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Abstract - This paper explores the potential of collecting 

neurophysiological data in order to further understand user’s 

learning experience. The experimental setup involves collecting 

electroencephalographic signal (EEG) from the brain cortex to 

infer users’ cognitive state while they played an educational video 

game designed to support the learning of Newtonian mechanics. 

Preliminary results suggest that this neuroscience perspective is 

quite promising in the idea of quantitatively characterizing users’ 

learning experience. This could be an innovative and promising 

avenue in general game development or in educational videogame 

research field. 

Keywords: EEG, cognitive state, educational video games, 

science education. 

I.  INTRODUCTION 

 
In the field of scientific education, the foremost challenge 

is, and has been, addressing the gap between the 

misconceptions of students and scientific understanding of 

realities and phenomenon. Although a large body of research 

argues that interactive teaching methods are usually more 

effective in changing students’ misconceptions than traditional 

lecture-based instruction [1], only a few researchers examined 

the impact on video games as a an emotionally engaging 

instructional approach. 

 

Recently, disciplines, such as economics, psychology and 

marketing, have been very proactive in incorporating 

neurophysiological measurements e.g. [17-18-19-20], in order 

to assess learners’ cognitive state, such as cognitive 

engagement [28-29-30]. In the educational video game (EVG) 

research field, several researchers are also bringing 

neurophysiologic tools to characterize player’s experience. 

[see 30].  

 

While many researchers generally consider engagement as 

playing a key-role in learning, measuring the learners’ 

engagement remained a challenging task. Until now, 

researchers were  using self-reported methods to measure 

engagement, but paradoxically it required to take the subject 

out of its very state of mind. Neurophysiologic tools are much 

less obstructive than traditional self-reported scales, and can 

allow for a more natural learning environment. These tools 

include equipments to monitor heart rate (EKG), the body 

temperature, the electrodermal activity (EDA), and the 

electroencephalography (EEG). The remaining of this paper 

focuses solely on this later technique. EEG signal was 

collected to classify player’s cognitive states (sleepiness, 

distraction and engagement), thus examining his experience 

during game play. 

 

II. ASSESSING COGNITIVE STATES OF A LEARNER 

 

An active learner is energetically and emotionally involved, 
and plays a dynamic and self-motivated role in how and what 
needs to be learned [2]. A number of educators and researchers 
(see [3]) have found that EVGs improve learning through 
interactive exchanges and promote engagement from students. 
Since motivation and engagement are closely related concepts 
[4], consequently the recording of a real-time index on 
engagement provides accurate and valuable information about 
intrinsic motivation of players in action. 

An engagement is a state of high alertness to task relevant 

stimuli [5-6]. As mentioned before, engagement have mostly 

been studied in computer game research field using 

psychometric scales in which subjects were asked to self-

report their level of engagement e.g.[7]. Since the 90’s, some 

researchers began taking measurements of attention [10-11-

12] by using EEG ambulatory systems and presenting results 

for real time classification on the subject’s cognitive state. 

There have been numerous studies quantifying visual alertness 

and attention using electroencephalography (EEG) measures 

[13], and measuring the efficiency of multi-modal interaction 

paradigms for virtual environments [10-14-15-16], but not 

much on users’ engagement [8-9]. 

 

General EEG body of knowledge states that i) increases in 

brainwave beta activity are associated to a higher level of 

engagement related to a task, and ii), increases related to alpha 
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and/or theta activity would reflect less alertness and task 

engagement due to decreased information processing [21].  

 

Alongside, Pope et al. [22] developed and validated an 

Engagement Index (EI) from various scalp sites (respectively 

Cz, T5, P3, Pz, P4, 01, 02 and Cz, Pz, P3, P4), and suggested 

that computing the measure of “beta / (alpha+theta)” reflects a 

task engagement index. 

 

Since Pope’s and his colleague work, new non-intrusive 

technologies and robust algorithms have been developed and 

validated e.g. [23]. In a very innovative perspective, it is now 

possible to precisely quantify cognitive states (sleepiness; 

distraction; low engagement; high engagement) from 

individuals within a specific task. These algorithms were 

initially developed in the research field of neuroergonomics, 

aiming to investigate drivers’ or plane pilots’ level of 

alertness. We hypothesize that these constructs could be useful 

when transferred to other fields, such as education. 

