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Abstract—Typically, in the current enterprise data centers 

dedicated fabrics or networks are implemented to meet 

their LAN, Inter-Processor communication and storage 

traffic requirements. The storage traffic requirements of a 

group of servers are met through multiple storage area 

networks based on fibre channel, which has become the 

standard connection type.   Typically, this fibre channel 

storage area networks are small (maximum of 32 

switches/directors in a single fabric) and do not experience 

any scaling, stability and other performance issues.       

The advent of I/O consolidation in enterprise data 

centers for multiple traffic types to converge on to a single 

fabric or network (typically Ethernet platform) to reduce 

hardware, energy and management costs has also the 

potential to allow implementation of large storage area 

networks based on the fibre channel standards. Large 

storage area networks are being planned with more than 

two hundred switches/directors in a single fabric or 

network in addition to servers and storages connected to 

the fabric on Ethernet platforms. Even though these large 

storage area networks are envisioned to operate on 

Ethernet platform, they still have to satisfy the stringent 

operating and performance requirement set forth by the 

fibre channel standards.  The two important issues of 

concern with large storage area networks are scaling and 

stability. The scaling and stability issues are dependent on 

the interactions and performance capabilities of various 

fabric servers located on each switch/director in the fabric 

in order to provide fabric services. In order to determine 

the extent of scaling and stability issues of a large fabric 

first the detailed models of the switch/director addressing 

the operations of the individual fabric servers are 

required. Next, the interactions of the switches/directors 

using the detailed models are to be simulated to study the 

scaling and stability issues.    

In this paper, the detailed modeling of the fibre  

channel switch and the fabric servers using the OMNeT++ 

discrete event simulator is presented first. Detailed models 

are developed addressing the behavior of the switch at the 

level-2 of the fibre channel protocol since this layer 

addresses the requirements and operations of various 

mandatory fabric services like fabric build, directory, 

login, nameserver, management, etc.  Next, using the 

OMNET++ discrete event simulator large fabrics are 

simulated. The results from the simulation are compared 

against the test bed traffic and the accuracy is 

demonstrated. Also, results and analysis of multiple 

simulations with increasing fabric size are presented.  

I. INTRODUCTION 

 

Current enterprise data center architecture use 

dedicated networks or fabrics to meet the inter-process 

communication (IPC), LAN and storage traffic needs. 

The LAN traffic needs are commonly met with Ethernet 

where as the IPC traffic that requires low latency and 

high bandwidth are met with high performance 

interconnects such as InfiniBand. The storage traffic 

need of zero losses of packets is satisfied by storage area 

network (SAN) based on fibre channel (FC) 

interconnects. However, the use of dedicated fabric for 

each class of traffic in a single data center requires 

separate components like adapters, cables, switches, 

management software, etc., for each type of fabric. This 

architecture of dedicated fabrics increases the hardware, 

energy and management costs and limits the size of the 

dedicated fabrics. In current data centers, the size 

limitation is overcome by deploying multiple dedicated 

fabrics to serve groups of servers, storages, etc.  

The development of PCI-Express and 10 gigabit 

Ethernet has recently led to emphasis on I/O 

consolidation by converging multiple traffic classes on 

to a single fabric. The current industry approach of 

converging to a single fabric is through Ethernet based 

convergence. The FC based storage data frames are 

encapsulated in Ethernet packets known as FC over 

Ethernet (FCoE) and retain all the management features 

and characteristics of FC based storage area network. In 

theory this should allow large customers having 

massive investments in FC based SAN infrastructure 

and management to seamlessly transit to this new 

technology. The convergence to a single fabric has the 

potential to reduce hardware, energy and management 

costs and allow deployment of large fabrics at the 

enterprise data centers.  

Typically, in the current enterprise data centers a 

number of small to medium sized FC based SANs are 

deployed to connect groups of servers to storages. A 

typical SAN is illustrated in Fig. 1.   

Fig. 1 depicts the most commonly used SAN 

topology, namely the switched fabric SAN. In this 

topology, the servers are connected to the storage 
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through a fabric comprised of switches, directors, 

gateways and cables.  In Fig. 1, it can be seen that the 

client workstations access the server through the 

traditional local area network, whereas the servers 

access the storage through the SAN.  The servers can 

access the storage through alternative paths, and the 

clients can access the data on the storage through 

multiple servers [10].  
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Fig. 1.  A Typical Storage Area Network. 

 

The size of a SAN is defined by the number of 

switches/directors in the fabric. In small or medium 

sized fabrics the numbers of switch range from a few to 

a maximum of 32. The scaling, stability and 

performance of a SAN are dependent on the interactions 

and performance capabilities of various fabric servers 

providing mandatory fabric services located on each 

switch in the fabric. Majority of the fabric services plays 

an important role in meeting the stringent timing 

requirements during the building and later maintaining 

the stability of the fabric [8][11].  

