
44GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTFDOI: 10.5176_2010-2283_1.1.08

Multi-view Rendering using GPU for 3-D
Displays

François de Sorbier, Vincent Nozick, and Hideo Saito

Abstract—Creating computer graphics based content for
stereoscopic and auto-stereoscopic displays require rendering
a scene several times from slightly different viewpoints. In that
case, maintaining real-time rendering can be a difficult goal if the
geometry reaches thousands of triangles. However, similarities
exist among the vertices belonging to the different views like
the texture, some transformations or parts of the lightning. In
this paper, we present a single pass algorithm using the GPU
that speeds-up the rendering of stereoscopic and multi-view
images. The geometry is duplicated and transformed for the
new viewpoints using a shader program, which avoid redundant
operations on vertices.

Index Terms—Terms—multi-view, 3D displays, stereos-
copy, real-time, GPU.

1. INTRODUCTION

Stereoscopy is a technique that enables to watch three
dimensional images on a display thanks, most of the time,
to specific glasses. It has many applications in various fields
such as data visualization, virtual reality or entertainment
because it tends to reproduce our visual perception and makes
information easier to understand. In computer graphics,
stereoscopic rendering consists of generating two images of
a virtual environment from two slightly different viewpoints.
In other words, it requires rendering of the geometry of the
scene twice, which can double the computational time. In
such a case, it can be difficult to maintain real-time rendering
especially for applications like video-games that are complex
in terms of geometry and visual effects.

Auto-stereoscopy is a technology recently applied to
LCD displays [1] that introduces the ability for one or several
users to watch stereoscopic images without wearing any
glasses. Depending on their characteristics, auto-stereoscopic
displays require from 5 to 64 images [2] to display a single
3-D frame. A filter, made of small lenses or precision slits, is
overlaid on the surface of the screen and ensures the emission
of each image in a specific direction. So, if the user is well
located in front of the display, each eye can see a single
specific image.

However, the important number of required input images
makes rendering difficult to maintain in real-time compared to

a single view rendering. We can state two facts in terms of
time for standard multi-view rendering. Firstly, data transfer
from main memory to the graphic card is costly, especially
when no specific data structure, like Vertex Buffer Objects, is
used. Secondly, some operations on vertices remain the same
from one view to another, which means there are redundant
computations. Global transformations, parts of illumination
calculation and texturing are identical, for example.

GPU programming is now very popular because it can
speed-up many algorithms thanks to an efficient parallelized
architecture. Recently, shaders have been updated with a new
feature named geometry shader (GS), that takes place between
the vertex shader and the rasterization stages [3]. Geometry
shader introduces the possibility to manipulate vertices of
input primitives like points, lines or triangles before emitting
the result to the rasterization and clipping stages. It becomes
also possible to generate new primitives during this stage.

The goal of our approach is to exploit geometry shader
to speedup the rendering process of stereoscopic or multi-
view images. The ability of geometry shaders to duplicate
input primitives allows rendering in a single pass. Multiple
sending of the geometry to the graphic card is reduced to a
single transfer. Moreover extra computation due to redundant
operations is avoided since our algorithm takes place after the
vertex shader stage.

This paper is structured as follows. We start giving an
overview of related and previous works, and then we present a
description of our approach. In the next section we give details
about the implementation of our algorithm. Finally, we present
and discuss the results of our approach.

2. PREVIOUS WORKS

Several methods have been proposed to overcome the
multi-pass rendering limitation for multi-view rendering of 3-
D information. A point-based rendering solution was proposed
by Hubner et al. [4] using GPU to compute multi-view
splatting, parameterized splat intersections and per-pixel ray
disk intersections in a single pass. This method reaches 10 fps
for 137k points in an 8-view configuration. To increase multi-
view rendering performance, Hubner and Pajarola [5] present
a direct volume rendering method based on 3D textures with
GPU computations to generate multiple views in a single pass.
These two solutions significantly decrease the computation
time but are not suited for polygon based graphics.

