, called Elastic Range (ERa), which works

efficiently with very long strings that are much larger than

the available memory. They implemented and evaluated their

construction algorithm on a shared-nothing architecture and

a multi-core CPU. ERa can index the entire human genome

sequence in 19 minutes on a PC with an eight-core CPU.

Existing studies are limited, because; they focus only on the

construction of disk-based suffix trees for large-scale sequence

databases. This study focused on the performance of parallel

sequence search using suffix trees on a multi-core CPU.

Buffer management is one of the most important factors to

improve the performance of disk-based suffix trees. Recently,

some researchers have discussed the performance of buffer

management on a multi-core CPU [18], [19]. Moreover, they

have proposed a new mechanism to handle buffer management

in order to reduce conflict among CPU-cores.

Naturally, some studies developed buffer management sys-

tems for disk-based suffix trees. Srikanta et al. [20] developed

TOP-Q, is which improves the disk access behavior of the

suffix tree. However, TOP-Q focuses on buffer management

during the construction of suffix-trees. In this paper, we

propose a multiple buffer management system for the parallel

processing of approximate sequence searches using suffix trees

on a multi-core CPU. The goal of this study is to develop

an efficient management system for the parallel processing of

disk-based suffix trees on a multi-core CPU.

III. APPROXIMATE SEQUENCE MATCHING ON

DISK-BASED SUFFIX TREE

A. Suffix Tree

A sequence database SD consists of n tuples, where a

tuple ti consists of two items: a tuple ID tidi and a se-

quence data Si Therefore, sequence database is denoted by

SD = {t1, · · · , tn}, where ti = (tidi, Si). Let Σ be a set of

symbols, and there are |Σ| symbols in it. In gene sequence

databases and amino acid databases, Σ is a set of alphabets.

Each sequence Si is represented as a sequence of elements in

Σ and is denoted by Si = si,1 · · · si,L(Si)$, where si,j ∈ Σ,

the length of sequence Si is denoted by L(Si) , and $ is a

terminating symbol.

For example, suppose that there are three sequences, “ACG-

TACGA”, “TGTT”, and “CGAG” in a sequence database

SD. Each sequence is stored in a tuple. Therefore, tu-

ple t1=(1,ACGTACGA$), t2=(2,TGTT$), and t3=(3,CGAG$),

where 1, 2, and 3 are tuple IDs. Let the l-th suffix of sequence

Si be Si[l..L(Si)]. For example, S2[0..L(S2)]= TGTT$,

S2[1..L(S2)]=GTT$, S2[2..L(S2)]= TT$, and S2[3..L(S2)]=
T$. In this paper, we call l suffix number SN .

A suffix tree is a rooted tree and is one of the particular trie

trees, and sequence corresponds to a branch with the following

properties. Every node has at least two edges and every edge

has a label that represents a subsequence of the sequences in

SD. Each of the node edges starts with a different symbol

in Σ. For every node u, p(u) denotes the path from the root

node to u, and u is the concatenation of edge labels on the

path from the root to u. A leaf node can be represented as

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

52 © 2013 GSTF

A
CG G

T

$ GTT$
T$$ CG G$ A TACGA$

$ A T

(1,3) (2,0)(2,3) (2,2)

ACGA$
T$

(1,7) (3,2)

$ CG G$

(1,1)

A

(3,3)

$ A T

(1 0)(1 4)

A$
TACGA$

(1 5) (3 0)

$ AG$

(1 6) (1 2) (2 1)(3 1)

$
G$

ACGA$
T$

(1,0)(1,4) (1,5) (3,0) (1,6) (1,2) (2,1)(3,1)

Fig. 1. Example of suffix tree.

(tuple ID, suffix number SN) with a pair of tuple ID and

suffix number SN . Every leaf node corresponds to a suffix of

S sequences in SD.

B. Disk-based Suffix Tree

The size of a suffix trees for a large-scale sequence database

usually becomes larger than the size of main memory. To

manage large-scale suffix tree, suffix trees are constructed on

hard disk systems. Suffix trees on hard disk systems are called

disk-based suffix trees. For managing disk-based suffix trees,

a buffer management system is needed to read the node of

the suffix tree that is stored on the hard disks. A node of

the suffix tree is stored in a page, which is a unit of disk

I/O in the operating system (OS). In this study, a page that

contains nodes is called a node page. If a process of search

on a disk-based suffix traverses a node of a disk-based suffix

tree, the process requests the buffer manager to read a node

page from disks that contain the requested node. The fetched

page is stored in a buffer in the buffer manager. If the process

traverses the node of the suffix tree again, the process reads

the node from the buffer not the hard disks.