With the focus shifting towards convergence in 

enterprise data centers this small or medium SANs are 

being combined to fewer or in some cases single large 

SANs with the number of switches in the fabric reaching 

a maximum of 256. This large size of the fabric makes 

the SAN prone to scalability, stability and performance 

issues. The amount of traffic generated during the 

building and management of the fabric can pose a 

serious impediment to the stability of the network. In the 

event of network disruption, the network can experience 

a significant delay in reaching a steady state (from a 

transient rebuild operation) leading to non-availability of 

data. Obviously, the growth of the fabric cannot be 

allowed to have a significant detrimental impact on the 

availability of the data in the SAN.  Therefore, it is 

necessary to ascertain first whether a large fabric is 

stable and scalable.  In case of small or medium sized 

fabrics it is possible to determine the stability and 

scalability issues by performing tests on an actual fabric 

or by using the hardware simulator. However, with large 

fabrics it would be far too expensive and impractical to 

implement a large fabric simply for testing purposes.  

In this paper, we propose a discrete event simulator 

for the FC based switched fabric SAN using OMNeT++, 

an open source tool. This paper is continuation of the 

preliminary work in paper [1] previously presented at 

the local computer network conference in 2007. 

The initial focus of the simulator is to develop 

models to simulate the FC-2 level of the FC protocol 

(FCP) dealing with fabric building and manageability 

under the large switched fabric conditions. Using the 

simulator, the performance of switched fabric of various 

sizes and topology will be analyzed to determine the 

switched fabric scaling and stability issues. 

The organization of the rest of the paper is as 

follows: Section II provides a discussion of related work 

on discrete event simulation of SANs. Section III 

provides a brief summary of OMNeT++. Section IV 

provides a discussion of FC switched fabrics, single and 

distributed server models. In section V the modeling of 

the distributed fabric controller server is discussed in 

detail. Section VI presents the results and analysis. 

Finally, Section VII concludes by providing some 

insights to lessons learned during the model 

development using OMNeT++ and future direction. 

 
II. RELATED WORK 

 

Several studies have examined discrete event 

simulation of SANs. Reference [14] discusses a discrete 

event simulator for simulating a SAN developed using 

the CSIM18 simulation engine. The CSIM18 engine 

provides a library of routines for use by C programmers 

to implement discrete event simulation models of 

complex systems. The simulator [14] is capable of 

simulating a single FC switch and simulates I/O traffic 

between servers and storages. Preliminary network 

latency performance results with real world I/O traffic 

have been presented [14]. Reference [15] extends the 

capability of [14] further, to simulate multiple FC 

switches in a multi-stage topology. The simulator 

simulates class-3 service I/O traffic, which is 

connectionless thereby not strictly implementing the FC 

standards. Reference [2] discusses a discrete event 

simulator “SimLab” based on C++ with message 

passing interface libraries. SimLab is capable of 

simulating real-time delivery of data and verification of 

distributed algorithms in a SAN environment. Wang et 

al. presented SANSim [21] an event driven simulator 

exclusively for FC arbitrated loop (FC-AL) based SAN. 

The SANSim can simulate I/O traffic and also can 

simulate a rudimentary FC switch. Molero et al. using 

the CSIM18 based simulator [15][17] presented the 

effect on I/O traffic due to different switch architectures 

and link failures. Rueda et al. presented [18] a discrete 
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event simulator based on OPNET to model the 

synchronous write operations during I/O traffic. 

In all the above previous work, the I/O traffic is 

simulated with the assumption that the network has 

reached a steady state and there is no traffic due to 

network building and management. Many of the above 

simulators are limited to simulate a fabric with single or 

few FC switches. 

 
III. SIMULATION FRAMEWORK 

 

After comparing discrete event simulators like 

OPNET, ns-2, and OMNeT++ with respect to ease of 

use, flexibility, modular architecture, and open source 

code base, OMNeT++ was chosen. OMNeT++ is a C++ 

based object-oriented discrete event simulation package 

developed at the Technical University of Budapest [20]. 

The focus area of OMNeT++ is the simulation of 

computer networks and other distributed systems. It 

allows design of modular simulation models, which can 

be combined to develop complex modules. The modules 

can be composed of any granular hierarchy and simple 

modules (lowest hierarchy level) can be combined to 

form compound modules of varying levels of hierarchy. 

The modules communicate by passing messages through 

connections between modules or directly to the 

destination module. The model is constructed by 

defining its structure (modules and their 

interconnections) by using the network description 

(NED) language of OMNeT++. Individual model 

components are compiled and linked with the simulation 

library, along with one of the user interface libraries to 

form an executable program. References [12][13] 

discuss in detail the features of OMNeT++ and the 

simulation process.  

 
IV. FC SWITCHED FABRIC 

 

FC switched fabric consists of FC switches and 

nodes, which can be either servers with FC host bus 

adaptors (HBA) or storages.  The ports on HBAs are 

referred to as node ports (N_Ports), and they connect to 

fabric ports (F_Ports) on fabric switches to join the 

fabric.  As the number of nodes grows to exceed the 

number of F_Ports available on a single fabric switch, 

another switch is added to the fabric through a pair of 

expansion ports (E_Ports).  The resulting connection 

between switches is called an inter-switch link (ISL). 

Each FC switch in a fabric is identified by a 

manufacturer assigned 64-bit unique number known as 

the world-wide name (WWN).     

