
A Novel Approach to Multiagent based Scheduling for
Multicore Architecture

 G.Muneeswari A.Sobitha Ahila Dr.K.L.Shunmuganathan

 Research Scholar Research Scholar Professor & Head, Department of CSE

 R.M.K Engineering College R.M.K Engineering College R.M.K Engineering College

 Anna University, Chennai Anna University, Chennai TamilNadu, India

 munravi76@gmail.com ssa.cse@rmkec.ac.in kls_nathan@yahoo.com

Abstract: In a Multicore architecture, each

package consists of large number of processors. This
increase in processor core brings new evolution in
parallel computing. Besides enormous performance
enhancement, this multicore package injects lot of
challenges and opportunities on the operating system
scheduling point of view. We know that multiagent
system is concerned with the development and
analysis of optimization problems. The main objective
of multiagent system is to invent some methodologies
that make the developer to build complex systems that
can be used to solve sophisticated problems. This is
difficult for an individual agent to solve. In this paper
we combine the AMAS theory of multiagent system
with the scheduler of operating system to develop a
new process scheduling algorithm for multicore
architecture. This multiagent based scheduling
algorithm promises in minimizing the average waiting
time of the processes in the centralized queue and also
reduces the task of the scheduler. We actually
modified and simulated the linux 2.6.11 kernel process
scheduler to incorporate the multiagent system
concept. The comparison is made for different number
of cores with multiple combinations of process and the
results are shown for average waiting time Vs number
of cores in the centralized queue.

Keywords: multicore, multiagent, centralized
queue, average waiting time, scheduling, processor
agent, middle agent, dispatcher.

1. Introduction
 Multicore architectures, which include several
processors on a single chip, are being widely touted as
a solution to serial execution problems currently
limiting single-core designs. In most proposed
multicore platforms, different cores share the common
memory. High performance on multicore processors
requires that schedulers be reinvented. Traditional
schedulers focus on keeping execution units busy by
assigning each core a thread to run. Schedulers ought

to focus, however, on high utilization of the execution
of cores, to reduce the idle of processors. Multi-core
processors do, however, present a new challenge that
will need to be met if they are to live up to
expectations. Since multiple cores are most efficiently
used (and cost effective) when each is executing one
process, organizations will likely want to run one job
per core. But many of today’s multi-core processors
share the front side bus as well as the last level of
cache. Because of this, it's entirely possible for one
memory-intensive job to saturate the shared memory
bus resulting in degraded performance for all the jobs
running on that processor. And as the number of cores
per processor and the number of threaded applications
increase, the performance of more and more
applications will be limited by the processor’s

memory bandwidth. Schedulers in today’s operating

systems have the primary goal of keeping all cores
busy executing some runnable process. One technique
that mitigates this limitation is to intelligently
schedule jobs onto these processors with the help of
software approach like multiagents.

 The Paper is organized as follows. Section 2
reviews related work. In Section 3 we introduce the
multiagent system interface with multicore
architecture. This describes Middle Agent system
implementation, process scheduler organization and
process dispatcher organization. In section 4 we
discuss the evaluation and results and section 5
presents future enhancements with multicores. Finally,
section 6 concludes the paper.

2. Background and Related Work
 The research on contention for shared resources [1]
significantly impedes the efficient operation of
multicore systems has provided new methods for
mitigating contention via scheduling
algorithms. Addressing shared resource contention in
multicore processors via scheduling [2] investigate
how and to what extent contention for shared resource

PDF processed with CutePDF evaluation edition www.CutePDF.com

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

184

mailto:munravi76@gmail.com
mailto:ssa.cse@rmkec.ac.in
mailto:kls_nathan@yahoo.com
user
DOI: 10.5176_2010-2283_1.2.58

can be mitigated via thread scheduling. The research
on the design and implementation of a cache-aware
multicore real-time scheduler [3] discusses the
memory limitations for real time systems. The paper
on AMPS [4] presents, an operating system scheduler
that efficiently supports both SMP-and NUMA-style
performance-asymmetric architectures. AMPS
contains three components: asymmetry-aware load
balancing, faster-core-first scheduling, and NUMA-
aware migration.
In Partitioned Fixed-Priority Preemptive Scheduling
[5], the problem of scheduling periodic real-time tasks
on multicore processors is considered. Specifically,
they focus on the partitioned (static binding) approach,
which statically allocates each task to one processing
core.

