
Enabling Constraint-based Binary Reconfiguration
by Binary Analysis

Daniel Baldin, Stefan Grösbrink, Simon Oberthür

Design of Distributed Embedded Systems research group

Heinz Nixdorf Institute, University of Paderborn

Fuerstenallee 11, D-33102 Paderborn, Germany

dbaldin@upb.de, stefan.groesbrink@hni.upb.de, oberthuer@upb.de

Abstract—Today’s adaptable architectures require configura-
bility and adaptability to be supported already at design level.
However, modern software products are often constructed out
of reusable but non-adaptable and/or legacy software artifacts
(e.g. libraries) to meet early time-to-market requirements. Thus,
modern adaptable architectures are rarely used in commercial
applications, because the effort to add adaptability to the reused
software artifacts is just too high. In this paper, we propose a
methodology to semi-automatically configure existing binaries on
a given set of constraints. It is based on building the annotated
control flow graph to identify and remove unused code on static
basic block level depending on different execution requirements
given as a set of constraints. This allows for adaptation of binaries
after compile time without the use of source code. We then
propose a way of adding additional reconfiguration support to
these configured binary objects. With this approach, adaption
and reconfiguration can be added with a low effort to non-
adaptive software.

Index Terms—basic block, binary adaptation, legacy code
optimization, reconfiguration

I. INTRODUCTION

Different architectures have been proposed in order to

support configurable as well as reconfigurable binaries [1], [2].

However these approaches assume e.g. that all components are

built with configurability support on source code level. Hence,

the systems do not support legacy code. In order to speed

up the development of software products, reuse of libraries is

essential in today’s industry to reach a short time-to-market.

If we want to use existing libraries, which do not support

configurability and can not be modified at source code level,

a new approach is required.

In this paper we introduce a methodology which adds

configurability to binary objects by an approach that semi-

automatically optimizes the binary with respect to a given

set of constraints. The configuration is based on building

and using the annotated control flow graph of the binary to

optimize the binary on static basic block level. We assume

the software to be already optimized by current state of the

art link time code optimizers [3], [4] and/or any other kind

of global optimization technique as we are not performing

standard link time optimization. We then propose a way of

using the extracted configurations as reconfigurable sets using

the Flexible Resource Manager approach described in Section

IV-B to add reconfiguration support to the software product.

The approach requires only minimal source code infor-

mation. Specifically we need method signatures to identify

higher level expressions that are used for the optimization

process. This is only a small restriction since even proprietary

libraries come shipped with header files containing structure

and method signatures for interface methods. If this would

not be the case the entire library would not be usable by any

higher level language as the interfaces would be unknown.

II. RELATED WORK

Many algorithms and approaches have been proposed to

optimize a program on binary level. Link Time Optimization

has become common in most compiler tool chains. Algorithms

for different kind of optimization goals exist, as e.g., Dead-

Code Elimination, Loop Unrolling, Live Register Optimiza-

tion, etc. Despite the overall benefit of these approaches

to globally optimize the application for performance and/or

memory consumption, there is up to now no tool which allows

the binaries to be adapted on a constraints basis without high

level modifications on the source code of the binaries. The

authors of [5] propose the creation of so called ”adaptable

binaries” by adding information to the binaries, which may

then be used to modify the binary later on. The approach in

[6] is based on using new architectures and creating adaptable

and reloadable components on source code level. A promising

approach has been shown in [7] by creating so called ”delta

files”, which contain the byte streams of the adaptations to be

made on binary level. However, the delta files are created by

compiling the adaptations from source code for the different

kinds of configurations.

All these approaches have in common that they cannot be

used with proprietary libraries that already have been compiled

and may not be rebuilt with these kind of information or

adaptation support.