Since establishing a fully functioning ISL is the first 

and an important operation in constructing a stable 

fabric [8][11], the modeling of FC switch with respect to 

establishing the ISLs and forming the fabric is 

considered in this work.   

A. Fibre Channel Switch and Fabric Servers 

A high level architecture of a FC switch is shown in 

Fig. 2. FC switch architecture consists of identical I/O 

blocks corresponding to the number of physical ports on 

a switch. The switch consists of a single cross bar and a 

controller. The controller implements the fibre channel 

services (FCS) which provide addressability of the 

fabric, principal switch selection, building routing 

tables, node login, name server etc., as required by fibre 

channel switch fabric [8], fabric channel link services 

[7], and fibre channel generic services [6] standards. 

 
Fig. 2.  A High Level Architecture of FC Switch. 

 

The FCS from an architecture standpoint is a 

collection of server functions located at different 

addresses. Since, the addresses are defined by the 

standard; they are referred to as well-known addresses 

(WKA). A high level architecture of the switch 

controller shown in Fig. 3, implements the functionality 

of various mandatory and non-mandatory fabric services 

as servers at specific WKA. 

 
Fig. 3.  High Level Architecture of the Switch Controller. 

 

The fabric controller (WKA: 0xFFFFFD) and fabric 

login (WKA: 0xFFFFFE) are mandatory servers that use 

switch internal link services (SW_ILS) and extended 

link services (ELS) protocols respectively to 

communicate with other switches and nodes in the 

fabric. The fabric controller server is responsible for 

establishing the addressability of the fabric, principal 

switch selection, building routing tables and other tasks 

associated with fabric building and manageability. 

The fabric login server is responsible for assigning 

an address to a node attempting to join the fabric 
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(known as fabric login) and inform fabric capabilities to 

the joining node. The protocols used by both these 

servers correspond to FC-2 level. Even though the 

directory, time etc., are non-mandatory servers, a 

majority of FC switch manufacturers implement the 

servers in the fibre switched architecture. The non-

mandatory servers use fibre channel common transport 

(FC-CT) protocol corresponding to FC-2 level to 

communicate with other switches and nodes. From the 

above discussion, it can be seen that the fabric controller 

server provides the crucial functionality for building and 

managing a multi-switch fabric. The functionality of all 

other servers is dependent on the functionality of fabric 

controller server. In a fabric, only a single switch or an 

external server could implement these fabric service 

servers and provide functionality to the entire fabric or 

incorporate instances of the fabric service servers on 

every switch leading to distributed servers [6]. The 

approach of implementing a single instance of the fabric 

service servers is not popular due to single point failure, 

failure of the connecting link, and path bottleneck 

during significant traffic. Hence, manufactures 

supporting switched fabric invariably support the 

distributed server architecture.  

 
B. Distributed fabric Controller Server Model 

When multiple FC switches with integrated server 

functions are connected together in some topology to 

form a switching fabric, these integrated servers must 

coordinate their operations to ensure consistent 

information. A typical switching fabric [11] with the 

distributed fabric controller server (DFCS) as the only 

integrated server on each switch is shown in Fig. 4. 

 

 
Fig. 4.  Distributed Server Model. 

 

 Each switch in the fabric maintains the information 

of all nodes connected locally and the servers service 

any local requests. When a request cannot be serviced 

entirely by the local server, requests can be made to 

similar servers on other switches in the fabric. Hence, 

the term distributed server.  For the DFCS model to 

work, the communication links between identical 

servers have to be established first. In Fig. 4, it can be 

seen that every instance of the fabric controller server 

has the same WKA and hence each instance must have a 

way to send requests to other server instances on a 

specific switch. In order to identify each instance, 

another address known as domain identifier address of 

the format 0xFFFCXX where XX will be unique to each 

switch is used along with the individual server WKA. In 

most switch implementations, the domain identifier 

address is an alias to the particular instance of the fabric 

controller server. The XX portion of the domain 

identifier address for each switch is allotted by the fabric 

controller server located on the principal switch. Each 

instance of the fabric controller server participates in 

selecting the principal switch, assigning the domain 

identifier address and other fabric construction 

operations. Hence, in this paper the modeling of the 

distributed fabric controller server using OMNeT++, 

and simulation of large fabric build and management 

process is presented.  

 

V. DISTRIBUTED FABRIC CONTROLLER SERVER 

MODEL USING OMNeT++ 

 

The fabric controller server builds the switched 

fabric by establishing the communication links between 

individual FC switches. In Fig. 5, a fabric controller 

server process flow chart is presented.  

 
Fig. 5.  Fabric Controller Server Process. 

 

In Fig. 5, it can be seen that the fabric controller 

process consists of four stages [8][19][21] listed below: 

 Port/Link Mode Initialization 

 Fabric Initialization 

 Principal Switch Selection 

 Address Distribution/Link State Record 

Exchange 

The progressive flow through the above four stages 

is to enable communication between any two adjacent 

fabric controller servers by first establishing the two 

connecting physical ports on each switch as E_Ports. 