 The Cache-Fair Thread Scheduling [6] algorithm
reduces the effects of unequal cpu cache sharing that
occur on the many core processors and cause unfair
cpu sharing, priority inversion, and inadequate cpu
accounting. The multiprocessor scheduling to
minimize flow time with resource augmentation
algorithm [7] just allocates each incoming job to a
random machine algorithm which is constant
competitive for minimizing flow time with arbitrarily
small resource augmentation. In parallel task
scheduling [8] mechanism, it was addressed that the
opposite issue of whether tasks can be encouraged to
be co-scheduled. For example, they tried to co-
schedule a set of tasks that share a common working
were each 1/2 and perfect parallelism ensured.

 The effectiveness of multicore scheduling [9] is
analyzed using performance counters and they proved
the impact of scheduling decisions on dynamic task
performance. Performance behavior is analyzed
utilizing support workloads from SPECWeb 2005 on a
multicore hardware platform with an Apache web
server. The real-time scheduling on multicore
platforms [10] is a well-studied problem in the
literature. The scheduling algorithms developed for
these problems are classified as partitioned (static
binding) and global (dynamic binding) approaches,
with each category having its own merits and de-
merits. So far we have analyzed some of the multicore
scheduling approaches. Now we briefly describe the
self-organization of multiagents, which plays a vital
role in our multicore scheduling algorithm.

 Multi-Agent Systems (MAS) have attracted much
attention as means of developing applications where it
is beneficial to define function through many
autonomous elements. Mechanisms of selforganisation
are useful because agents can be organised into
configurations for useful application without imposing
external centralized controls. The paper [11] discusses
several different mechanisms for generating self-
organisation in multi-agent systems [12]. For several
years the SMAC (for Cooperative MAS) team has
studied self-organisation as a means to get rid of the
complexity and openness of computing applications

[13]. A theory has been proposed (called AMAS for
Adaptive Multi-Agent Systems) in which cooperation
is the engine thanks to which the system self-organizes
for adapting to changes coming from its environment.
Cooperation in this context is defined by three meta-
rules: (1) perceived signals are understood without
ambiguity, (2) received information is useful for the
agent’s reasoning, and (3) reasoning leads to useful

actions toward other agents. Interactions between
agents of the system depend only on the local view
they have and their ability to cooperate with each
other.

3. Multicore Architecture with Multiagent
 System
 Every processor in the multicore architecture (Fig.1)
has an agent called as Processor Agent (PA). The
central Middle Agent (MA) will actually interact with
the scheduler. It is common for all Processor Agents.

 Every PA maintains the following information in
PSIB (Processor Status Information Block). It is
similar to the PCB (Process Control Block) of the
traditional operating system. Processor Status may be
considered as busy or idle (If it is assigned with the
process then it will be busy otherwise idle) Process
name can be P1or P2 etc., if it is busy. 0 if it is idle.
Process Status could be ready or running or completed
and the burst time is the execution time of the process.

 Multicore Architecture - Processor and
agents

 Figure 1. Multicore architecture with multiagent
 system

As we are combining the concept of multiagent system
with multicore architecture, the processor
characteristics are mentioned as a function of
Performance measure, Environment, Actuators,
Sensors (PEAS environment), which is described in
table.1 given below. This describes the basic reflexive
model of the agent system.