C. Approximate Sequence Matching

In this paper, we focus on an approximate sequence match-

ing, which is a similarity sequence search under Humming

distance. Let Q = (Q1, Q1, · · · , Qn) be a key sequence

pattern and Si = (si,1, · · · , si,L(Si)) be a sequence. We want

to find all matches with max error or fewer mismatches,

meaning positions k such that |{j : Qj = si,k+j−1}| ≤
max error. For example, suppose that key sequence pattern

is “ACGT” and max error = 2. In this example, sub-sequence

“ACGA” and “ACGT” in SD in Fig.1 are matching, because

mismatching is fewer than max error =2. Node page is that

intended to treat 32 node data of suffix tree as a unit. Node

data is data of node configured suffix tree, and it is structure

that has node number, child node number of including this

node, the position and the length of suffix in the sequence

database. The processing steps of the approximate sequence

matching using a suffix tree are as follows.

(1) Node page is read from disk with the buffer manager.

(2) Searching for root node of suffix tree from this loaded

node page. The root node rnode is stored into mnode.

(3) The structure of node data contains offset of child node

connecting this node. Root node has offset of child node.

build

PS1PS1
divide ST1

Sequence Sequence

d t b

PS2PS2

STdatabase

SD

ST2

PSmPSm

Partitions
STm

Disk based!

Suffix!trees

Partitions

Fig. 2. Data parallelism.

For each edge in mnode, a sub-sequence is contained

in the edge matches Q1 · · ·Ql, where l is the length

of the sub-sequence, and the number of mismatching is

counted. At this time, the sub-sequence is connected to

X .

(4) Searching for the node page contained child node using

this offset. First, searching for node page stored in buffer

area. If the node page is not stored in the buffer area,

reading new node page from disk using buffer manager.

(5) Repeat (3),(4), move to the following child node if it

matches the compared sub-sequence of node branch Xi

and Qi (Xi connects to X). If the two sequence are

different, counting as an error. If the error is greater than

max error, look at the other branches without looking

at its branch. If there is no branch to check, check the

other branches back to a node on one.

(6) If it matches the length of X and the length n of Q,

approximate sequence matching is successful.

(7) Following all the nodes in the suffix tree, when there are

no more nodes that can follow, approximate matching is

ended.

IV. PARALLEL APPROXIMATE SEQUENCE MATCHING ON

MULTI-CORE CPU

In this section, the proposed parallelization model for par-

allel approximate sequence matching using disk-based suffix

trees on a multi-core CPU is described.

A. Data Parallelism

The proposed parallelization model utilizes the data par-

allelism that divides the input database into two or more

partitions. In a multi-core CPU environment, each CPU-core

performs the same processing on different partitions. The

entire sequence database SD is divided into two or more

partitions PSD = {PS1, PS2 · · ·PSm}, where m is the

number of partitions, where SD = PS1 ∪ PS2 · · ·PSm,

PSi ∩ PSj = φ. A disk-based suffix tree is built using each

partition. Therefore, there are m disk-based suffix trees in our

system, where m is the number of partitions (Fig. 2).

An approximate sequence matching on the sequence

database SD can be performed in parallel using these disk-

based suffix trees, which are built on a partition, because

approximate sequence matching for each partition can be

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

53 © 2013 GSTF

build
Search on

ST

PS1PS1
divide ST1

ST1

S h

Sequence

d t b

PS2PS2

ST

Search on

ST2
database

SD

ST2

PSmPSm

Partitions
STm

Search on

STm

Disk!based

Suffix trees

Partitions

Tasks

Fig. 3. Task model for parallel approximate sequence matching.

Task Pool

Master Thread

Task Pool

Task Taskt+1Taskt+1 mTaskm

ExecuteExecute

Worker 1 Worker 2 Worker t

ExecuteExecute ExecuteExecute

1Task1 2Task2 t
Task

t

Buffer

Manager 1

Buffer

Manager 2

Buffer

Manager t

ST1 ST2
STt

Fig. 4. Master worker model for parallel approximate sequence matching..

performed independently of the other partitions. Let ASi be

the result of approximate sequence matching on the i-th disk-

based suffix tree. The result of the approximate sequence

matching is AS = AS1 ∪ AS2 · · ·ASm.