Next, establish a functioning inter switch link between 

these two E_Ports. Each stage consists of at a minimum 

one state machine and numerous states to perform the 

transitions.   
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A  Port/Link Mode Initialization 
The port/link mode initialization consists of two 

state machines corresponding to port initialization and 

link initialization shown in Fig. 6. Every physical port 

on a switch on power reset enters the port initialization 

state.  

 

 
Fig. 6.  Port/Link Initialization State Machines. 

 

On entering this state, the port performers the 

following operations: 

1. Determine its port classification namely F_Port, 

E_Port or generic port (G_Port) capable of operating as 

an E_Port or F_Port.  

2. If it is a F_Port then travel to a state in the state 

machine [5] of the fabric login server. 

3. If  it is an E_Port then start a small random 

timer and travel to IDLE state starting the link 

initialization state machine as shown in Fig. 6. The 

small random timer is used to replicate the different 

instances each switch in the fabric will enter the IDLE 

state. 

4. If the port determines its classification to be of 

the arbitrated loop class [4] then the port initialization 

fails, and it never travels to the next state in Fig. 6. 

In the link initialization state machine, the switch 

stays in the IDLE state waiting for an exchange link 

parameter (ELP) frame from its neighboring fabric 

controller server or for the small random timer to expire 

and then perform the following state transitions: 

1. If the timer expires before an ELP is received, 

the fabric controller server will transmit its own ELP 

and continue to stay in the IDLE state. ELP frame is 

exchanged between two E_Ports to exchange parameters 

governing communications between the two ports. The 

parameters exchanged are the type of class service, low 

level ISL flow control mode (Vendor unique or 

R_RDY), and buffer credits [7].  

2. The neighboring fabric controller servers on 

receiving an ELP will travel to the “Check Port State”. 

In this state, the server checks whether it has already 

sent an ELP or not.   

3. Transit to the “Form ACC” state if the fabric 

controller server has not yet transmitted an ELP. In the 

“Form ACC” state a switch accept (SW_ACC) frame 

(identical to ELP with the parameters reflecting its own 

capabilities) is transmitted with the destination address 

set to the source address of the received ELP frame.   

4. If the fabric controller server has already 

transmitted an ELP then check for its WWN identifier 

being higher than the WWN received through the ELP 

frame. If, it’s WWN is higher, then travel to “Form 

ACC” state else transmit a switch reject (SW_RJT) 

frame indicating the received ELP frame is redundant.   

5. On receiving a SW_ACC frame for the 

transmitted ELP, the fabric controller server travels to 

“Flow Control Parameters” state. In this state, the flow 

control parameters received through the SW_ACC 

frame and its own are compared and if there are any 

incompatibilities, the involved ports enter the isolated 

state and cannot participate in any further ISL 

communications. 

6. If the flow parameters are compatible then 

transmit an exchange fabric parameter frame and travel 

to IDLE state. The EFP frame is sent in this state 

machine to reset the fabric parameters like address 

allocation, principal switch etc.  

7. Next, on receiving a SW_ACC frame (response 

to the previously transmitted EFP) or transmit a 

SW_ACC frame (response to received EFP frame), the 

fabric controller server travels to the next state machine 

“Build Fabric”.    

The above state transition indicates a proper 

establishment of an ISL between two E_Ports, and these 

two E_Ports and the ISL can participate in a fabric 

building process. The object oriented implementation of 

the proposed state machine in shown in Fig. 7.  

 

 
Fig. 7.  OMNeT++ Class Definition of Fabric Controller Server. 

 

In Fig. 7, a C++ class derived from cSimpleModule 

(OMNeT++ library) abstracting the behavior of the 

fabric controller is shown. The class consists for data 

members describing the error timers, WWNs, domain 

identifier etc, and member functions implementing the 

various states. The handleMessage function depending 
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on a particular event will execute the corresponding 

state machine function causing the state transitions. The 

initialize function implements the port state machine. 

Some of the code snippets in the HandleMessage and 

the individual state machine function are shown in Fig. 

8. Using the C++ switch structure, the HandleMessage 

function calls the corresponding state machine function.  

In Fig. 8, it can be seen that any message with 

respect to Port/Link Mode initialization triggers 

executing the State1 function. Based on the received 

message an appropriate state and its transitions are 

performed using simple C++ if else structures.  Similar 

code development architecture has been used in 

implementing the other proposed state machines [9][13]. 

  

 
Fig. 8.  OMNeT++ Port/Link Mode Initialization State Machine 

Implementation. 

 
B. Fabric Initialization 

In Fig. 9, the proposed build fabric state machine is 

shown. The goal of this state machine is to ensure that 

the build fabric (BF) frame is broadcasted across the 

entire fabric and there by initiate a non-disruptive 

principal switch selection and fabric configuration. This 

state machine uses two special timers known as fabric 

stability time out value (F_S_TOV) and build fabric 

time out value (B_F_TOV). 

 
Fig. 9.  Build Fabric State Machine. 

The F_S_TOV is used during flooding operations 

and the timer specifies how long a switch must wait 

after flooding event before it considers the flood to have 

reached all switches in the fabric and the fabric to have 

stabilized. The default value of F_S_TOV is 5 seconds 

[8]. The B_F_TOV is used to ensure that a fabric 

reconfiguration does not occur due to an error. A fabric 

controller enters the “build fabric” state will perform the 

following transitions: 

1. Every fabric controller transmits a domain 

identifier assigned (DIA) frame assuming itself as the 

principal switch.  