 Table 1. Multicore in PEAS environment

Middle Agent

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

185

3.1 The Process Scheduler Organization

 Shared memory multicore system consists of a
ready queue where all the processes that are ready for
execution will be available. cpu scheduling is
remarkably similar to other types of scheduling that
have been studied for years. In this paper we take a
model of the timesharing system, the criteria focused
on providing an equitable share of the processor per
unit time to each user or process is to minimize the
average waiting time. The criteria for selecting the
scheduling strategy will depend on the goals of the
OS. These goals may emphasize priorities of the
processes, fairness, overall resource utilization,
maximized throughput and average waiting time.
Scheduling algorithms for modern operating systems
ultimately use internal properties.

Figure 2. Shared memory with a ready queue

In our approach (Fig.2), the scheduler selects any one
of the processes from the ready queue according to the
priority based RR scheduling algorithm.

3.2 The Process Dispatcher Organization

 After getting the Processor Agent name, process
name and burst time from the MA the dispatcher just
forwards the information to the Processor Agent. The
PA that receives the information from the dispatcher
will update its PSIB. The process will be allocated to
the cpu by the dispatcher by performing context
switch from itself to the selected process.

 In the version Linux scheduler, the dispatcher is a
kernal function, schedule(). This function gets called
from other system functions, as well as after every
system call and normal interrupt. Each time the
dispatcher is called, it performs periodic work,
inspects the set of tasks in the TASK_RUNNING
state, chooses one to execute according to the
scheduling policy, and then dispatches the task to run
on the CPU until an interrupt occurs. The policy is a
variant of RR scheduling. It uses the conventional
time slicing mechanisms to place the upper bound on
the amount of time a task can use the cpu continuously
if other tasks are waiting to use it. A dynamic priority
is computed on the basis of the value assigned to the
task by the nice() or setpriority() system calls, and by
the amount of time that a process has been waiting for
the cpu to become available. The counter field in the
task descriptor becomes the key component in
determining the dynamic priority of the task.

3.3 Middle Agent System Implementation

 The central common Middle Agent (Fig.3)
maintains two tables. Initially all the PA must send a
request to the MA to register with it (one time only the
registration is made). Middle Agent is the central heart
of the scheduling process. It communicates with the
scheduler for getting the process to be scheduled on
large number of processor. It also interacts with the
dispatcher whose function is to assign the process to
the different cores.

 Figure 3. Middle Agent system communication

3.3.1 Agent Processor Information Table (APIT)

 When the PA sends a register request to middle
agent (MA), the relevant information is stored in the
Agent Processor Information Table (Refer Table.2).
Initially all the entries for the processor state will be
idle. Once the scheduler selects the first set of
processes based on RR scheduling algorithm, it then
contacts with MA to give the process name and the
burst time and the state of the process will be changed
to busy by the MA in the following table. (So initially
the assignment will be FIFO order (i.e agent
registration will be in FIFO only). After updating the

Agent
Type

Performa
nce
Measure

Envir
onme
nt

Actuators Sensors

Multic
ore
Sched
uling

Minimize
the
average
waiting
time of
the
processes
and
reduces
the task
of the
scheduler

Multi
core
archit
ectur
e and
multi
proce
ssor
syste
ms

PA
registers
with MA,
MA
assigns
process
to the
appropria
te
processor
via
dispatche
r

Getting
process
or state
informa
tion
from
PSIB,
Getting
task
from
schedul
er

Middle Agent Sche
duler

Dispr

APIT ARQT

Multicore PA

Shared memory

P1

P2

P3

Schedu

ler

Ready queue

 Q
ueue

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

186

table MA sends the corresponding PA name and
process name to the Dispatcher. The dispatcher is
finally responsible for allocating the processes to the
respective processor via processor agents and the
corresponding table is also updated. The Agent
processor information table can be maintained as part
of the operating system process management part of
the scheduler. Linked list representation is a preferred
data structure used for the arrangement of processes
on the stipulated table.