III. BINARY BASIC BLOCK OPTIMIZATION

Configuration on basic block level can be a valuable tech-

nique since it allows adaptation even for legacy code. Table

I compares some valuable features and techniques that may

DOI: 10.5176_2010-2283_1.4.96

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

1 © 2012 GSTF

showspacesshowspaces
showspacesshowspaces showspacesv a r = namespace : : f unc (&(c h a r ∗) var2 , va r3 << 4 ˆ 0 x f f)
showspacesshowspaces showspaces!= s i z e o f (u n s i g n e d i n t)
showspacesshowspaces

Listing 1. Hard to evaluate example C-style expression.

be needed for automatic configuration of systems that are

not built to support configuration or even reconfiguration. The

evaluation shall demonstrate which features or technique are

more or less expensive to support on different code levels as

there are Basic Block Level (BBL), Intermediate Language

Level (ILL) and Higher Language Level (HLL).

BBL ILL HLL

Platform Independence - - ++ +
Expression Parsing ++ + -
Data Flow Analysis -(-) + ++
Legacy Code Support ++ - - - -
Tool Support + - +

TABLE I
FEATURES OR TECHNIQUES NEEDED FOR AUTOMATIC OPTIMIZATION ON

DIFFERENT CODE LEVELS COMPARED (”-” MEANS MORE DIFFICULT, ”+”
MEANS EASIER).

Any automatic or semi-automatic approach will need to do

some expression parsing and data flow analysis at some point

of the optimization process. While expressions can easily be

parsed on basic block level since most architectures consist

primarily of binary and unary operations parsing higher level

languages gets more and more complicated as they support

complex expressions. For example parsing C++ expressions

as seen in Listing 1 needs far more effort than parsing a block

of assembler instructions as we also need to face ambiguities

and other problems. On the other hand data flow analysis can

be complex on basic block level [8] while parsing higher level

languages easily allows to identify variables and references

and thus data flows in general. Platform Independence and

legacy code support are an important factor as well. While

the high platform dependence on basic block level may be

compensated by a higher implementation effort, legacy code

support can not be achieved efficiently by some means on ILL

layer or HLL layer since this layer is often not available for

legacy code. Especially the support of legacy code renders the

basic block layer an interesting layer for new configuration

and reconfiguration approaches.

IV. FOUNDATION

The desired configurability at basic block level is realized

by following the TEReCS concept, which allows the synthe-

sis of valid configurations based on the given requirements

like binary size. The approach of puppet configuration is

introduced. Finally the online configurability at basic block

level is realized by applying our flexible resource management

(FRM) approach. The FRM approach allows to define different

profiles with different configurations encapsulated as basic

block combinations. At runtime the FRM can then decide

which profile needs to be activated to provide the desired

service as e.g. IPv4 or IPv6.

Primitives:

Services:

Devices:

and edges or edges

Configuration Flow

Fig. 1. TEReCS’s design space description from system primitives via
services down to hardware devices (from [10]).

A. TEReCs

TEReCS1 is a methodology to synthesize and configure

operating systems for distributed embedded applications devel-

oped at the University of Paderborn [9], [10]. The approach

strictly distinguishes between knowledge about the applica-

tion and expert knowledge about the customizable operating

system. Knowledge about the application is considered as a

requirement specification. This requirement specification is an

input to the configurator.

The complete and valid design space of the customizable

operating system is specified by a so-called AND/OR service

dependency graph [11]. This domain knowledge contains

options, costs, and constraints and defines an over-specification

by containing alternative options. The configuration pro-

cess removes some domain specific knowledge by exploiting

knowledge about the application. Thereby, a configuration for

the run-time platform will be generated.

The complete valid design space of the configurable oper-

ating system is specified by an AND/OR graph as depicted in

Figure 1:

• Nodes represent services and are the smallest atomic

items, which are subject of the configuration
• Mandatory dependencies between services are specified

by the AND edges
• Optional or alternative dependencies between services are

specified by the OR edges
• Constraints (preferences, prohibitions, enforcements) for

the alternatives can be specified
• Root nodes of the graph are interpreted as system primi-

tives

The main objective of the configuration process is to remove

all OR dependencies from the graph (over specification →
complete and non-ambiguous specification). The configuration

can be interpreted as a sub-graph without any alternatives.

The algorithm works as follows: A path can be found

through the complete graph from the sending primitive down

1Tools for Embedded Real-Time Communication Systems

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

2 © 2012 GSTF

to the sending device. The primitives can be considered as the

strings of a puppet. Depending on which strings are pulled,

the “configuration” of the puppet will change accordingly.