2. Every other fabric controller receiving the DIA 

rejects by sending a SW_RJT frame and then starts the 

B_F_TOV (3 ms) and enters IDLE state. After the 

B_F_TOV expires, every fabric controller sets 

F_S_TOV and broadcasts BF frame on every 

established ISL. Received BFs are forwarded on every 

ISL other than the one on which the frame was 

received. Every BF received is acknowledged with a 

switch accept frame. This operation continues until the 

F_S_TOV expires and then the fabric controller travels 

to the principal switch selection state machine 

indicating that every fabric controller is ready for non-

disruptive principal switch selection and fabric 

configuration. 

 
C. A Principal Switch Selection 

This state machine is used to elect a switch in the 

fabric as a principal switch which would then be capable 

of issuing domain identifiers to all other switches known 

as non-principal switches. The proposed state machine is 

shown in Fig. 10 and the transitions performed are 

discussed below: 

1. A timer corresponding to twice the F_S_TOV 

is set by every fabric controller and then 

exchange fabric parameter frame is 

broadcasted. The EFP frame in this state 

machine consists of a single byte principal 

switch priority value and the principal switch 

WWN. The priority value indicates whether it 

was previously the principal switch (0x02) or 

mandatory principal switch due to highest 

priority value (0x01) or cannot be a principal 

switch (0xFF). 

 
Fig. 10.  Principal Switch Selection State Machine. 
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2. On receiving an EFP or a SW_ACC for the 

transmitted EFP, the received fabric 

information is compared with its retained 

principal switch priority and principal priority 

value. If the received values are lower than the 

retained values, the fabric controller uses the 

lower value and broadcasts a new EFP. If, the 

fabric is being built from power on, each 

switch is under the assumption that it is the 

principal. This transition continues until twice 

the F_S_TOV expires or the fabric controller 

receives a DIA frame. 

3. On timer expiration, if the lowest WWN and 

priority value is same as the switch WWN and 

priority value, then the switch assumes the role 

of the principal switch and travels to “Assign 

Domain IDs” state machine. If, the switch 

WWN and priority value is not the lowest, 

then it travels to “Get Domain ID” state 

machine. 

4. On receiving a DIA frame before the timer 

expires, the switch concludes another switch 

has assumed the role of the principal switch, 

and it travels to “Get Domain ID” state 

machine. 

 
D. Address Distribution/Link State Record Exchange 

The address distribution and link state record (LSR) 

exchange process consists of two state machines the 

“Assign Domain IDs” and “Get Domain ID”. The 

“Assign Domain IDs” state machine with its transitions 

shown in Fig. 11 is executed by the fabric controller 

only on the elected principal switch. The states and the 

transitions are discussed below: 

 
Fig. 11.  Assign Domain IDs State Machine. 

 

1. The fabric controller sets the F_S_TOV timer 

and waits for a request domain identifier (RDI) 

frame from all other switches in the fabric 

which are classified as non-principal switches. 

The RDI frame contains the requesting switch 

WWN and desired domain identifier.  

2. On receiving a RDI frame, the principal switch 

fabric controller transmits a SW_ACC frame 

with requesting switch WWN and granted 

domain identifier. Next, the F_S_TOV is reset 

and an EFP frame with the current domain 

identifier list is broadcasted. The EFP frame is 

broadcasted to inform all non-principal 

switches of the presence of switches with 

assigned or valid domain identifiers in the 

fabric. 

3. If RDI frame is not received within a 

F_S_TOV, the principal switch assumes that 

all non principal switches have been assigned 

with domain identifiers, and then it broadcasts 

a link state update (LSU) frame and travel to 

normal operation state. The LSU frame 

contains a link state record (LSR) comprising 

of link descriptors describing the connectivity 

of all inter-switch links (directly connected 

fabric switches), associated with one specific 

switch. This LSU creates the initial topology 

database.  The LSU frames are not 

acknowledged during the initial fabric 

configuration.  

The “Get Domain ID” state machine and its 

transitions shown in Fig. 12 are executed by the fabric 

controllers on all non-principal switches to obtain 

domain identifiers from the principal switch and create 

the initial topology database. 

 
Fig. 12.  Get Domain ID State Machine. 

 

1. A fabric controller on receiving DIA frame 

checks, whether it has already been assigned a 

domain identifier from the current principal 

switch. If the domain identifier has not been 

assigned, the fabric controller transmits a RDI 

frame and also a SW_ACC frame. 

2. On receiving the SW_ACC frame for the RDI 

frame, the new granted domain identifier is 

stored and travels to “check arrival port” state. 

3. In the “check arrival port” state, it identifies the 

physical E_Port on which SW_ACC frame for 

the RDI was received. A LSU is now sent on 

the identified physical E_Port, forward the DIA 

frame (from the principal switch) on all other 

E_Ports, and travel to normal operation state. 

