

Fibre Channel Switch Modeling at Fibre

Channel-2 Level for Large Fabric Storage Area

Network Simulations using OMNeT++
Suresh Muknahallipatna, Timothy J. Brothers, Joseph Miles, and Howard Johnson

Abstract—Typically, in the current enterprise data centers

dedicated fabrics or networks are implemented to meet

their LAN, Inter-Processor communication and storage

traffic requirements. The storage traffic requirements of a

group of servers are met through multiple storage area

networks based on fibre channel, which has become the

standard connection type. Typically, this fibre channel

storage area networks are small (maximum of 32

switches/directors in a single fabric) and do not experience

any scaling, stability and other performance issues.

The advent of I/O consolidation in enterprise data

centers for multiple traffic types to converge on to a single

fabric or network (typically Ethernet platform) to reduce

hardware, energy and management costs has also the

potential to allow implementation of large storage area

networks based on the fibre channel standards. Large

storage area networks are being planned with more than

two hundred switches/directors in a single fabric or

network in addition to servers and storages connected to

the fabric on Ethernet platforms. Even though these large

storage area networks are envisioned to operate on

Ethernet platform, they still have to satisfy the stringent

operating and performance requirement set forth by the

fibre channel standards. The two important issues of

concern with large storage area networks are scaling and

stability. The scaling and stability issues are dependent on

the interactions and performance capabilities of various

fabric servers located on each switch/director in the fabric

in order to provide fabric services. In order to determine

the extent of scaling and stability issues of a large fabric

first the detailed models of the switch/director addressing

the operations of the individual fabric servers are

required. Next, the interactions of the switches/directors

using the detailed models are to be simulated to study the

scaling and stability issues.

In this paper, the detailed modeling of the fibre

channel switch and the fabric servers using the OMNeT++

discrete event simulator is presented first. Detailed models

are developed addressing the behavior of the switch at the

level-2 of the fibre channel protocol since this layer

addresses the requirements and operations of various

mandatory fabric services like fabric build, directory,

login, nameserver, management, etc. Next, using the

OMNET++ discrete event simulator large fabrics are

simulated. The results from the simulation are compared

against the test bed traffic and the accuracy is

demonstrated. Also, results and analysis of multiple

simulations with increasing fabric size are presented.

I. INTRODUCTION

Current enterprise data center architecture use

dedicated networks or fabrics to meet the inter-process

communication (IPC), LAN and storage traffic needs.

The LAN traffic needs are commonly met with Ethernet

where as the IPC traffic that requires low latency and

high bandwidth are met with high performance

interconnects such as InfiniBand. The storage traffic

need of zero losses of packets is satisfied by storage area

network (SAN) based on fibre channel (FC)

interconnects. However, the use of dedicated fabric for

each class of traffic in a single data center requires

separate components like adapters, cables, switches,

management software, etc., for each type of fabric. This

architecture of dedicated fabrics increases the hardware,

energy and management costs and limits the size of the

dedicated fabrics. In current data centers, the size

limitation is overcome by deploying multiple dedicated

fabrics to serve groups of servers, storages, etc.

The development of PCI-Express and 10 gigabit

Ethernet has recently led to emphasis on I/O

consolidation by converging multiple traffic classes on

to a single fabric. The current industry approach of

converging to a single fabric is through Ethernet based

convergence. The FC based storage data frames are

encapsulated in Ethernet packets known as FC over

Ethernet (FCoE) and retain all the management features

and characteristics of FC based storage area network. In

theory this should allow large customers having

massive investments in FC based SAN infrastructure

and management to seamlessly transit to this new

technology. The convergence to a single fabric has the

potential to reduce hardware, energy and management

costs and allow deployment of large fabrics at the

enterprise data centers.

Typically, in the current enterprise data centers a

number of small to medium sized FC based SANs are

deployed to connect groups of servers to storages. A

typical SAN is illustrated in Fig. 1.

Fig. 1 depicts the most commonly used SAN

topology, namely the switched fabric SAN. In this

topology, the servers are connected to the storage

DOI: 10.5176_2010-2283_2.1.138

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

116 © 2012 GSTF

through a fabric comprised of switches, directors,

gateways and cables. In Fig. 1, it can be seen that the

client workstations access the server through the

traditional local area network, whereas the servers

access the storage through the SAN. The servers can

access the storage through alternative paths, and the

clients can access the data on the storage through

multiple servers [10].

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

COL-
ACT-
STA-

1 2 3 4 5 6 7 8 9101112
HS1 HS2 OK1 OK2 PS

CONSOLE

Ethernet Switch

Server

Com3

Fibre Switch

Fibre

Com3

FCP Gateway

Com3

Director

Storage Arrays

COL-
ACT-
STA-

1 2 3 4 5 6 7 8 9101112
HS1 HS2 OK1 OK2 PS

CONSOLE

Ethernet Switch

Server Server

Com3

Fibre Switch

Com3

Director

Com3

FCP Gateway

Storage ArraysStorage ArraysStorage Arrays Storage Arrays

FibreFibre

Copper Copper

Copper
Copper

Copper Copper

Fibre
Fibre Fibre Fibre

Fabric

Fig. 1. A Typical Storage Area Network.

The size of a SAN is defined by the number of

switches/directors in the fabric. In small or medium

sized fabrics the numbers of switch range from a few to

a maximum of 32. The scaling, stability and

performance of a SAN are dependent on the interactions

and performance capabilities of various fabric servers

providing mandatory fabric services located on each

switch in the fabric. Majority of the fabric services plays

an important role in meeting the stringent timing

requirements during the building and later maintaining

the stability of the fabric [8][11].