An alternative solution [6] has been proposed by Morvan
et al. a single 2-D image plus a depth map that are interrelated
to display multiple views. Although the algorithm reduces the

 F. de Sorbier is with the Graduate School of Science and Technology
at Keio University, Japan. Email: fdesorbi@hvrl.ics.keio.ac.jp.
 V. Nozick, is with Université Paris-Est LABINFO-IGM UMR CNRS
8049, France. Email: vnozick@univ-mlv.fr
 H. Saito is with the Graduate School of Science and Technology at
Keio University, Japan. Email: fdesorbi@hvrl.ics.keio.ac.jp.

45GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

bandwidth of data emitted to the system, it does an assessment
over available data to fill the area’s missing information of the
new views and then reduces the content’s truthfulness.

In 2008, de Sorbier et al. [7], [8] introduced a new single
pass algorithm to render stereoscopic and multi-view images
using the GPU. This approach is based on a geometry shader
implementation and uses multiple rendering target extension
(MRT) associated with frame-buffer object (FBO) to save
results in distinct textures. Results show that, in some cases,
the frame-rate can be twice faster than a multi-pass technique.
However, MRT is limited to a single depth buffer shared by all
the rendering targets. This restriction is minimized by sorting
the triangles in a back to front order that increases computation
time. Moreover, hardware constraints limit the number of
output textures to eight while some auto-stereoscopic devices
require nine viewpoints or more. Finally, it is difficult to
integrate this algorithm in an existing application because
existing shaders have to be rewritten.

3. MULTI -VIEW RENDERING ALGORITHM

In this section, we present a GPU-based multi-view
rendering algorithm that takes advantage of similarities of
vertices among each view and of the geometry shader to
speed-up the rendering process.

A. Overview

 By studying the concept of multi-view rendering
[9], we can state that some characteristics remain
the same from one view to another. Position of
vertices is unchanged in the referential of the scene
meaning that the same transformation is shared over
the viewpoints. Likewise, texture coordinates, light
vector and normal are identical for a given vertex.
So, each characteristic independent of the viewpoint
might be computed only once in order to increase the
performances. Then, each vertex should be duplicated
and shifted according to a given viewpoint.

 In that sense, shaders [10] provide useful
functionalities to merge some operations and
duplicate only relevant data. A vertex shader is
designed to apply several independent processing
on each vertex, while a geometry shader is dedicated
to handle primitives. In particular, this GPU stage
allows to create or remove vertices, to emit new
primitives and to apply transformations. This stage
takes place just after the vertex shader.

B. Our Approach

1) Single texture based approach

 Previous works [7], [8] on GPU-based multi-
view rendering demonstrate that it is possible
to considerably speed-up this kind of process.
However, this algorithm is difficult to implement
and require many modifications in the original
code. The result of this approach is rendered into
several textures (limited to eight thanks to FBO
and MRT extensions. One consequence is that an

algorithm like the painter algorithm have to used
instead of the standard depth test of the OpenGL
pipeline. It can generate artifacts or increase
computational time.

 Our approach has been designed to overcome all
these issues. The solution is to render all the views
in one texture instead of several. In that case,
the number of views depends on the maximal
resolution of the texture and the resolution of the
generated views, but remains higher compared
to the previous approaches. Moreover, the depth
test can now be used without any restriction.
Finally, only few modifications are required and
are mainly located in the geometry shader code.

 In this approach, the different views have to be
organized over the surface of our single texture.
Each single space occupied by a view is named
sub-area and defined as SA(i, j) where i and j are
the coordinates along the horizontal and vertical
axis as depicted in Fig. 1. We defined the 2-D
vector NV as the number of sub-areas along each
axis. Of course, the total number of rendered
views must be lower than the number of sub-
areas. For example, five views with a resolution
of (w, h) will spread over five sub-areas SA(i, j)
where 0 ≤ i ≤ 2 and ≤ j ≤ 1. So the number of sub-
areas is then NV = (3,2), the final resolution of the
texture is (3 2 w, 2 2 h) and one sub-area will
not be filled.

46GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

2) Geometry Transformation

 In OpenGL, the modelview matrix M is used to
transform the geometry into the coordinate system
of the camera. It refers to the extrinsic parameters
of the camera, while the OpenGL projection
matrix P refers to the intrinsic parameters. The
rendering is then achieved by multiplying each
vertex, first with the modelview matrix and after
with the projection matrix.

 The goal of our approach is to duplicate and
shift the input geometry using the GPU because
similarities exist among the vertices of the
different views. One similarity is the modelview
matrix, so we need to apply it only one time on
each vertex. The view shifting can be performed
after using the modelview matrix on each vertex
and will consist in a simple translation on x axis
depending on the value of the eye separation
distance ∆. This translation kth for the generated
view will then be defined as a vector Tv (k) = (k
2 ∆,0,0).

 Since our rendering context is a single texture
then the input triangles will be transformed and
projected on the overall surface of the texture.
So we have to apply extra operations on the
triangles to transform them to fit the bottom-left
sub-area of the texture. All the input views share
a common image plan, so the transformation of
the triangles is a 2-D operation composed of a
scaling S and a translation T that are applied after
the normalized OpenGL projection P of vertices.
S and T are then defined as:

 (1)

 By applying the transformations of Eq. 1, the
triangles will be located in the sub-area SA(0,
0) in bottom-left. One more translation TSA is
then required to move the duplicated and shifted
triangles into their respective sub-areas.

 (2)

 The full process is depicted in Fig. 1. Using Eq. 1
and 2, the process that transforms an input vertex
Vin into the sub-area SA(i, j) for the view k can be
summed up as:

 (3)

3) Clipping

 The clipping stage consists into eliminating
triangles or part of triangles that are not visible
in the rendering area. This process takes place
after the rasterization, thus after the geometry
shader. So, no data will be missing when the
triangles will be shifted in the geometry shader.
However, it induces that some triangles will
overlap several sub-areas or will be rendered into
an incorrect sub-area instead of being eliminated.
This problem is presented in Fig. 2. It means that
a specific clipping has to be applied just after the
geometry shader stage and will depend on each
sub-area borders.

 Our clipping is based on the OpenGL user’s
defined clipping using a distance value. In the
geometry shader, we compute the distance
between each vertex and the four borders of
the sub-area it should belong. If the distance
is negative for one vertex, then the triangle
associated with that vertex will be automatically
clipped by OpenGL.

Fig. 1. Some triangles can overlap two different sub-ar ea. A specific
clipping is then required to eliminate undesirable pixels.

4. IMPLEMETATION

This section describes the implementation of our
algorithm using OpenGL 2.1 and GLSL 1.2. The result of our
method is saved in a texture using the Frame Buffer Object
extension.

A. The Vertex Shader

 The goal of the vertex shader is to centralize the
common operations from one view to another
one. Eq. 3 shows that the transformation matrix M
(MODELVIEW matrix) is similar for each vertex. So
each vertex can be multiplied with that matrix during
the vertex shader stage. In the same way, normals,
texture coordinates, color, can be defined only one
time for each vertex.

47GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Listing 1. One Possible code for the geometry shader

B. The Geometry Shader

 In the geometry shader, we apply the transformations
presented in the previous section. The code
corresponding to this step is introduced in listing
1. For each sub-area, vertices of the input triangles
are duplicated and translated according to the
corresponding viewpoint. The result is multiplied
with the OpenGL projection matrix, translated, and
scaled to fit the sub-areas. All this operations must
in homogeneous coordinates to correspond with
OpenGL matrix.

 Since transformations are applied in camera’s
reference system, positioning the viewpoint
corresponds to a simple translation on x axis based
on the eye separation distance eyesep. The value Tv

is used to define this translation. To avoid a sub-area
to overlap another one, we apply the clipping at the
geometry shader stage. It consists in defining the
distance from the top, left, right and bottom borders
of the corresponding sub-area. OpenGL clipping
will be applied if one of the distances is negative. Of
course, this process requires to activate user clipping
planes in the OpenGL program.

C. The Pixel Shader

 The main advantage of our approach is that the pixel
shader does not require any modification. Since our
clipping is a standard operation of the pipeline, it
only needs to be set up in the geometry shader.