The fabric controllers on completing the four stages 

shown in Fig. 5 reach the stable operation state in which 
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the fabric controllers broadcast at regular intervals 

“Hello” frames” on all ISLs. Initially, the Hello frames 

are sent without domain identifiers of its neighbors and 

the switch would be capable of performing only “one-

way” communication. Next, on receiving Hello frames 

from neighbors, the switch learns the domain identifiers 

of its neighbors and their output ports used to send the 

Hello frames. On all subsequent Hello frame 

transmissions, the switch will include neighbor’s 

neighbor's domain identifier, and establish “two-way” 

communication between neighboring switches. At this 

stage, the switches can start initial topology 

synchronization and the process of determining optimal 

routes. A non-reception of the periodic hello frame on 

an ISL would indicate that the neighboring switch is no 

longer operational.   

 
E. Models of Ancillary Components 

In addition to the DFCS modeling, the Xbar 

(Crossbar), IO Port Controller, Buffer Credit 

Mechanism, Name Server, Routing and FC Packet were 

also modeled to simulate the fabric. Reference [3  

provides a detailed discussion of modeling these 

ancillary and necessary components.   

 
VI. SIMULATION VALIDATION AND RESULTS 

The individual finite state machines discussed in 

section 5 are implemented first as simple module objects 

derived from cSimpleModule class (OMNeT++ library) 

similar to that shown in Fig. 7. Next, the simple module 

objects are initialized and connected in a particular 

fashion using the OMNeT++ NED based descriptor 

shown in Fig. 13 to instantiate the switch object shown 

in Fig. 14.  

   import "FIFO", "PortCont", "XBar", "Cont", "Router", "NameServer ", "trace";

   module FabricSwitch

        parameters :

             switchNumber : numeric const ;

        gates : in : in [ ]; out : out [ ];

        submodules :

             buffer : FIFO [ s i z e o f ( in ) ] ;

                  display : "i=block/queue;p=134 ,414 , row;q=queue";

             pc : PortCont [ s i z e o f ( in ) ] ;

                  display : "i=device/cpu_s;p=134 ,214 , row;q=queue";

             xbar : XBar ;

                  gatesizes : in [ s i z e o f ( in ) ], out [ s i z e o f ( in ) ];

                display : "i=block/ switch_l ;p=366 ,54 , row;q=queue" ;

           cont : Cont ;

                gatesizes : PCin [ s i z e o f ( in ) ], PCout [ s i z e o f ( in ) ];

                display : "i=device/cpu;p=230 ,54 , row;q=queue" ;

           router : Router ;

                gatesizes : in [ s i z e o f ( in ) + 1 ];

                display : "p=134 ,110;b=40 ,24" ;

           nameServer : NameServer ;

                display : "p=138 ,54;b=40 ,24" ;

           tracer : Tracer [ s i z e o f ( in ) ] ;

                display : "p=73 ,302;b=40 ,24" ;

       connections :

           xbar . Contout −−> cont . XBarin ;

           cont . XBarout −−> xbar . Contin ;

           cont . XBarCont −−> xbar . ContLine ;

           cont . RouterOut −−> router . in [ s i z e o f ( in ) ] ;

           nameServer . out −−> cont . NameServerIn ;

           for i = 0 . . s i z e o f ( in ) −1 do

                in [ i] −−> tracer [ i ] . in ;

                tracer [ i ] . inputOut −−> buffer [ i ] . in ;

                buffer [ i ] . out −−> pc [ i ] . in ;

              pc [ i ] . FIFOout −−> buffer [ i ] . PCin ;

                pc [ i ] . XBarout −−> xbar . in [ i ] ;

                xbar . out [ i] −−> pc [ i ] . XBarin ;

                cont . PCout [ i] −−> pc [ i ] . Contin ;

                pc [ i ] . Contout −−> cont . PCin [ i ] ;

                pc [ i ] . out −−> tracer [ i ] . outInput ;

                tracer [ i ] . out −−> out [ i ] ;

                pc [ i ] . RouterOut −−> router . in [ i ] ;

           endfor ;

       display : "b=904 ,492" ;

   endmodule

 
Fig.13. NED based Switch Descriptor. 

 

 
Fig. 14. Instantiated Switch Object. 

 

In Fig. 13, it can be seen first the individual 

modules are imported and then the parameters of the 

individual modules like the number of ports, the buffer 

size and type (FIFO) are initialized. Next, the desired 

connections between the individual modules to simulate 

the FC switch are described. The simulated FC switch 

titled “FabricSwitch” in Fig. 14 consists of the simple 

module object titled “cont” that encapsulates the state 

machines of the fabric controller server. Also in Fig. 13 

the implementation of the other essential components of 

the FC switch namely “nameServer”, “Router”, “Xbar”, 

etc., as simple modules are shown. Next, the above 

simulated FC switches are connected in a desired 

topology by another NED descriptor to simulate the FC 

fabric and in turn the operation of the distributed fabric 

controller server. 

 
Fig. 15.  NED Descriptor for FC Fabric with Four Switches in 

Star Topology. 