With the focus shifting towards convergence in

enterprise data centers this small or medium SANs are

being combined to fewer or in some cases single large

SANs with the number of switches in the fabric reaching

a maximum of 256. This large size of the fabric makes

the SAN prone to scalability, stability and performance

issues. The amount of traffic generated during the

building and management of the fabric can pose a

serious impediment to the stability of the network. In the

event of network disruption, the network can experience

a significant delay in reaching a steady state (from a

transient rebuild operation) leading to non-availability of

data. Obviously, the growth of the fabric cannot be

allowed to have a significant detrimental impact on the

availability of the data in the SAN. Therefore, it is

necessary to ascertain first whether a large fabric is

stable and scalable. In case of small or medium sized

fabrics it is possible to determine the stability and

scalability issues by performing tests on an actual fabric

or by using the hardware simulator. However, with large

fabrics it would be far too expensive and impractical to

implement a large fabric simply for testing purposes.

In this paper, we propose a discrete event simulator

for the FC based switched fabric SAN using OMNeT++,

an open source tool. This paper is continuation of the

preliminary work in paper [1] previously presented at

the local computer network conference in 2007.

The initial focus of the simulator is to develop

models to simulate the FC-2 level of the FC protocol

(FCP) dealing with fabric building and manageability

under the large switched fabric conditions. Using the

simulator, the performance of switched fabric of various

sizes and topology will be analyzed to determine the

switched fabric scaling and stability issues.

The organization of the rest of the paper is as

follows: Section II provides a discussion of related work

on discrete event simulation of SANs. Section III

provides a brief summary of OMNeT++. Section IV

provides a discussion of FC switched fabrics, single and

distributed server models. In section V the modeling of

the distributed fabric controller server is discussed in

detail. Section VI presents the results and analysis.

Finally, Section VII concludes by providing some

insights to lessons learned during the model

development using OMNeT++ and future direction.

II. RELATED WORK

Several studies have examined discrete event

simulation of SANs. Reference [14] discusses a discrete

event simulator for simulating a SAN developed using

the CSIM18 simulation engine. The CSIM18 engine

provides a library of routines for use by C programmers

to implement discrete event simulation models of

complex systems. The simulator [14] is capable of

simulating a single FC switch and simulates I/O traffic

between servers and storages. Preliminary network

latency performance results with real world I/O traffic

have been presented [14]. Reference [15] extends the

capability of [14] further, to simulate multiple FC

switches in a multi-stage topology. The simulator

simulates class-3 service I/O traffic, which is

connectionless thereby not strictly implementing the FC

standards. Reference [2] discusses a discrete event

simulator “SimLab” based on C++ with message

passing interface libraries. SimLab is capable of

simulating real-time delivery of data and verification of

distributed algorithms in a SAN environment. Wang et

al. presented SANSim [21] an event driven simulator

exclusively for FC arbitrated loop (FC-AL) based SAN.

The SANSim can simulate I/O traffic and also can

simulate a rudimentary FC switch. Molero et al. using

the CSIM18 based simulator [15][17] presented the

effect on I/O traffic due to different switch architectures

and link failures. Rueda et al. presented [18] a discrete

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

117 © 2012 GSTF

event simulator based on OPNET to model the

synchronous write operations during I/O traffic.

In all the above previous work, the I/O traffic is

simulated with the assumption that the network has

reached a steady state and there is no traffic due to

network building and management. Many of the above

simulators are limited to simulate a fabric with single or

few FC switches.

III. SIMULATION FRAMEWORK

After comparing discrete event simulators like

OPNET, ns-2, and OMNeT++ with respect to ease of

use, flexibility, modular architecture, and open source

code base, OMNeT++ was chosen. OMNeT++ is a C++

based object-oriented discrete event simulation package

developed at the Technical University of Budapest [20].

The focus area of OMNeT++ is the simulation of

computer networks and other distributed systems. It

allows design of modular simulation models, which can

be combined to develop complex modules. The modules

can be composed of any granular hierarchy and simple

modules (lowest hierarchy level) can be combined to

form compound modules of varying levels of hierarchy.

The modules communicate by passing messages through

connections between modules or directly to the

destination module. The model is constructed by

defining its structure (modules and their

interconnections) by using the network description

(NED) language of OMNeT++. Individual model

components are compiled and linked with the simulation

library, along with one of the user interface libraries to

form an executable program. References [12][13]

discuss in detail the features of OMNeT++ and the

simulation process.

IV. FC SWITCHED FABRIC

FC switched fabric consists of FC switches and

nodes, which can be either servers with FC host bus

adaptors (HBA) or storages. The ports on HBAs are

referred to as node ports (N_Ports), and they connect to

fabric ports (F_Ports) on fabric switches to join the

fabric. As the number of nodes grows to exceed the

number of F_Ports available on a single fabric switch,

another switch is added to the fabric through a pair of

expansion ports (E_Ports). The resulting connection

between switches is called an inter-switch link (ISL).

Each FC switch in a fabric is identified by a

manufacturer assigned 64-bit unique number known as

the world-wide name (WWN).

Since establishing a fully functioning ISL is the first

and an important operation in constructing a stable

fabric [8][11], the modeling of FC switch with respect to

establishing the ISLs and forming the fabric is

considered in this work.

A. Fibre Channel Switch and Fabric Servers

A high level architecture of a FC switch is shown in

Fig. 2. FC switch architecture consists of identical I/O

blocks corresponding to the number of physical ports on

a switch. The switch consists of a single cross bar and a

controller. The controller implements the fibre channel

services (FCS) which provide addressability of the

fabric, principal switch selection, building routing

tables, node login, name server etc., as required by fibre

channel switch fabric [8], fabric channel link services

[7], and fibre channel generic services [6] standards.

Fig. 2. A High Level Architecture of FC Switch.