The service dependencies can be compared to the joints

of the puppet. Therefore, the algorithm is named “Puppet
Configuration”.

B. Flexible Resource Management (FRM)

The FRM [12] was developed to improve the resource

utilization by putting temporary unused but for worst case re-

source consumptions reserved resources at other applications’

disposal. In case of a conflict, it is solved under hard real-

time constrains. The FRM schedules the resource demands of

multiple applications. Each agent is equipped with a set of

possible profiles and transitions between them. Each profile

contains information about maximum and minimum resource

requirements, switching conditions and a profile quality, which

is used to indicate which agents to prefer when resources can

be freed. The FRM is in charge of deciding in which of their

profile the applications are running. The profiles can be semi-

automatically generated out of hybrid reconfiguration charts

[13].

The FRM approach is also applied to the operating system

(OS) itself. The resource usage implies the services that the

applications require from the OS. Reconfiguration of the OS

means supporting on demand services or the possibility of

degrading services. The FRM was used to extend an offline

customizable OS in order to be dynamically reconfigurable

during run-time. Thus with this extension the operating system

is aware of the current required services.

V. EVALUATION SCENARIO

For evaluation purposes and as an illustration of the method-

ology, we implemented an Internet Protocol(IP)-Stack on an

integrated circuit card (ICC) with an S3FS9CI AT91 ARM

processor. The approach has thus been evaluated on the

ARMv4(T) Instruction Set Architecture (ISA). We extended

the lightweight Internet Protocol Stack (lwIP Stack) 2 with

IPv6, ICMPv6, and TLS functionalities which allows the IP-

Stack to be used in a broad set of configurations. The overall

IP-Stack contains several modules and hundreds of methods

which makes it possible to test our approach with a realistic

scenario.

For the deployment of this protocol stack, it is desirable to

configure the stack application-specifically. Especially the high

amount of independent functionalities and sub-functionalities

inside the protocol implementation makes this software pro-

gram a perfect candidate for our configuration approach.

Depending on the application many parts of the protocol stack

may not be used. One may imagine a scenario in which

the IP-Stack is deployed in an IPv4-only infrastructure. In

this example the parts of the application implementing IPv6

2http://savannah.nongnu.org/projects/lwip/

���������	
�������
�

��������������
	������

����

������������
�������
��
�����������	���������

������������!

"��	��	���
�

���
�����
��
#$���	��
�

����	���
����
%��&
��"��������

'��
�������
���
��
��
(�)���&�
��

**�+�,��

"��,�	���
���������

�
�������
�

)�������
�

��	
���������
#$�	�����

"���	��
�

�
�����������&�	-��

*����.�%
���	���
�

+��-���

#,�����
�

��	
�������
�
/�������

���
��%

#$���������0��������

1#���"

Fig. 2. Configuration Methodology.

would not be needed. On an even more fine granular basis

configuration could also be applied to sub-functionalities as the

support for multicast addresses. An deployment scenario may

change from a non-multicast environment to a multicast using

environment. Automatic adaptation of the software program

to support these functionalities would be a major benefit in

terms of resource efficiency.

VI. METHODOLOGY

The overall offline optimization process involves three major

steps as depicted in Figure 2: Binary Analysis, Configuration

and Modification. First of all, the binary has to be analyzed.

This analysis works on the object files which are used inside

the linking process. Using these object files, a global annotated

control flow graph is derived. This graph construction is

described in the next section.

A. Binary Analysis

Before we can remove parts of the binary, we need to

identify the control flow and the semantics of the program.

In the first step we parse the binary to derive the control flow

graph on static basic block level which is described in Section

VI-A1. In the next step we extract the conditions for transitions

to take place between basic blocks of the program using data

flow analysis techniques as described in Section VI-A2.