 

In Fig. 15, the NED descriptor for simulating a FC 

fabric consisting of four FC switches in the Star 

topology is shown. In this descriptor, the generic switch 

model provided with OMNeT++ is first imported and 

then the each instance of the generic switch is set to the 

simulated FC switch. Next, the desired interconnection 

between the simulated FC switches is described. The 

OMNeT++ simulation runtime will read this descriptor 

and simulate the fabric shown in Fig. 16. 
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Fig. 16.  FC Fabric with Four FC Switches in Star Topology. 

 
A. Simulation Validation 

The validation of the simulations consists of 

comparing the fabric initialization time determined 

through simulations of a small FC fabric  with the fabric 

initialization time of the actual FC fabric. Fig. 17 shows 

a test bed of six Brocade Communications Systems 

Fibre Channel switches connected in a star configuration 

along with a fabric analyzer to collect the traffic during 

fabric build. 

 
Fig. 17.  Hardware Test Bed. 

 

The trace of the traffic during the fabric 

initialization of a two switch fabric from the test bed and 

simulation are shown in Fig. 18. It can be seen in Fig. 18 

the communication traffic of the test bed and the 

simulation are similar with minor differences. In case of 

the testbed, the second EFP sent by switch 0 is rejected. 

The reason code of the RJT frame indicated that the 

switch 1 was busy performing state transitions of other 

fabric service servers. Since the simulator has only the 

fabric controller server state machines it does not reject 

the frame.The other anomaly is the multiple hello and 

LSU frames sent in case of the test bed.  

 

Fig. 18.  Comparison of Fabric Initialization Traffic between 
Simulation and Test bed. 

 

In the simulations, the periodic time interval of 

sending hello frames has been made large in comparison 

to that in the testbed in order to reduce the number of 

hello frames to be transmitted. This is a valid option as 

described in the FCP standards [8].The additional LSU 

frames in the testbed are sent to maintain the topology 

database which is not implemented in the simulation.  

Next the timing information of the Fibre Channel 

switch for each state transition by the fabric controller 

server (frame reception and processing) with the link 

data rate of 1 Gbps was introduced into the finite state 

machine models of the fabric controller server through 

another NED descriptor, which is read by the 

OMNeT++ simulation runtime during simulation. The 

fabric initialization simulations were performed with 

increasing number of switches and trace of the traffic 

was collected from the simulation and test bed. From the 

trace of the traffic, the fabric initialization time defined 

as the time required by the distributed fabric controller 

servers to construct a stable fabric by traversing the four 

stages of the fabric controller server process shown 

previously in Fig. 5 were computed. In actual fabric, the 

fabric initialization occurs if there is the loss of principal 

switch or fabric merge occurs. During fabric 

intitialization the data cannot be transmitted (domain 

IDs are reassigned), and hence it is crucial to have a 

measure of the intitialization time. The average 

intitialization time for fabric simulations with two to six 

switches was obtained by repeating the simulations five 

times and are shown in Fig. 19. 

 
Fig. 19.  Comparison of Average Initialization Time for Fabric 

with Two to Six Switches. 

 

In Fig. 19, it can be seen that the average 

initialization time to build the fabric from both 

simulations and the test bed are almost the same. The 

increase in the initialization time with increasing 

switches from simulations indicates it is negligible, and 

it correlates with measurements from the test bed.   

It can be seen in Fig. 19, the average initialization 

time of the fabric with two switches is higher in 

comparison to that with three or more switches. The 

reason for this behavior is the DIA rejection scheme. 

During fabric build, every switch assumes the role of 

the principal switch and issues a DIA command. Any 

switch on receiving a DIA command will reject the 
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DIA, start the build fabric time out (B_F_TOV) timer 

(default: 3 ms) and enters IDLE state as shown in Fig. 

9. At the end of B_F_TOV, the switch is supposed to 

exit the IDLE state and issue a BF command. The 

B_F_TOV timer is introduced to avoid fabric rebuilds 

due to errors. However, if the switch receives a second 

DIA before the B_F_TOV timer expires; it will exit the 

IDLE state prematurely and issue a BF command.   In 

case of two switch scenario, the possibility of the 

switch receiving a second DIA does not exist where as 

in case of three or more switches in star topology the 

switches do receive more than one DIA before the 

B_F_TOV timer expires leading to lower initialization 

time. 

 
B. Large Fabric Simulations 

First, a series of simulation was performed to 

determine fabric initialization time of fabrics consisting 

of 2 to 31 switches in a single fabric connected in star 

and full mesh topologies. Before the advent of IO 

consolidation the maximum number of switches 

allowed in a single fabric was 31. The star topology is a 

cost efficient topology where all the switches are 

connected to a central switch. The downside of this is 

that it creates a single point of failure. The full mesh 

topology creates a connection between all the switches. 

This is a much more expensive implementation, but 

there are multiple paths in case of a link or switch 

failure. In Fig. 20, the average initialization time for the 

star and full mesh topology with the number of 

switches increasing from 2 to 31 are shown. 

 
Fig. 20. Average Initialization Time for Star and Full Mesh 

Topologies with 2 to 31 switches. 
 