The FCS from an architecture standpoint is a

collection of server functions located at different

addresses. Since, the addresses are defined by the

standard; they are referred to as well-known addresses

(WKA). A high level architecture of the switch

controller shown in Fig. 3, implements the functionality

of various mandatory and non-mandatory fabric services

as servers at specific WKA.

Fig. 3. High Level Architecture of the Switch Controller.

The fabric controller (WKA: 0xFFFFFD) and fabric

login (WKA: 0xFFFFFE) are mandatory servers that use

switch internal link services (SW_ILS) and extended

link services (ELS) protocols respectively to

communicate with other switches and nodes in the

fabric. The fabric controller server is responsible for

establishing the addressability of the fabric, principal

switch selection, building routing tables and other tasks

associated with fabric building and manageability.

The fabric login server is responsible for assigning

an address to a node attempting to join the fabric

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

118 © 2012 GSTF

(known as fabric login) and inform fabric capabilities to

the joining node. The protocols used by both these

servers correspond to FC-2 level. Even though the

directory, time etc., are non-mandatory servers, a

majority of FC switch manufacturers implement the

servers in the fibre switched architecture. The non-

mandatory servers use fibre channel common transport

(FC-CT) protocol corresponding to FC-2 level to

communicate with other switches and nodes. From the

above discussion, it can be seen that the fabric controller

server provides the crucial functionality for building and

managing a multi-switch fabric. The functionality of all

other servers is dependent on the functionality of fabric

controller server. In a fabric, only a single switch or an

external server could implement these fabric service

servers and provide functionality to the entire fabric or

incorporate instances of the fabric service servers on

every switch leading to distributed servers [6]. The

approach of implementing a single instance of the fabric

service servers is not popular due to single point failure,

failure of the connecting link, and path bottleneck

during significant traffic. Hence, manufactures

supporting switched fabric invariably support the

distributed server architecture.

B. Distributed fabric Controller Server Model

When multiple FC switches with integrated server

functions are connected together in some topology to

form a switching fabric, these integrated servers must

coordinate their operations to ensure consistent

information. A typical switching fabric [11] with the

distributed fabric controller server (DFCS) as the only

integrated server on each switch is shown in Fig. 4.

Fig. 4. Distributed Server Model.

 Each switch in the fabric maintains the information

of all nodes connected locally and the servers service

any local requests. When a request cannot be serviced

entirely by the local server, requests can be made to

similar servers on other switches in the fabric. Hence,

the term distributed server. For the DFCS model to

work, the communication links between identical

servers have to be established first. In Fig. 4, it can be

seen that every instance of the fabric controller server

has the same WKA and hence each instance must have a

way to send requests to other server instances on a

specific switch. In order to identify each instance,

another address known as domain identifier address of

the format 0xFFFCXX where XX will be unique to each

switch is used along with the individual server WKA. In

most switch implementations, the domain identifier

address is an alias to the particular instance of the fabric

controller server. The XX portion of the domain

identifier address for each switch is allotted by the fabric

controller server located on the principal switch. Each

instance of the fabric controller server participates in

selecting the principal switch, assigning the domain

identifier address and other fabric construction

operations. Hence, in this paper the modeling of the

distributed fabric controller server using OMNeT++,

and simulation of large fabric build and management

process is presented.

V. DISTRIBUTED FABRIC CONTROLLER SERVER

MODEL USING OMNeT++

The fabric controller server builds the switched

fabric by establishing the communication links between

individual FC switches. In Fig. 5, a fabric controller

server process flow chart is presented.

Fig. 5. Fabric Controller Server Process.

In Fig. 5, it can be seen that the fabric controller

process consists of four stages [8][19][21] listed below:

 Port/Link Mode Initialization

 Fabric Initialization

 Principal Switch Selection

 Address Distribution/Link State Record

Exchange

The progressive flow through the above four stages

is to enable communication between any two adjacent

fabric controller servers by first establishing the two

connecting physical ports on each switch as E_Ports.

Next, establish a functioning inter switch link between

these two E_Ports. Each stage consists of at a minimum

one state machine and numerous states to perform the

transitions.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

119 © 2012 GSTF

A Port/Link Mode Initialization
The port/link mode initialization consists of two

state machines corresponding to port initialization and

link initialization shown in Fig. 6. Every physical port

on a switch on power reset enters the port initialization

state.

Fig. 6. Port/Link Initialization State Machines.

On entering this state, the port performers the

following operations:

1. Determine its port classification namely F_Port,

E_Port or generic port (G_Port) capable of operating as

an E_Port or F_Port.

2. If it is a F_Port then travel to a state in the state

machine [5] of the fabric login server.

3. If it is an E_Port then start a small random

timer and travel to IDLE state starting the link

initialization state machine as shown in Fig. 6. The

small random timer is used to replicate the different

instances each switch in the fabric will enter the IDLE

state.

4. If the port determines its classification to be of

the arbitrated loop class [4] then the port initialization

fails, and it never travels to the next state in Fig. 6.

In the link initialization state machine, the switch

stays in the IDLE state waiting for an exchange link

parameter (ELP) frame from its neighboring fabric

controller server or for the small random timer to expire

and then perform the following state transitions:

1. If the timer expires before an ELP is received,

the fabric controller server will transmit its own ELP

and continue to stay in the IDLE state. ELP frame is

exchanged between two E_Ports to exchange parameters

governing communications between the two ports. The

parameters exchanged are the type of class service, low

level ISL flow control mode (Vendor unique or

R_RDY), and buffer credits [7].

2. The neighboring fabric controller servers on

receiving an ELP will travel to the “Check Port State”.

In this state, the server checks whether it has already

sent an ELP or not.

3. Transit to the “Form ACC” state if the fabric

controller server has not yet transmitted an ELP. In the

“Form ACC” state a switch accept (SW_ACC) frame

(identical to ELP with the parameters reflecting its own

capabilities) is transmitted with the destination address

set to the source address of the received ELP frame.