B. Task Model

In this study, a task is defined as approximate sequence

matching on a disk-based suffix tree that is built using a

partition (Fig. 3). There are m tasks, where m is the number of

disk-based suffix trees. Moreover, we use the master worker

model to execute tasks in parallel. In this model, there are

two components; a master process and a worker process.

The master worker model always consists of one master

process and multiple worker processes. In multi-core CPU

environments, two components are represented as a master

thread and a worker thread instead.

Fig. 4 shows the master worker model for parallel ap-

proximate sequence matching. The master thread manages the

task pool that contains tasks, which are used for approximate

sequence matching on disk-based suffix trees that are built for

each partition. The master thread generates initial tasks and

manages the task pool. Each worker thread gets a task from the

task pool. Then, the worker thread performs an approximate

sequence matching process on the disk-based suffix tree. If

the worker thread finishes executing the task, the worker gets

another task from the task pool.

If a worker thread traverses a node of a disk-based suffix

tree, the worker thread requests the buffer manager to read

a node page from disks that contain the requested node. The

fetched page is stored in a buffer in the buffer manager. If the

ExecuteExecute

Worker 1 Worker 2 Worker t

ExecuteExecute ExecuteExecute

1Task1 2Task2 t
Task

t

Buffer

Manager 1

Buffer

Manager 2

Buffer

Manager t

ST1 ST2
STt

(a) Multiple Buffering

ExecuteExecute

Worker 1 Worker 2 Worker t

ExecuteExecute ExecuteExecute

1Task1 2Task2 t
Task

t

Buffer Manager

ST1 ST2
STt

(b) Single Buffering

Fig. 5. Multiple buffering and single buffering.

worker thread traverses the node of the disk-based suffix tree

again, the worker thread reads the node from the buffer not

the hard disks.

C. Multiple Buffering

To improve disk I/Os during execution of parallel process-

ing, the proposed parallelization model utilizes a novel buffer

management system for a disk-based suffix tree on a multi-

core CPU. The proposed buffer management system creates

multiple buffer managers that provide a dedicated buffer for

each worker thread. Conventional buffer management has one

buffer manager on the system and the buffer manager is shared

by multiple worker threads. On the other hand, in our proposed

buffer management system, each worker thread has its own

buffer manager (Fig. 5).
The advantage of the proposed buffer management system is

that it can avoid conflicts among worker threads. For example,

when the search process is performed only one buffer for all

threads in Fig. 5(b), it might occur data races between threads

by multiple threads is writing data to buffer area of the same

node when the node data read from the disk stored in the

buffer area. The multiple buffer management shown in Fig.

5(a) prevents conflicts between worker threads, because each

worker thread has its own buffer manager.

D. Algorithm

This section describes the algorithm of parallel approximate

sequence matching.

1) Master Thread: The processing steps of the master

thread are as follows.

(1) The master thread receives the query parameters,

database name SD, the number of threads t, query

sequence pattern Q, the maximum number of error

max error from the user.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

54 © 2013 GSTF

(2) The master thread creates a task pool.

(3) The master thread opens the database named SD, and

gets information of partitions.

(4) The master thread puts tasks into the task pool.

(5) The master thread generates t worker threads.

(6) The master thread receives the results of approximate

sequence matching, and then stores them into the result

set.

(7) If the task pool is not empty, the process goes back to

step (6) otherwise, the process goes to step (8).

(8) The master thread destroys the task pool.

(9) The master thread closes the database, and the result set

is sent to the user.

2) Worker Thread: The processing steps of a worker thread

are as follows.

(1) The worker thread receives the query parameters, query

sequence pattern Q and the maximum number of errors

max error.

(2) The worker thread creates a buffer manager.

(3) The worker thread gets a task from the task pool.

(4) The worker thread executes approximate sequence

matching on the suffix tree related to the task using its

own buffer manager.

(5) The worker thread sends the result of the approximate

sequence matching to the master thread.

(6) If the task pool is not empty, the process goes back to

step (3); otherwise, the process goes to step (7).

(7) The worker thread destroys the buffer manager.

(8) The worker thread is terminated.

V. EXPERIMENT

We implemented the proposed parallelization model and

evaluated it using an actual amino acid database. This section

shows the content and results of experiments.

A. Experimental Setup

We used an amino acid database to evaluate the proposed

parallelization model. The size of the database is approxi-

mately 1.0GB, and the entire database are divided into 1,000

partitions. The size of each partition is approximately 1.0MB.

The average size of a disk-based suffix tree is approximately

250.0MB. Therefore, the total size of the disk-based suffix

trees is 250.0GB.
We performed two experiments, and we compared the

proposed parallelization model, which has multiple buffer

managers with the master-worker model using a single-buffer.