In Fig. 20, the average initialization time increases 

linearly with increasing number of switches. The linear 

increase is due to the corresponding increase in the 

number of communications per switch to construct the 

fabric. Also, in Fig. 20, it can be noticed that the 

average initialization time for the same number of 

switches in star topology is slightly higher in 

comparison to that with the full mesh topology. This is 

due to the entire communication traffic of the fabric 

passing through the single switch at the hub of the star 

topology causing a bottleneck and introducing 

additional delay. For both the topologies, the average 

initialization time is well within the bounds of the 

fabric stability time out value (default F_S_TOV: 5 

secs). Next, simulations were repeated for both the 

topologies with the current maximum number of 

switches allowed in a single fabric by the industry 

which is 239. The average initialization time for the star 

and full mesh topologies with a maximum of 239 

switches in a single fabric is shown in Fig. 21. 

 
Fig. 21. Large Fabric Average Initialization Time. 

 

The average initialization time even with the 

maximum number of switches in a single fabric as 

shown in Fig. 21 is well within the bounds of the 

default F_S_TOV. As expected, the fabric with star 

topology experiences a higher initialization time.  

The fabric initialization time can also be 

considered as the time duration in which there cannot 

be any actual data transmission between servers and 

storages. Based on Fig. 21, a fabric with 239 switches 

connected in star topology undergoing a fabric rebuild 

will not allow data transfer between servers and 

storages for 31 ms at a minimum which corresponds to 

3.9 MB of lost data at a data rate of 1 Gbps or the 

servers should have the capability to buffer this data for 

the duration.  

In an actual fabric, data transfer will occur only 

after the topology of connected servers and storages is 

disseminated across the entire fabric by exchanging 

information among the nameServers located on each 

switch. Each switch after fabric initialization will send 

out a Get Entry by Port Type (GE_PT) query to one 

hop neighboring switches. A switch on receiving a 

GE_PT command will send information of any locally 

connected servers/storages to the originator of the 

GE_PT command and at the same time forward the 

query to its one hop neighboring switches and they will 

also send information of their locally connected 
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server/storages back to the originator. The originator on 

receiving responses to its GE_PT query will update its 

nameServer database.  By this mechanism after fabric 

initialization every switch has the topology of the entire 

fabric. Therefore, a finite amount of time defined as the 

topology initialization delay is required for the topology 

to be disseminated across the entire fabric. This delay 

will increase with the number of switches and nodes on 

each switch in a fabric. 

Next, a full mesh fabric with 2048 nodes 

distributed across the fabric switches was simulated and 

the topology initialization delay was collected. The 

topology initialization delay on two fabrics with   eight 

and sixteen switches and same number of nodes are 

shown in Fig. 22. 

 

 
Fig. 22. Topology Initialization delay with Increasing Number of 

Nodes and Switches. 

 

In Fig. 22, it can be seen that the topology 

initialization delay increases roughly quadratic and 

reaches a value of 1200 and 900 msecs for 2048 nodes 

distributed among 8 (256 nodes/switch) and 16 (128 

nodes/switch) switches respectively. The fabric with 16 

switches experiences a smaller topology initialization 

delay since each switch has to respond with information 

of only 128 nodes in comparison to 256 nodes with 8 

switches. 

The topology initialization delay is significantly 

large in comparison to the fabric initialization time, and 

it increases with the number of nodes and switches in 

the fabric. If this fabric undergoes fabric rebuild it will 

not allow any data transfers between servers and 

storages for 1200 msecs, which corresponds to 150 MB 

of lost data at a data rate of 1 Gbps.  

From the above simulations, we can see that even 

though a large fabric with 239 switches is stable 

however due to the significantly larger topology 

initialization delay the servers have to be equipped with 

a large application buffer to avoid loss of significant 

application data. From Fig. 22, it can be seen that the 

topology initialization delay will reach a value larger 

than F_S_TOV with increasing number of nodes and 

switches leading to fabric instability. Also, from Fig. 

22, it can be seen that distributing the same number of 

nodes across a larger fabric (number of switches) will 

reduce the topology initialization delay since each 

switch has to process information of fewer nodes. 

 
VII. CONCLUSIONS 

In this paper, we have demonstrated the SAN 

simulator simulating the FC-2 level traffic between 

distributed fabric controller servers during the fabric 

build and topology initialization operations. The 

various finite state machines of the distributed fabric 

controller has been presented along with their 

implementations machines using OMNeT++ has been 

presented. The performance of the simulator has been 

presented by comparing simulation traffic against the 

traffic of an actual SAN fabric. The simulator has been 

demonstrated to simulate fabrics with 239 switches at 

the FC-2 level. We have identified by simulations that 

the fabric build/rebuild process is stable even with the 

maximum number of switches in a single fabric and the 

fabric initialization time is in the order of 30 msecs. We 

have also identified that the topology initialization 

delay increases significantly with increasing size of the 

fabric and number of nodes/switch causing a significant 

data loss during fabric rebuild. Using the simulator, the 

distribution of nodes given a fabric size can be 

determined in order to reduce the topology initialization 

delay. Since, the simulator has been implemented using 

object-oriented principles with C++ and open source 

discrete event simulator OMNeT++, the simulator is 

highly flexible, tailored for incorporating additional 

components with ease. 

The next stage of development will address the 

remaining fabric services servers along with actual 

storage data traffic.  
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