4. If the fabric controller server has already

transmitted an ELP then check for its WWN identifier

being higher than the WWN received through the ELP

frame. If, it’s WWN is higher, then travel to “Form

ACC” state else transmit a switch reject (SW_RJT)

frame indicating the received ELP frame is redundant.

5. On receiving a SW_ACC frame for the

transmitted ELP, the fabric controller server travels to

“Flow Control Parameters” state. In this state, the flow

control parameters received through the SW_ACC

frame and its own are compared and if there are any

incompatibilities, the involved ports enter the isolated

state and cannot participate in any further ISL

communications.

6. If the flow parameters are compatible then

transmit an exchange fabric parameter frame and travel

to IDLE state. The EFP frame is sent in this state

machine to reset the fabric parameters like address

allocation, principal switch etc.

7. Next, on receiving a SW_ACC frame (response

to the previously transmitted EFP) or transmit a

SW_ACC frame (response to received EFP frame), the

fabric controller server travels to the next state machine

“Build Fabric”.

The above state transition indicates a proper

establishment of an ISL between two E_Ports, and these

two E_Ports and the ISL can participate in a fabric

building process. The object oriented implementation of

the proposed state machine in shown in Fig. 7.

Fig. 7. OMNeT++ Class Definition of Fabric Controller Server.

In Fig. 7, a C++ class derived from cSimpleModule

(OMNeT++ library) abstracting the behavior of the

fabric controller is shown. The class consists for data

members describing the error timers, WWNs, domain

identifier etc, and member functions implementing the

various states. The handleMessage function depending

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

120 © 2012 GSTF

on a particular event will execute the corresponding

state machine function causing the state transitions. The

initialize function implements the port state machine.

Some of the code snippets in the HandleMessage and

the individual state machine function are shown in Fig.

8. Using the C++ switch structure, the HandleMessage

function calls the corresponding state machine function.

In Fig. 8, it can be seen that any message with

respect to Port/Link Mode initialization triggers

executing the State1 function. Based on the received

message an appropriate state and its transitions are

performed using simple C++ if else structures. Similar

code development architecture has been used in

implementing the other proposed state machines [9][13].

Fig. 8. OMNeT++ Port/Link Mode Initialization State Machine

Implementation.

B. Fabric Initialization

In Fig. 9, the proposed build fabric state machine is

shown. The goal of this state machine is to ensure that

the build fabric (BF) frame is broadcasted across the

entire fabric and there by initiate a non-disruptive

principal switch selection and fabric configuration. This

state machine uses two special timers known as fabric

stability time out value (F_S_TOV) and build fabric

time out value (B_F_TOV).

Fig. 9. Build Fabric State Machine.

The F_S_TOV is used during flooding operations

and the timer specifies how long a switch must wait

after flooding event before it considers the flood to have

reached all switches in the fabric and the fabric to have

stabilized. The default value of F_S_TOV is 5 seconds

[8]. The B_F_TOV is used to ensure that a fabric

reconfiguration does not occur due to an error. A fabric

controller enters the “build fabric” state will perform the

following transitions:

1. Every fabric controller transmits a domain

identifier assigned (DIA) frame assuming itself as the

principal switch.

2. Every other fabric controller receiving the DIA

rejects by sending a SW_RJT frame and then starts the

B_F_TOV (3 ms) and enters IDLE state. After the

B_F_TOV expires, every fabric controller sets

F_S_TOV and broadcasts BF frame on every

established ISL. Received BFs are forwarded on every

ISL other than the one on which the frame was

received. Every BF received is acknowledged with a

switch accept frame. This operation continues until the

F_S_TOV expires and then the fabric controller travels

to the principal switch selection state machine

indicating that every fabric controller is ready for non-

disruptive principal switch selection and fabric

configuration.

C. A Principal Switch Selection

This state machine is used to elect a switch in the

fabric as a principal switch which would then be capable

of issuing domain identifiers to all other switches known

as non-principal switches. The proposed state machine is

shown in Fig. 10 and the transitions performed are

discussed below:

1. A timer corresponding to twice the F_S_TOV

is set by every fabric controller and then

exchange fabric parameter frame is

broadcasted. The EFP frame in this state

machine consists of a single byte principal

switch priority value and the principal switch

WWN. The priority value indicates whether it

was previously the principal switch (0x02) or

mandatory principal switch due to highest

priority value (0x01) or cannot be a principal

switch (0xFF).

Fig. 10. Principal Switch Selection State Machine.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

121 © 2012 GSTF

2. On receiving an EFP or a SW_ACC for the

transmitted EFP, the received fabric

information is compared with its retained

principal switch priority and principal priority

value. If the received values are lower than the

retained values, the fabric controller uses the

lower value and broadcasts a new EFP. If, the

fabric is being built from power on, each

switch is under the assumption that it is the

principal. This transition continues until twice

the F_S_TOV expires or the fabric controller

receives a DIA frame.

3. On timer expiration, if the lowest WWN and

priority value is same as the switch WWN and

priority value, then the switch assumes the role

of the principal switch and travels to “Assign

Domain IDs” state machine. If, the switch

WWN and priority value is not the lowest,

then it travels to “Get Domain ID” state

machine.

4. On receiving a DIA frame before the timer

expires, the switch concludes another switch

has assumed the role of the principal switch,

and it travels to “Get Domain ID” state

machine.

D. Address Distribution/Link State Record Exchange

The address distribution and link state record (LSR)

exchange process consists of two state machines the

“Assign Domain IDs” and “Get Domain ID”. The

“Assign Domain IDs” state machine with its transitions

shown in Fig. 11 is executed by the fabric controller

only on the elected principal switch. The states and the

transitions are discussed below:

Fig. 11. Assign Domain IDs State Machine.