In the experiments, we used two types of computers. One is a

PC with a middle-spec multi-core CPU and a low-spec hard

disk system (PC1). The other is a PC with a middle-spec multi-

core CPU and a high-spec hard disk system, which has a RAID

file system. The specifications of these two PCs are as follows.

1) PC1 CPU: AMD FX-8120 3.1GHz/8M/8C; memory:

16GB; HDD:1TB; OS:Ubuntu 11.04

2) PC2 CPU: Xeon X5675 3.06GHz/12M/6C (×2); mem-

ory: PC/10600 DDR3 4,096MB ECC Reg. (×18); HDD:

SATA 2TB 7200rpm (×24) RAID6; OS: CentOS 6.0

page of the buffer space.

Figure 5. Result of speed-up ratios using PC1 as changing the length of

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 2 4 6 8

S
p

e
e

d
u

p
 r

a
ti

o

Number of Worker Threads

m_buff, error 3 s_buff, error 3 m_buff, error 7

s_buff, error 7 m_buff, error 9 s_buff, error 9

m_buff, error 7

Fig. 6. Result of speed-up ratios using PC1 (We used several the maximum
number of errors max error).

Figure 6. Result of speed-up ratios using PC2 as changing the length of

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

S
p

e
e

d
u

p
 r

a
ti

o

Number of Worker Threads

m_buff, error 3 s_buff, error 3 m_buff, error 7

s_buff, error 7 m_buff, error 9 s_buff, error 9

Fig. 7. Result of speed-up ratios using PC2 (We used several the maximum
number of errors max error).

B. Experiment 1

In Experiment 1, an approximate sequence matchings that

query sequence pattern Q is “ASDFZZDSSSC” is used. We

use several parameters of the maximum number of errors

max error is 3, 6, or 9. Each buffer manager has 150.0MB of

buffer space. In the experiment, we measured the computation

time of approximate sequence matchings.

Fig. 6 and 7 show the result of speed-up ratios using

PC1 and PC2 respectively. For example, in these figures,

the graph legends “m buff , error 7” and “s buff , error 7”

indicate the measurement is obtained using multiple buffer-

ing with max error = 7 and using single buffering with

max error = 7, respectively. The horizontal axis is the

number of worker threads. The vertical axis is the speedup

ratio.

Fig. 6 shows the results of experiments using PC1, which

has a mid-spec multi-core CPU and a low-spec hard disk.

As indicated in the figure, the speed-up ratios of multiple

buffering are better than those of single buffering. However,

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

55 © 2013 GSTF

the speed-up ratios start decreasing when the number of

worker thread is five. PC1 has a low-spec hard disk and disk

I/Os start to conflict between worker threads when the number

of worker thread is five.
Fig. 7 shows the results of experiments using PC2. PC2

has a mid-spec multi-core CPU and a high-spec hard disk.

As indicated in the figure, the speed-up rations of multiple

buffering are better than those of single buffering. Moreover,

the speed-up ratios do not decrease compared with the results

of PC1. The proposed parallelization model were able to

obtain a sufficient speed improvement ratio relative to the

number of threads of approximately 3.67 with 4 worker-

threads, 7 with 8 worker-threads, and 8.7 with 12 worker-

threads. In the single buffering, sufficient speedup ratio is

obtained with up to 10 worker-threads; however the speedup

ratios start decreasing when the number of worker threads is

9 or 10.
PC2 has a high-spec hard disk system, which is imple-

mented on RAID6 and a high-performance RAID card. This

lends significant performance improvement. PC1 causes I/O

conflicts between worker threads and an I/O bottleneck be-

cause of the low-spec hard disk system, whereas the number

of I/O conflicts in PC2 is fewer than that in PC1, because the

high-spec hard disk system provides good I/O performance for

the multiple buffer management system.