 Table 2. APIT- Agent Processor Information Table

3.3.2 Agent Request Table (ARQT)

 Whenever the processor completes the first set of
tasks, the agents of the processor PA immediately
send a process request message to the MA. The MA
after receiving the request message from the PA stores
the information in ARQT-Agent Request Table, which
can be implemented as a queue (Refer Table.3).
Before storing the information MA has to check APIT
to see whether the requested agent has already
registered with the MA. Initially the process name will
be 0 because we received only the request message
from the PA. The activities will be repeated again.
When the scheduler is ready it sends the job to the MA
and the MA stores the process name and burst time in
the following table. It then sends the corresponding
PA and process name along with burst time to the
dispatcher.

 Table 3. ARQT- Agent Request Table

4. Evaluation and Results
 In this section, we present a performance analysis of
our scheduling algorithm using a gcc compiler and
linux kernal version 2.6.11. The results show that
there is a linear decrease in the average waiting time
as we increase the number of cores. Our scheduling
algorithm results in keeping the processor busy and
reduces the average waiting time of the processes in
the centralized queue. As an initial phase, our
algorithm partitions every process into small sub tasks.
Suppose a process, Pi,j is being decomposed into k
smaller sub tasks Pi,j,1 Pi,j,2 …… Pi,j ,k, where ijl is the
service time for Pijl Each Pijl is intended to be executed
as uninterrupted processing by the original thread Pi,j ,
even though a preemptive scheduler will divide each

ijl into time quanta when it schedules Pijl . Now the
total service time for Pi,j process can be written as

(Pi,j)= I,j,1+ I,j,2 + ……… i,j,k
In every core we calculate the waiting time of the
process as previous process execution time. The
execution time of the previous process is calculated as
follows:

PET = PBT + i + i + i + i
Where PET is the execution time of the process, PBT is
the burst time of the process, i is the scheduler
selection time, i is the Processor Agent request time,

i is the Middle Agent response time, i is the
dispatcher updation time. The average waiting time of
the process is calculated as the sum of all the process
waiting time divided by the number of processes.

PAWT= (i=1..n) P(i=1..n) / N
Here when we say the process P it indicates the set of
subtasks of the given process. For our simulation we
have taken 1000 processes as a sample and tested
against 25, 50, 75, 100, 125, 150, 175, 200, 225, 250
cores. In Fig.4, the average waiting time of 1000
processes is obtained for the selected number of cores.
We discovered that the average waiting time decreases
slowly with the increase of the number of cores.

Figure 4. Number of cores vs average waiting time for

1000 processes
5. Future Enhancements
 Although the results from the linux kernal version
2.6.11analysis in the previous section are encouraging,
there are many open questions. Even though the

improvement (average waiting time reduction)
possible with number of cores, for some workloads
there is a limitation by the following properties of the
hardware: the high off-chip memory bandwidth, the
high cost to migrate a process, the small aggregate size
of on-chip memory, and the limited ability of the
software (agents) to control hardware caches. We
expect future multicores to adjust some of these
properties in favor of our multiagents based
scheduling. Future multicores will likely have a larger

Agent
Name

Processor
Id

Processor
State

Process
name

Burst
Time

PA1 PR1 Busy P1 10ps
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
PAn PRn Busy Pn 200ps

Agent
Name

Processor
Id

Process
Name

Burst
Time

PA1 PR1 P1 10ps
.
.
.

.

.

.

.

.

.

.

.

.
PAn PRn Pn 200ps

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

187

ratio of compute cycles to off-chip memory bandwidth
and can produce better results with our algorithm.

6. Conclusion
 This paper has argued that multicore processors
pose unique scheduling problems that require a
multiagent based software approach that utilizes the
large number processors very effectively. We also
proved that lot of drastic enhancements in the
traditional scheduler that optimizes for cpu cycle
utilization. We discovered that the average waiting
time decreases slowly with the increase of the number
of cores. As a conclusion our new novel approach
eliminates the complexity of the hardware and
improved the cpu utilization to the maximum level.