 

III. RESEARCH GOAL 

 
This article aims to present data recently collected from a 

exploratory study in science education. The research goal is to 
investigate if engagement measurements analyzed with recent 
neuroergonomics algorithms could be useful to characterize the 
learning experience of students playing an educational video 
game. Using an experimental approach, a within-subject 
comparison was done to determine cognitive state of learners 
during the game. In the context of this study, we are using an 
EVG called Mecanika, which support the learning of 
Newtonian mechanics. 

Preliminary results from this study will be discussed within 
the perspective of their transferability to other fields like 
education or computer game industry. We hypothesize that the 
methodology used may contribute to develop more effective 
and engaging tasks and activities, such as educational video 
games. 

IV. RESEARCH DESIGN 

 
EEG signal of twenty-four (24) subjects within an authentic 

learning environment was gathered during an approximately 10 
minutes playing session. During this session, the subjects had 
to complete the most they could out of the five (5) levels 
available in the Mecanika game. All subjects were right-
handed male adults, students in a business school IT program. 
None of the subjects had previous experience related to the 
game.  

 

A. Mecanika : an educational video game  

 
Mecanika doesn’t require any calculation or use of 

formulas since the game is designed to learn about qualitative 
conceptual physics. The goal is to place robots (forces) and 

activate throwers in order to collect all stars by lighting them 
with collect-o-matics. However the collect-o-matics are not 
controlled directly by the students. Instead, they have to 
strategically place the robots, representing constant force, 
circular movement or change in gravity, to control the 
trajectory of the collect-o-matics. The trick is to visualize the 
trajectory the collect-o-matics have to take to light the stars and 
placing the robots accordingly to predictions, comprehension 
of active forces and in regard of the speed limit imposed in 
danger zones. Then, students can give it a try by activating the 
thrower. If the robots are correctly placed, collect-o-matics will 
collect every star and the student will have completed the level. 
If the collect-o-matics fail to light every star, the student is 
asked to try again by placing the robots differently.  Figure 1 
shows an example where the collect-o-matics fail to pass on the 
third star because the wind robot (represented by the empty 
rectangle) has only been used partially.  To successfully 
complete this level, the wind zone has to be placed in a way 
that optimizes its influence on the trajectory of collect-o-
matics, in this case, right after the exit of the thrower (see 
figure 2).  When placed like that, the collect-o-matics are 
accelerated on a sufficient distance to pass over the ramp and 
light all of the three stars. 

The original game consists of 50 levels designed in 
coherence with the Force Concept Inventory (FCI), a robust 
validated questionnaire [24] developed in science education 
research field to assess students’ qualitative understanding of 
basic concepts in Newtonian physics. Each level of Mecanika 
triggers a specific misconception identified in the FCI. In this 
pilot study, five (5) levels were extracted from the original 
game.  

 

 

Figure 1. Mecanika game screen 

 

B. Instrumentation 

 
EEG signal was gathered using wireless B-Alert headset 

system, developed by Advanced Brain Monitoring, Inc.  

The B-Alert sensor headset [25-26] was used to acquire the 
EEG data from three referential channels (Fz, Cz, and POz) 
and two bipolar channels (Fz-POz and Cz-POz). The sampling 
rate was 256 units for all channels. Proprietary data acquisition 
software are stored the EEG data on the host computer. A 
cleaning algorithm [25] automatically detect and remove 
artifact in the time-domain EEG signal, including spikes 
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caused by tapping or bumping of the sensors, amplifier 
saturation, and excursions that occur during the onset or 
recovery related to saturations. Eye blinks and excessive 
muscle activities were also identified and decontaminated by 
an automatic wavelet transform. 

From the decontaminated EEG recording, signal is then 

analyzed on a second-by-second basis, and averaged on a one 

second time frame. In other words, the B-Alert algorithm 

classifies every seconds the subject’s probability of being in 

one of the four cognitive states (sleep onset, 

distraction/relaxed wakefulness, low engagement, and high 

engagement) [27]. 

 

C. Procedure 

 
Installation of B-Alert headset is a short procedure, which 

requires less than 10 minutes. In order to make sure that all the 

electrodes are in place, the software starts the protocol with a 

measurement of their impedance. 