C. Experiment 2

In Experiment 2, we executed an approximate sequence

matching those parameters are Q is “ASDFZZDSSS” and

max error is 3. In this experiment, we changed the size of the

buffer space in each buffer manager to 85.0MB, 150.0MB, and

300.0MB. Moreover, we measured computation time while

changing the number of threads from 1 to 8 in PC1, and from

1 to 12 in PC2.
Fig. 8 and 9 show the speed-up ratios using PC1 and PC2,

respectively. For example, in these figures, the graph legends

“m buff , 85” and “s buff , 85” indicate the measurement is

obtained using multiple buffering and a buffer size of 85.0MB

and using single buffering with a buffer size of 85.0MB

respectively. The horizontal axis is the number of worker

threads. The vertical axis is the speedup ratio.
When we look at “m buff” in Fig. 8, the value of the

speedup ratio increases with a buffer space of 300.0MB at

6 worker-threads, whereas the value decreases with a buffer

space of 85.0MB, and 150.0MB. This is because the speedup

ratio might be influenced by the processing needed to delete

the node page of the buffer space.
Comparing the “m buff” and “s buff” curves in Fig. 8,

and Fig. 9, we find that the “m buff” curves show better

values in Fig. 9 regardless of the size of the buffer space.

If there are a large number of threads, the difference between

“m buff” and “s buff” is particularly remarkable. The cause

of this, when using single buffering as a whole, it occur

conflicts between threads by writing against the same buffer

space occur in multiple worker-threads, and the speedup ratio

might be influenced by the processing needed to delete the

node page of the buffer space. These results indicate that multi-

buffer management is suitable for parallel processing.

In addition, with a buffer space of 85.0MB and 150.0MB,

we found sufficient speedup ratios of approximately 5.5 with 6

threads, and 10.5 with 12 threads. However, with a buffer space

of 300.0MB, the speedup ratio was smaller than the other on

11, 12 threads as about 8.2 with 10 threads, about 8.7 with

12 threads. The cause of this, when buffer space is 300.0MB,

it is considered that processing looking for a particular node

page from the buffer space is large.

Figure 7. Speed-up ratios of changing the buffer space using PC1.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 2 4 6 8

S
p

e
e

d
u

p
 r

a
ti

o

Number of Worker Threads

m_buff, 85 s_buff, 85 m_buff, 150

s_buff, 150 m_buff, 300 s_buff, 300

Fig. 8. Speed-up ratios of changing the buffer space using PC1.

Figure 7. Speed-up ratios of changing the buffer space using PC1.

Figure 8. Speed-up ratios of changing the buffer space using PC2.

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12

S
p

e
e

d
u

p
 r

a
ti

o

Number of Worker Threads

m_buff, 85 s_buff, 85 m_buff, 150

s_buff, 150 m_buff, 300 s_buff, 300

Fig. 9. Speed-up ratios of changing the buffer space using PC2.

VI. CONCLUSION

In this paper, we propose a novel parallelization model for

approximate sequence matching that uses disk-based suffix

trees, which are built on hard disks not on memory, on a multi-

core CPU. The proposed parallelization model is based on

data parallelism, and we divide an entire sequence database

into two or more sub-databases called partitions. For each

partition, a disk-based suffix tree is built and a task is defined

as an approximate sequence matching on one disk-based suffix

tree. Moreover, the proposed parallelization model involves

a multiple buffering management system to avoid conflicts

among CPU-cores. The experiments using an actual amino

acid sequence database on PCs shows the proposed model is

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

56 © 2013 GSTF

good performance. In our future work, we intend to investigate

the trade-off relationship between speed-up and the number of

partitions. In addition, we will develop efficient buffer size

management for the parallelization model for approximate

sequence matching.

ACKNOWLEDGMENT

This work was supported in part by Hiroshima City Univer-

sity Grant for Special Academic Research (General Studies).

REFERENCES

[1] P. Weiner, “Linear pattern matching algorithms,” in Proceedings of the

14th Annual Symposium on Switching and Automata Theory (swat 1973),
SWAT ’73, pp. 1–11, 1973.

[2] E. M. McCreight, “A space-economical suffix tree construction algo-
rithm,” Journal of the ACM, vol. 23, pp. 262–272, Apr. 1976.

[3] D. Gusfield, Algorithms on strings, trees, and sequences: computer
science and computational biology. New York, NY, USA: Cambridge
University Press, 1997.

[4] Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel, “Practical methods for
constructing suffix trees,” The VLDB Journal, vol. 14, no. 3, pp. 281–
299, 2005.

[5] B. Phoophakdee and M. J. Zaki, “Genome-scale disk-based suffix tree
indexing,” in Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, SIGMOD ’07, pp. 833–844, 2007.

[6] M. Barsky, U. Stege, A. Thomo, and C. Upton, “Suffix trees for very
large genomic sequences,” in Proceedings of the 18th ACM conference

on Information and knowledge management, CIKM ’09, pp. 1417–1420,
2009.

[7] M. R. M. Mark D. Hill, “Amdahl’s law in the multicore era,” vol. 41 of
IEEE Computer 2008, pp. 33–38, 2008.