1. The fabric controller sets the F_S_TOV timer

and waits for a request domain identifier (RDI)

frame from all other switches in the fabric

which are classified as non-principal switches.

The RDI frame contains the requesting switch

WWN and desired domain identifier.

2. On receiving a RDI frame, the principal switch

fabric controller transmits a SW_ACC frame

with requesting switch WWN and granted

domain identifier. Next, the F_S_TOV is reset

and an EFP frame with the current domain

identifier list is broadcasted. The EFP frame is

broadcasted to inform all non-principal

switches of the presence of switches with

assigned or valid domain identifiers in the

fabric.

3. If RDI frame is not received within a

F_S_TOV, the principal switch assumes that

all non principal switches have been assigned

with domain identifiers, and then it broadcasts

a link state update (LSU) frame and travel to

normal operation state. The LSU frame

contains a link state record (LSR) comprising

of link descriptors describing the connectivity

of all inter-switch links (directly connected

fabric switches), associated with one specific

switch. This LSU creates the initial topology

database. The LSU frames are not

acknowledged during the initial fabric

configuration.

The “Get Domain ID” state machine and its

transitions shown in Fig. 12 are executed by the fabric

controllers on all non-principal switches to obtain

domain identifiers from the principal switch and create

the initial topology database.

Fig. 12. Get Domain ID State Machine.

1. A fabric controller on receiving DIA frame

checks, whether it has already been assigned a

domain identifier from the current principal

switch. If the domain identifier has not been

assigned, the fabric controller transmits a RDI

frame and also a SW_ACC frame.

2. On receiving the SW_ACC frame for the RDI

frame, the new granted domain identifier is

stored and travels to “check arrival port” state.

3. In the “check arrival port” state, it identifies the

physical E_Port on which SW_ACC frame for

the RDI was received. A LSU is now sent on

the identified physical E_Port, forward the DIA

frame (from the principal switch) on all other

E_Ports, and travel to normal operation state.

The fabric controllers on completing the four stages

shown in Fig. 5 reach the stable operation state in which

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

122 © 2012 GSTF

the fabric controllers broadcast at regular intervals

“Hello” frames” on all ISLs. Initially, the Hello frames

are sent without domain identifiers of its neighbors and

the switch would be capable of performing only “one-

way” communication. Next, on receiving Hello frames

from neighbors, the switch learns the domain identifiers

of its neighbors and their output ports used to send the

Hello frames. On all subsequent Hello frame

transmissions, the switch will include neighbor’s

neighbor's domain identifier, and establish “two-way”

communication between neighboring switches. At this

stage, the switches can start initial topology

synchronization and the process of determining optimal

routes. A non-reception of the periodic hello frame on

an ISL would indicate that the neighboring switch is no

longer operational.

E. Models of Ancillary Components

In addition to the DFCS modeling, the Xbar

(Crossbar), IO Port Controller, Buffer Credit

Mechanism, Name Server, Routing and FC Packet were

also modeled to simulate the fabric. Reference [3

provides a detailed discussion of modeling these

ancillary and necessary components.

VI. SIMULATION VALIDATION AND RESULTS

The individual finite state machines discussed in

section 5 are implemented first as simple module objects

derived from cSimpleModule class (OMNeT++ library)

similar to that shown in Fig. 7. Next, the simple module

objects are initialized and connected in a particular

fashion using the OMNeT++ NED based descriptor

shown in Fig. 13 to instantiate the switch object shown

in Fig. 14.

 import "FIFO", "PortCont", "XBar", "Cont", "Router", "NameServer ", "trace";

 module FabricSwitch

 parameters :

 switchNumber : numeric const ;

 gates : in : in []; out : out [];

 submodules :

 buffer : FIFO [s i z e o f (in)] ;

 display : "i=block/queue;p=134 ,414 , row;q=queue";

 pc : PortCont [s i z e o f (in)] ;

 display : "i=device/cpu_s;p=134 ,214 , row;q=queue";

 xbar : XBar ;

 gatesizes : in [s i z e o f (in)], out [s i z e o f (in)];

 display : "i=block/ switch_l ;p=366 ,54 , row;q=queue" ;

 cont : Cont ;

 gatesizes : PCin [s i z e o f (in)], PCout [s i z e o f (in)];

 display : "i=device/cpu;p=230 ,54 , row;q=queue" ;

 router : Router ;

 gatesizes : in [s i z e o f (in) + 1];

 display : "p=134 ,110;b=40 ,24" ;

 nameServer : NameServer ;

 display : "p=138 ,54;b=40 ,24" ;

 tracer : Tracer [s i z e o f (in)] ;

 display : "p=73 ,302;b=40 ,24" ;

 connections :

 xbar . Contout −−> cont . XBarin ;

 cont . XBarout −−> xbar . Contin ;

 cont . XBarCont −−> xbar . ContLine ;

 cont . RouterOut −−> router . in [s i z e o f (in)] ;

 nameServer . out −−> cont . NameServerIn ;

 for i = 0 . . s i z e o f (in) −1 do

 in [i] −−> tracer [i] . in ;

 tracer [i] . inputOut −−> buffer [i] . in ;

 buffer [i] . out −−> pc [i] . in ;

 pc [i] . FIFOout −−> buffer [i] . PCin ;

 pc [i] . XBarout −−> xbar . in [i] ;

 xbar . out [i] −−> pc [i] . XBarin ;

 cont . PCout [i] −−> pc [i] . Contin ;

 pc [i] . Contout −−> cont . PCin [i] ;

 pc [i] . out −−> tracer [i] . outInput ;

 tracer [i] . out −−> out [i] ;

 pc [i] . RouterOut −−> router . in [i] ;

 endfor ;

 display : "b=904 ,492" ;

 endmodule

Fig.13. NED based Switch Descriptor.