 

Then, each subject has to perform a standardized cognitive 

task to individually calibrate the B-Alert engagement metric.  

Results of psychological measurements during the game 

involve a comparison with this calibration.  

 

Finally, in-game usage data (time spent on levels, number 

of scouts thrown) were also collected for each subject. 

  

V. RESULTS AND DISCUSSION 

 

Data shown in this section are just gathered and partially 

analyzed at the time of paper submission. Further analysis 

should complete the preliminary and mostly descriptive data 

presented here.  

 

Graphic 1 shows the general mean of overal cognitive 

states of all 24 users playing mecanika. We can state that a 10 

minutes spent in Mecanika is a rather engaging task, while 

some users still fell sleepiness and distraction at some points 

of the game.  

 

 

 
 

Graphic 1. Mean of overall cognitive state probablity during 

the game  (all levels; n=24) 

On an individual analysis, graphic 2 is helpful in 

identifying sleepy or distracted users. On the x axis, we can 

observe each subject probability (y axis) of being in one of the 

four cognitive states. For example, Subject 4 was highly 

engaged in more than 80% of the game, but subject 17 seemed 

to be sleepy, and subject 23 was quite distracted.   

 

 

 
 

Graphic 2. Mean of the overall probability of cognitive states 

for each subjects 

Legend : sleepy (blue)-distracted (red)-low engaged (green) - 

high engaged (purple) 

 

On a game level analysis, building upon the recent work of 

Senecal and his colleagues [31], an EEG index was also 

computed using the probability of the subject being in one of 

the four cognitive states : 

 

 

 

The higher the index, the more cognitively engaged was 

the subject during the task. The EEG index was normalized 

using Level 1 of the game as a baseline. Graphic 3 report the 

variation of this index from the baseline.  

 

We observe that the EEG index increased by 87,6 % 

between the level 1 and 2 of the game meaning that the 

subjects had to mobilize their cognitive resources in order to 

solve the level 2. This variation from baseline significantly 

reduces (Wilcoxon test, p=0.03) between level 2 and level 3, 

with a 42,3 % difference with baseline. In level 4, subjects 

were almost back to their baseline level with a modest 17.4 % 

difference.  
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Graphic 3. Level by level variation of EEG Index from 

baseline (in %) 
 

 

These last results show that, as the game progresses, the 

learner become more skilled and required to mobilize less 

cognitive resources to solve the problems. This in line with 

recent work in cognitive neuroscience [32,33], which states 

that a dual process governs human decision and behavior: a 

more controlled system that is conscious, serial and slow, and 

a more automatic, which is unconscious, paralleled and 

effortless. As an expertise in a task is developed, one moves 

from a controlled system to an automatic system, thus 

changing the pattern of neuronal activations [34].  

 

With analyzed data gathered so far, the observed wide 

variance of cognitive states troughout the subjects and the time 

variation of engagement are quite encouraging in the idea of 

using these neuroergonomics algorithms in education. Further 

analysis of these results should be considered in the 

perspective of finding statistical relationships between 

performance in the game (usage data) and psychophysiologic 

data. 

 

VI. CONCLUSION 

 

The objective of this exploratory study was primarily to 

investigate if new EEG analysis algorithms developed in the 

field of neuroergonomics could be transferred to other fields, 

such as research in science education or gaming. In parallel, 

the research protocol of this pilot study was to identify the 

challenge involved in to scaling up this investigation to a 

larger group of participants.  

 

Our current results show that using neurophysiological 

tools like EEG could be a promising avenue in research in 

education. We humbly consider that real time measurement of 

cognitive state would represent a promising research 

application for game development. Bringing neurophysiologic 

tools within an educational video game setup could lead to a 

more objective measure of the efficiency in this specific 

instructional approach. Also it gives game developers the 

possibility to explore a player’s experience and validate, for 

example, a game’s sequence based on real time objective data. 

 
Obviously, the small sample size, in the current study, 

limits the possibilities of generalization among our findings. 

Also, this research was limited to the study related to cognitive 

states, and we cannot report on the actual motivation or 

learning from the subjects, which will be part of an eventual 

scaled up study.  
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