References
[1] Managing contention for shared resources on
multicore processors, Communications of the ACM
Volume 53, Pages: 49-57 Issue 2 February 2010
[2] Addressing shared resource contention in
multicore processors via scheduling, Sergey
Zhuravley, Blagoduroy, Alexandra Fedorova,
Architectural support for Programming Languages and
Operating Systems, Proceedings of the fifteenth
edition of ASPLOS on Architectural support for
programming languages and operating systems Pages:
129-142, 2010
[3] On the Design and Implementation of a Cache-
Aware Multicore Real-Time Scheduler, John
M.Calandrino, James H. Anderson, 21st Euromicro
Conference on Real-Time Systems July 01-July 03,
2009
[4] Efficient operating system scheduling for
performance asymmetric multi-core architectures,
Tong LiDan, BaumbergerDAvid A, KoufatyScott
Hahn, Conference on High Performance Networking
and Computing
Proceedings of the ACM/IEEE conference on
Supercomputing 2007
[5] Partitioned Fixed-Priority Preemptive Scheduling
for Multi-Core Processors Karthik Lakshmanan,
Ragunathan (Raj) Rajkumar, and John P. Lehoczky
Proceedings of the 21st Euromicro Conference on
Real-Time Systems
Pages: 239-248, 2009
[6] Cache-Fair Thread Scheduling for Multicore
Processors. Alexandra Fedorova, Margo Seltzer and
Michael D. Smith TR-17-06 2006
 [7] Multiprocessor Scheduling to Minimize Flow
Time with Resource Augmentation. Chandra Chekuri,
STOC’04, June 13–15, 2004
[8] Parallel Task Scheduling on Multicore Platforms.
James H. Anderson and John M. Calandrino ACM
SIGBED, 2006
[9] Analyzing the Effectiveness of Multicore
Scheduling Using Performance Counters. Stephen
Ziemba, Gautam Upadhyaya, and Vijay S. Pai2004
[10] Real-Time Scheduling on Multicore Platforms
James H. Anderson, John M. Calandrino, and
UmaMaheswari C. Devi Proceedings of the 12th IEEE

Real-Time and Embedded Technology and
Applications Symposium, Pages: 179 - 190, 2006
 [11] Applications of Self-Organising Multi-Agent
Systems: An Initial Framework for Comparison
Carole Bernon IRIT, INRIA2006
[12] Self-Organisation and Emergence in MAS: An
Overview, Di Marzo Serugendo G., Gleizes M-P. and
Karageorgos A INFORMATICA 30 2006 40-54
 [13] Gleizes M.P, Camp, V. and Glize P. A Theory of
Emergent Computation Based on Cooperative Self-
Organisation for Adaptive Artificial Systems, 4th
European Congress of Systems Science, Valencia.
623-630,1999.

AUTHORS PROFILE

G.Muneeswari received her B.E and
M.E degrees in Computer Science and Engineering
from Madras University and Anna University in 1998
and 2004, respectively, and pursuing Ph.D from Anna
University, Chennai ,India. Currently, she is an
Assistant Professor in the Department of Computer
Science and Engineering at R.M.K Engineering
College, Chennai, India. Her Research interests
include Multicore Architecture, Parallel and
distributed computing and Artificial Intelligence.

 Dr.K.L.Shanmuganathan B.E,
M.E., M.S., Ph.D working as Professor & Head,
Department of Computer Science & Engineering,
RMK Engineering College, Chennai, TamilNadu,
India. He has more than 15 publications in National
and International Journals. He has more than 18 years
of teaching experience and his areas of specializations
are Artificial Intelligence, Networks, Multiagent
Systems, DBMS.

 A.Sobitha Ahila received her B.E
degree in Electronics and Communication Engineering
and M.E degree in Computer Science and Engineering
from Madurai Kamaraj University, Bharathidasan

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

188

university in 1997 and 2001, respectively, and
pursuing Ph.D from Anna University, Chennai ,India.
Currently, she is an Assistant Professor in the
Department of Computer Science and Engineering at
R.M.K Engineering College, Chennai, India. Her
Research interests include Network Security,
Multicore Architecture and Artificial Intelligence.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

189