[8] D. J. DeWitt and J. Gray, “Parallel database systems: the future of
database processing or a passing fad?,” ACM SIGMOD Record, vol. 19,
pp. 104–112, Dec. 1990.

[9] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR),
vol. 11, pp. 121–137, June 1979.

[10] B. Seeger and P.-A. Larson, “Multi-disk b-trees,” in Proceedings of the

1991 ACM SIGMOD international conference on Management of data,
SIGMOD ’91, pp. 436–445, 1991.

[11] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, SIGMOD ’84, pp. 47–57, 1984.
[12] I. Kamel and C. Faloutsos, “Parallel r-trees,” in Proceedings of the

1992 ACM SIGMOD international conference on Management of data,
SIGMOD ’92, pp. 195–204, 1992.

[13] G. Graefe, H. Kimura, and H. Kuno, “Foster b-trees,” ACM Trans.
Database Syst., vol. 37, pp. 17:1–17:29, Sept. 2012.

[14] R. Hariharan, “Optimal parallel suffix tree construction,” in Proceedings

of the twenty-sixth annual ACM symposium on Theory of computing,
STOC ’94, pp. 290–299, 1994.

[15] D. Tsirogiannis and N. Koudas, “Suffix tree construction algorithms on
modern hardware,” in Proceedings of the 13th International Conference

on Extending Database Technology, EDBT ’10, pp. 263–274, 2010.
[16] A. Ghoting and K. Makarychev, “I/o efficient algorithms for serial and

parallel suffix tree construction,” ACM Trans. Database Syst., vol. 35,
pp. 25:1–25:37, Oct. 2010.

[17] E. Mansour, A. Allam, S. Skiadopoulos, and P. Kalnis, “Era: efficient
serial and parallel suffix tree construction for very long strings,” Proc.

VLDB Endow., vol. 5, pp. 49–60, Sept. 2011.
[18] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi,

“Shore-mt: a scalable storage manager for the multicore era,” in Pro-

ceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, EDBT ’09, pp. 24–35,
2009.

[19] X. Ding, K. Wang, and X. Zhang, “Srm-buffer: an os buffer management
technique to prevent last level cache from thrashing in multicores,” in
Proceedings of the sixth conference on Computer systems, EuroSys ’11,
pp. 243–256, 2011.

[20] S. J. Bedathur and J. R. Haritsa, “Engineering a fast online persistent
suffix tree construction.,” in ICDE, pp. 720–731, 2004.

Yousuke Watanuki is a student at the Department of
Intelligent Systems, Graduate School of Information
Sciences, Hiroshima City University, Hiroshima,
Japan. His research interests include suffix tree and
parallel computing.

Keiichi Tamura received his B.Eng., M.Eng., and
Ph.D. degrees in Information Science from Kyushu
University, Fukuoka, Japan, in 1998, 2000, and
2005, respectively. He is presently Associate Pro-
fessor at the Department of Intelligent Systems,
Graduate School of Information Sciences, Hiroshima
City University, Hiroshima, Japan. He has been
in organizing committee of IEEE SMC Hiroshima
Chapter since 2012. His research interests include
parallel computing, data engineering, data mining,
and evolutionary computation. He is a member of

IEEE, Information Processing Society of Japan, Database Society of Japan,
The Japanese Society for Artificial Intelligence, Japan Society for Fuzzy
Theory and Intelligent Informatics.

Hajime Kitakami has been a Professor in the
Department of Intelligent Systems, Graduate School
of Information Sciences, Hiroshima City University
in Japan since 1994. He received the M.Eng. from
Tohoku University in 1976 and Ph.D. in engineering
from Kyushu University in 1992. His paper was
recorded as the 25th Anniversary Best Paper Award
of Information Processing Society of Japan (IPSJ)
in 1985. He received Paper Award from Japanese
Society for Engineering Education (JSEE) in 2003.
His research interests include database, data mining,

distributed parallel processing, and bioinformatics. He has been an editorial
board member for Transactions on Mathematical Modeling and its Applica-
tions (TOM), Journal of the Information Processing Society of Japan (IPSJ)
since 2006. Also, he has been an editorial board member for Journal of the
Database Society of Japan (DBSJ) since 2008.

Yoshifumi Takahashi Yoshifumi Takahashi re-
ceived a Master of Information Engineering degree
from Hiroshima City University, Japan in 2010. He
is now a doctoral student in the Graduate School of
Information Science, Hiroshima City University.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

57 © 2013 GSTF