Fig. 14. Instantiated Switch Object.

In Fig. 13, it can be seen first the individual

modules are imported and then the parameters of the

individual modules like the number of ports, the buffer

size and type (FIFO) are initialized. Next, the desired

connections between the individual modules to simulate

the FC switch are described. The simulated FC switch

titled “FabricSwitch” in Fig. 14 consists of the simple

module object titled “cont” that encapsulates the state

machines of the fabric controller server. Also in Fig. 13

the implementation of the other essential components of

the FC switch namely “nameServer”, “Router”, “Xbar”,

etc., as simple modules are shown. Next, the above

simulated FC switches are connected in a desired

topology by another NED descriptor to simulate the FC

fabric and in turn the operation of the distributed fabric

controller server.

Fig. 15. NED Descriptor for FC Fabric with Four Switches in

Star Topology.

In Fig. 15, the NED descriptor for simulating a FC

fabric consisting of four FC switches in the Star

topology is shown. In this descriptor, the generic switch

model provided with OMNeT++ is first imported and

then the each instance of the generic switch is set to the

simulated FC switch. Next, the desired interconnection

between the simulated FC switches is described. The

OMNeT++ simulation runtime will read this descriptor

and simulate the fabric shown in Fig. 16.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

123 © 2012 GSTF

Fig. 16. FC Fabric with Four FC Switches in Star Topology.

A. Simulation Validation

The validation of the simulations consists of

comparing the fabric initialization time determined

through simulations of a small FC fabric with the fabric

initialization time of the actual FC fabric. Fig. 17 shows

a test bed of six Brocade Communications Systems

Fibre Channel switches connected in a star configuration

along with a fabric analyzer to collect the traffic during

fabric build.

Fig. 17. Hardware Test Bed.

The trace of the traffic during the fabric

initialization of a two switch fabric from the test bed and

simulation are shown in Fig. 18. It can be seen in Fig. 18

the communication traffic of the test bed and the

simulation are similar with minor differences. In case of

the testbed, the second EFP sent by switch 0 is rejected.

The reason code of the RJT frame indicated that the

switch 1 was busy performing state transitions of other

fabric service servers. Since the simulator has only the

fabric controller server state machines it does not reject

the frame.The other anomaly is the multiple hello and

LSU frames sent in case of the test bed.

Fig. 18. Comparison of Fabric Initialization Traffic between
Simulation and Test bed.

In the simulations, the periodic time interval of

sending hello frames has been made large in comparison

to that in the testbed in order to reduce the number of

hello frames to be transmitted. This is a valid option as

described in the FCP standards [8].The additional LSU

frames in the testbed are sent to maintain the topology

database which is not implemented in the simulation.

Next the timing information of the Fibre Channel

switch for each state transition by the fabric controller

server (frame reception and processing) with the link

data rate of 1 Gbps was introduced into the finite state

machine models of the fabric controller server through

another NED descriptor, which is read by the

OMNeT++ simulation runtime during simulation. The

fabric initialization simulations were performed with

increasing number of switches and trace of the traffic

was collected from the simulation and test bed. From the

trace of the traffic, the fabric initialization time defined

as the time required by the distributed fabric controller

servers to construct a stable fabric by traversing the four

stages of the fabric controller server process shown

previously in Fig. 5 were computed. In actual fabric, the

fabric initialization occurs if there is the loss of principal

switch or fabric merge occurs. During fabric

intitialization the data cannot be transmitted (domain

IDs are reassigned), and hence it is crucial to have a

measure of the intitialization time. The average

intitialization time for fabric simulations with two to six

switches was obtained by repeating the simulations five

times and are shown in Fig. 19.

Fig. 19. Comparison of Average Initialization Time for Fabric

with Two to Six Switches.

In Fig. 19, it can be seen that the average

initialization time to build the fabric from both

simulations and the test bed are almost the same. The

increase in the initialization time with increasing

switches from simulations indicates it is negligible, and

it correlates with measurements from the test bed.

It can be seen in Fig. 19, the average initialization

time of the fabric with two switches is higher in

comparison to that with three or more switches. The

reason for this behavior is the DIA rejection scheme.

During fabric build, every switch assumes the role of

the principal switch and issues a DIA command. Any

switch on receiving a DIA command will reject the

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

124 © 2012 GSTF

DIA, start the build fabric time out (B_F_TOV) timer

(default: 3 ms) and enters IDLE state as shown in Fig.

9. At the end of B_F_TOV, the switch is supposed to

exit the IDLE state and issue a BF command. The

B_F_TOV timer is introduced to avoid fabric rebuilds

due to errors. However, if the switch receives a second

DIA before the B_F_TOV timer expires; it will exit the

IDLE state prematurely and issue a BF command. In

case of two switch scenario, the possibility of the

switch receiving a second DIA does not exist where as

in case of three or more switches in star topology the

switches do receive more than one DIA before the

B_F_TOV timer expires leading to lower initialization

time.

B. Large Fabric Simulations

First, a series of simulation was performed to

determine fabric initialization time of fabrics consisting

of 2 to 31 switches in a single fabric connected in star

and full mesh topologies. Before the advent of IO

consolidation the maximum number of switches

allowed in a single fabric was 31. The star topology is a

cost efficient topology where all the switches are

connected to a central switch. The downside of this is

that it creates a single point of failure. The full mesh

topology creates a connection between all the switches.

This is a much more expensive implementation, but

there are multiple paths in case of a link or switch

failure. In Fig. 20, the average initialization time for the

star and full mesh topology with the number of

switches increasing from 2 to 31 are shown.

Fig. 20. Average Initialization Time for Star and Full Mesh

Topologies with 2 to 31 switches.