 So we can apply any kind of per-pixel operation like
illumination per pixel like in Figure 3. Moreover,
multi-pass rendering algorithms are still available
like in Figure 4 which depicted a two-pass toon
shading with border. And finally, Figure 5 presents a
simple texturing of surfaces.

5. RESULTS

We experimented our algorithm on a bi-Xeon 2,5Ghz
running Linux. The graphic card is a nVIDIA GeForce GTX
285 with 1Go memory. The algorithm was tested using
different kind of models with various numbers of triangles
and graphical effects. The resolution of each view is 1024 2
768. No special data structure like Vertex Buffer Objects was
used.

Figure 6 presents the performances obtained using our
approach compared to the standard multi-pass rendering. We
evaluated the results over different number of triangles and
views. If the scene is made of one thousand triangles then
we notice that performances of our algorithm are similar or,
in case of two views, slightly worst compare to the normal
one.

Fig. 2. Himeji Castle, 6 views. 35,200 triangles. Lighting per pixel.

Fig. 3. Kyoto Golden Pavilion, 9 views. 23,400 triangles. Toon shading
effect with borders emphasis.

48GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Fig. 4. Rome from City Engine (procedural.com), 12 views. 86,300
triangles. Texturing with shaders.

In all other analyzed conditions, performances of our
multi-view rendering are around twice better than the standard
multi-view rendering. Rendering with four view-points shows
that our results can be three time better for more than 5000
triangles. Especially in this case, the differences between two
and four views are small.

Performances are closely dependent of the number of
input primitives. For low number of triangles, our approach
is less effective than the standard one because the number of
OpenGL drawing calls does not exceed the transfer capabilities
from the main memory to the graphic card.

Fig. 5. Performances of our approach compared to the standard one. Tests
are applied with various numbers of views and triangles.

Results are similar for two and four views. So, in
Figure 7, we analyze our rendering algorithm with one to
17 view-points and 10000 triangles. In the first fourth cases,
performances are quite similar then after, an important drop in
frame-rate occurs until 13 view-points. Finally, performances
seem to become stable again. We think that under a given
amount of data, a geometry shader can parallelize operations
but it will become a bottleneck in the other case.

 The frame-rate for one view is less than the one for two
views. This is because our algorithm apply some operations
that are useful for multi-view rendering but make no sense for
a single view.

Fig. 6. Frame-rate of our approach on a scene with 10,000 triangles in
function of the number of views.

6. CONCLUSION

We have presented an algorithm to generate stereoscopic
and multi-view images using the GPU in a single pass. We take
advantage of the geometry shader to speed-up the rendering
process by duplicating the geometry on the graphic card and
avoiding redundant computations. Our algorithm overcomes
the limitations introduced in previous works, such as shared
depth buffer and restrictions on the number of output-views.
Moreover, the implementation of this approach is now
simplified.

We generate all the views on a single texture
which requires only one depth buffer. We explained the
transformations applied on the input triangles to duplicate
and spread them over the single texture. We also introduced a
solution based user’s defined clipping plane to easily resolve
the clipping problems when a duplicated triangle overlaps two
views.

The results showed that performances of our approach
vary according to the number of triangles and views. The
algorithm is efficient when it processes more than 1000
triangles otherwise, benefits of the geometry shaders are
under-exploited. We also noticed that the frame-rate is quite
similar to render two, three or four views but decreases while
rendering more views because geometry shader becomes a

49GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

bottleneck. But our approach always remains better than the
standard multi-pass rendering. Results are two times higher or
even three times for example in case of four views rendering.

In future, we can expect better results using our approach
since the reason of the main limitation is the hardware
bottleneck at the geometry shader stage. Future graphic cards
should be able to be fully compliant with our multiple-view
rendering algorithm.

ACKNOWLEDGMENT

Part of the work presented in this paper was supported by
the FY2009 Postdoctoral Fellowship for Foreign Researchers
from the Japan Society for Promotion of Science (JSPS) and
by the National Institute of Information and Communications
Technology (NICT).