In Fig. 20, the average initialization time increases

linearly with increasing number of switches. The linear

increase is due to the corresponding increase in the

number of communications per switch to construct the

fabric. Also, in Fig. 20, it can be noticed that the

average initialization time for the same number of

switches in star topology is slightly higher in

comparison to that with the full mesh topology. This is

due to the entire communication traffic of the fabric

passing through the single switch at the hub of the star

topology causing a bottleneck and introducing

additional delay. For both the topologies, the average

initialization time is well within the bounds of the

fabric stability time out value (default F_S_TOV: 5

secs). Next, simulations were repeated for both the

topologies with the current maximum number of

switches allowed in a single fabric by the industry

which is 239. The average initialization time for the star

and full mesh topologies with a maximum of 239

switches in a single fabric is shown in Fig. 21.

Fig. 21. Large Fabric Average Initialization Time.

The average initialization time even with the

maximum number of switches in a single fabric as

shown in Fig. 21 is well within the bounds of the

default F_S_TOV. As expected, the fabric with star

topology experiences a higher initialization time.

The fabric initialization time can also be

considered as the time duration in which there cannot

be any actual data transmission between servers and

storages. Based on Fig. 21, a fabric with 239 switches

connected in star topology undergoing a fabric rebuild

will not allow data transfer between servers and

storages for 31 ms at a minimum which corresponds to

3.9 MB of lost data at a data rate of 1 Gbps or the

servers should have the capability to buffer this data for

the duration.

In an actual fabric, data transfer will occur only

after the topology of connected servers and storages is

disseminated across the entire fabric by exchanging

information among the nameServers located on each

switch. Each switch after fabric initialization will send

out a Get Entry by Port Type (GE_PT) query to one

hop neighboring switches. A switch on receiving a

GE_PT command will send information of any locally

connected servers/storages to the originator of the

GE_PT command and at the same time forward the

query to its one hop neighboring switches and they will

also send information of their locally connected

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

125 © 2012 GSTF

server/storages back to the originator. The originator on

receiving responses to its GE_PT query will update its

nameServer database. By this mechanism after fabric

initialization every switch has the topology of the entire

fabric. Therefore, a finite amount of time defined as the

topology initialization delay is required for the topology

to be disseminated across the entire fabric. This delay

will increase with the number of switches and nodes on

each switch in a fabric.

Next, a full mesh fabric with 2048 nodes

distributed across the fabric switches was simulated and

the topology initialization delay was collected. The

topology initialization delay on two fabrics with eight

and sixteen switches and same number of nodes are

shown in Fig. 22.

Fig. 22. Topology Initialization delay with Increasing Number of

Nodes and Switches.

In Fig. 22, it can be seen that the topology

initialization delay increases roughly quadratic and

reaches a value of 1200 and 900 msecs for 2048 nodes

distributed among 8 (256 nodes/switch) and 16 (128

nodes/switch) switches respectively. The fabric with 16

switches experiences a smaller topology initialization

delay since each switch has to respond with information

of only 128 nodes in comparison to 256 nodes with 8

switches.

The topology initialization delay is significantly

large in comparison to the fabric initialization time, and

it increases with the number of nodes and switches in

the fabric. If this fabric undergoes fabric rebuild it will

not allow any data transfers between servers and

storages for 1200 msecs, which corresponds to 150 MB

of lost data at a data rate of 1 Gbps.

From the above simulations, we can see that even

though a large fabric with 239 switches is stable

however due to the significantly larger topology

initialization delay the servers have to be equipped with

a large application buffer to avoid loss of significant

application data. From Fig. 22, it can be seen that the

topology initialization delay will reach a value larger

than F_S_TOV with increasing number of nodes and

switches leading to fabric instability. Also, from Fig.

22, it can be seen that distributing the same number of

nodes across a larger fabric (number of switches) will

reduce the topology initialization delay since each

switch has to process information of fewer nodes.

VII. CONCLUSIONS

In this paper, we have demonstrated the SAN

simulator simulating the FC-2 level traffic between

distributed fabric controller servers during the fabric

build and topology initialization operations. The

various finite state machines of the distributed fabric

controller has been presented along with their

implementations machines using OMNeT++ has been

presented. The performance of the simulator has been

presented by comparing simulation traffic against the

traffic of an actual SAN fabric. The simulator has been

demonstrated to simulate fabrics with 239 switches at

the FC-2 level. We have identified by simulations that

the fabric build/rebuild process is stable even with the

maximum number of switches in a single fabric and the

fabric initialization time is in the order of 30 msecs. We

have also identified that the topology initialization

delay increases significantly with increasing size of the

fabric and number of nodes/switch causing a significant

data loss during fabric rebuild. Using the simulator, the

distribution of nodes given a fabric size can be

determined in order to reduce the topology initialization

delay. Since, the simulator has been implemented using

object-oriented principles with C++ and open source

discrete event simulator OMNeT++, the simulator is

highly flexible, tailored for incorporating additional

components with ease.

The next stage of development will address the

remaining fabric services servers along with actual

storage data traffic.

REFERENCES
[1] Timothy Brothers, Suresh Muknahallipatna, Jerry Hamann, and
Howard Johnson, “Fibre Channel Switch Modeling at Fibre Channel-

2 Level for Large Fabric Storage Area Network Simulations using

OMNeT++: Preliminary Results,” 32nd IEEE Conference on Local
Computer Networks (LCN), Oct. 15-18, 2007, Dublin, Ireland, pp.

191- 199.

[2] Berenbrink P, Brinkmann A, Scheideler C. “SIMLAB – A
Simulation Environment for Storage Area Networks”, Proceedings of

the 9th IEEE Euromicro Workshop on Parallel and Distributed

Processing, pp. 227 – 234, Feb. 7-9, 2001.
[3] Brothers TJ. “A Discrete Event Simulator Model of a Fibre

Channel Switch at the Fibre Channel 2 Level”, PhD dissertation,

Dept. of ECE, University of Wyoming, May. 2007.
[4] “FC-AL-2: Fibre Channel 2nd Generation Arbitrated Loop”,

International Committee for Information Technology Standardization

(INCITS), Oct. 23, 2001, Rev. 7.0.
[5] “FC-DA-2: Fibre Channel Device Attach”, International

Committee for Information Technology Standardization (INCITS):

NPIV Acquisition Procedure, October 2008, Rev. 1.03.
[6] “FC-GS-6: Fibre Channel Generic Services”, International

Committee for Information Technology Standardization (INCITS),

March 2009, Rev. 9.3.
[7] “FC-LS-2: Fibre Channel Link Services”, International

Committee for Information Technology Standardization (INCITS),

May 2009, Rev. 2.11.

0

200

400

600

800

1000

1200

1400

512 1024 1536 2048

T
o

p
o
lo

g
y
 In

it
ia

li
za

ti
o

n
 D

el
ay

 (
m

se
cs

)

Number of Nodes

8 Switches

16 Switches

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

126 © 2012 GSTF

[8] “FC-SW-5: Fibre Channel Switch Fabric”, International

Committee for Information Technology Standardization (INCITS),
June 2009, Rev. 8.5.

[9] Janson M, Karlsson M. “WOK – A Simulation Model for DFS

and Link Adaptation in IEEE 802.11A WLAN”, Masters Thesis,
Linkoping University, Jan. 2004.

[10] Kembel RW.” Fibre channel: A Comprehensive Introduction, 1st

Edition”, Northwest Learning Associates Inc.; 2002a.
[11] Kembel RW. “Fibre Channel Switched Fabric, 1st Edition”,

Northwest Learning Associates Inc.; 2002b.

[12] Kogekar A, A. Gokhale A. “Performance Evaluation of the
Reactor Pattern Using the OMNeT++ Simulator”, Proceedings of the

44th Annual ACM Southeast Regional Conference, pp. 708 – 713,

Melbourne, FL, 2006.
[13] Lai J, Wu E, Varga A, Sekercioglue YA, Egan GK. “A

Simulation Suite for Accurate Modeling of Ipv6 Protocols”,

Proceedings of the 2nd International OMNeT++ Workshop, Berlin,
Germany, Jan. 2002.

[14] Molero X, Silla F, Santonja V, Duato J. “Modeling and

Simulation of Storage Area Networks”, Proceedings of the 8th IEEE

International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, pp. 307 – 314, Aug. 29

– Sept. 01, 2000a.
[15] Molero X, Silla F, Santonja V, Duato J. “A Tool for the Design

and Evaluation of Fibre Channel Storage Area Networks”,

Proceedings of the 34th IEEE Annual Simulation Symposium, pp. 133
– 140, April 22-26, 2001a.

[16] Molero X, Silla F, Santonja V, Duato J. “On the Switch
Architecture for Fibre Channel Storage Area Networks”, Proceedings

of the 8th International Conference on Parallel and Distributed

Systems, ICPADS 2001, pp. 484 – 491, June. 26-29, 2001b.
[17] Molero X, Silla F, Santonja V, Duato J. “On the Effect of Link

Failures in Fibre Channel Storage Area Networks”, Proceedings of

the International Symposium on Parallel Architectures, Algorthims
and Networks, I-SPAN 2000, pp. 102 – 111, Dec. 7-9, 2000b.

[18] Rueda A, Pawlak M. “Performance Modeling on Synchronous

Write Operations of Storage Wide Area Network (SWAN)”,
Proceedings of the OPNETWORK 2003, pp. 1 – 6, Aug. 2003.

[19] Shu J, Li B, Zheng W. “Design and Implementation of a SAN

System Based on the Fiber Channel Protocol”, IEEE Trans. on
Computer,Vol. 54, No. 4, pp. 439 – 448, April 2006.

[20] Varga A. “OMNeT++ object-oriented discrete event simulation

system”, http://www.hit.bme.hu/phd/vargaa/omnetpp.htm, 1996.
[21] Wang CY, Zhou F, Zhu YL, Chong CT, Hou B, Xi WY.

“Simulation of Fibre Channel Storage Area Networks Using

SANSim”, Proceeding of the 11th IEEE International Conference on
Networks, pp. 349 – 354, Sept. 28 – Oct. 01, 2003.

[22] Watson RW. “High Performance Storage System Scalability:

Architecure, Implementation and Experience”, Proceedings of the
22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems

and Technologies (MSST’ 05), April 11 – 14, 2005.

Biographies

Suresh Muknahallipatna received his B.E. degree in

Electrical Engineering and Master’s of Engineering

from the University of Bangalore, India, in 1988 and

1991, respectively. He completed his Ph.D. degree at

the University of Wyoming in 1995, with an emphasis

on Neural Networks. He is a currently Associate

Professor in the Dept. of ECE at the University of

Wyoming. His current areas of expertise are

performance analysis, modeling and simulations of

storage area networks and mobile ad-hoc networks.

Timothy Brothers received his BS degree in Computer

Engineering in 2002 and Ph.D. degree in 2007 both at

the University of Wyoming with research on Storage

Area Network limitations. Areas of research include

modeling/simulation, robotics, and teaching strategies.

Joseph Miles received his MS degree in Electrical

Engineering from the University of Wyoming, in 2006.

He is currently pursuing Ph.D. in the area of Mobile

Adhoc Networks with special emphasis on localization

techniques.

Howard Johnson is currently a Technical Director at

Brocade Communications Systems, Inc., and is

responsible for furthering Brocade’s lead in FICON

technology. His expertise encompasses Brocade’s

ESCON and FICON products and includes an extensive

relationship with IBM’s zSeries I/O development team.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

127 © 2012 GSTF

http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