REFERENCES

[1] N. A. Dodgson, “Autostereoscopic 3d displays,” Computer, vol. 38,
no. 8, pp. 31–36, 2005.

[2] Y. Takaki, “High-density directional display for generating natural
three dimensional images,” in Proceedings of the IEEE, vol. 94, no. 3,
2006, pp. 654–663.

[3] B. Lichtenbel and P. Brown, “Ext gpu shader4 extensions
specifications,” NVIDIA, 2007.

[4] T. Hubner, Y. Zhang, and R. Pajarola, “Multi-view point splatting,” in
GRAPHITE, 2006, pp. 285–294.

[5] T. Hubner and R. Pajarola, “Single-pass multi-view volume rendering,”
in IADIS, 2007.

[6] Y. Morvan, D. Farin, and P. H. N. de With, “Joint depth/texture bit-
allocation for multi-view video compression,” in Picture Coding
Symposium (PCS), 2007.

[7] F. de Sorbier, V. Nozick, and V. Biri, “Accelerated stereoscopic
rendering using gpu,” in 16th International Conference in Central
Europe on Computer Graphics, Visualization and Computer
Vision’2008 (WSCG’08), ser. ISBN 978-80-86943-16-9, Feb. 2008.
[Online]. Available: http://wscg.zcu.cz/wscg2008/wscg2008.htm

[8] F. de Sorbier, V. Nozick, and V. Biri, “Gpu rendering for autostereoscopic
displays,” in 4th International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT’08), Jun. 2008, electronic
version (7 pp.).

[9] N. Dodgson, “Autostereoscopic 3D displays,” Computer, vol. 38, no.
8, pp. 31–36, 2005.

[10] R. J. Rost, OpenGL(R) Shading Language (3rd Edition). Addison-
Wesley Professional, July 2009.

François de Sorbier received his Licence, Maitrise
and Ph.D. degrees in computer sciences from
Université Paris-Est Marne-la-Vallée, France, in
2003, 2004 and 2008 respectively. From 2008 to
2009, he was Temporary assistant in teaching and
researcher at Université Paris-Est Marne-la-Valle´e.
Since 2009, he is invited researcher in Hideo Saito
Laboratory in Keio University, Japan, as a Japan
Society for Promotion of Science fellow. His
research topics mainly focus on computer graphics,

real-time rendering, virtual reality, computer vision and augmented reality.

Vincent Nozick received his Licence, Maitrise
and PhD. Degrees in computer sciences from
Université Marne-la-Vallée, Champs-sur-Marne,
France, in 2000, 2002 and 2006 respectively. He
was a visiting researcher in Hideo Saito Laboratory,
Keio University, Yokohama, Japan from 2006 to
2007, as a Lavoisier fellow from the French foreign
ministry. He serves as an Assistant Professor at
Hideo Saito Laboratory from 2007 to 2008. Since
2008, he is Assistant Professor at Gaspard Monge

Institute (LIGM), Université Paris-Est Marne-la-Vallée, France. He has been
engaged in the research area of computer graphics, computer vision and more
particularly to video-based rendering and stereoscopic rendering.

Hideo Saito received B.E., M.E., and Ph.D. Degrees
in Electrical Engineering from Keio University,
Japan, in 1987, 1989, and 1992, respectively. He
has been on the faculty of Department of Electrical
Engineering, Keio University, since 1992. In
1997 to 1999, he stayed in the Robotics Institute,
Carnegie Mellon University as a visiting researcher.
Since 2006, he has been a Professor of Department
of Information and Computer Science, Keio
University. He is currently the leader of the research

project Technology to Display 3D Contents into Free Space, supported by
CREST, JST, Japan. He recently served as the general chairs of international
conferences, ICAT2008 (International Conference on Artificial Reality and
Telexistence, December 2008), MVA2009 (IAPR International Conference on
Machine Vision Applications, May 2009), and AH2010 (ACM International
Conference on Augmented Human, April 2010). He has also been serving as
a Program Co-Chair of International Symposium on Mixed and Augmented
Reality (ISMAR2008 and ISMAR2009). He is a senior member of IEEE,
and IEICE.