1) Control Flow Graph Generation: By disassembling the

binary code we identify the static basic blocks and the control

flow between these blocks of the program. A static basic block

is a sequence of instructions that has exactly one entry point

and one exit point. We use the basic block as the smallest

representation and optimization unit since it describes a linear

flow of instructions. A non-linear control flow appears only

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

3 © 2012 GSTF

at the end of a basic block. Each instruction that is a target

of a branch instruction defines a new basic block. In general,

every program can be uniquely partitioned into a set of non-

overlapping static basic blocks.

Whenever it is possible to remove an instruction inside

a basic block, it is possible to remove the complete block.

Figure 3 depicts the first four basic blocks of the disassembled

ip6_input method. Using these blocks we can derive a

graph representing the possible control flow of the processor

(called control flow graph) as seen on the right side of Figure

3. Each node defines a basic block and the edges represent

conditional control flow (dashed edges) and unconditional

control flow (solid egdes) between these blocks. Each control

flow edge models a dependency between the basic blocks, as

reaching one basic block means that we may also reach the

successors of it.

The analysis of binary code is a non-trivial task. Disas-

sembling and interpreting binary files is fraught with prob-

lems, e.g., the Code Discovery Problem. Many Instruction

Set Architectures (ISA) allow binary data to be mixed up

with executable instructions and vice versa. Not being able

to distinguish between instructions and data may invalidate

the whole optimization process since some control flows may

not be discovered or data may be misinterpreted. However for

our evaluation platform this problem does not exist, since the

ARM Embedded Applications Binary Interface (EABI) forces

all EABI conform Embedded Linker File (ELF) object files to

provide information on all occurrences of data and instruction

blocks by special mapping symbols inside the symbol table

(see Section 4.6.5 in [14] for the symbol definition).

Another problem with control flow detection arises if in-

direct control flow instructions are used inside the binary.

Most of the indirect control flows are due to jump tables

that are generated by the compiler to speed up switch/case

statements. The targets of these jumps can be computed with

high precision as it was shown in [15]. The basic idea is

to use expression substitution, similar to the approach in

Section VI-A2, to allow the expression to be checked against

branch normal forms. Other sources of indirect control flows

are method pointers, available in most high-level languages,

e.g., to implement inheritance or to allow dynamic program

behavior. The targets of these kind of indirect control flows

are very hard to compute and to the best of our knowledge

no approach exists which can guarantee the precise detection

of all targets. Using the approach proposed in [16] however,

we may overestimate the jump targets by introducing a so

called ”hell node”. The estimation uses the complete set of

relocatable symbols, which is the union of all relocatable

symbols of all object files, as the target for every indirect

jump. The approach may not be as tight as possible but it

ensures the correctness of the following optimization process.

2) Graph Annotation: We are using the common approach

of forward substitution, as described in [17], [18], to derive

higher level expressions from low level expressions, which

000034e8 <ip6_input>:
 34e8: push {�}
 34ec: ldr r4, [r0, #4]
 34f0: ldrb r3, [r4]
 34f4: and r3, r3, #240
 34f8: cmp r3, #96
 34fc: mov r5, r0
 3500: mov r7, r1
 3504: bne 3518

 3508: ldr r3, [pc, #436]
 350c: add r8, r4, #24
 3510: ldr r6, [r3]
 3514: b <ip6_input+0xec>

 3518: bl <ip6_addr_cmp>

 351c: cmp r0, #0
 3520: ldr r0, [pc, #416]
 3524: bne <ip6_input+0x100>

ip6_addr_cmp()

34e8

3504

3508

3514

3518

3518

351c

3524

Fig. 3. Control flow graph construction using the basic blocks of the
disassembled binary.

OperatorNode::OR

OperatorNode::
LOAD_BYTE

name: v

VariableNode

Value: a

DataNode

OperatorNode::
SHIFTLEFT

OperatorNode::
LOAD_BYTE

Value: a+1

DataNode

Value: 0x8

DataNode

OperatorNode::
LOAD_HALFWORD

Value: a

DataNode

m[v+a][0:7] | (m[v+a+1][0:7] << 8)

m[v+a][0:15]

name: v

VariableNode

equals

name: v

VariableNode

LOAD_HALFWORD
Pattern

Fig. 4. Expression Representation and Reduction.

in our case are the assembler instructions of the object files.

For assembly code one can express the contents of a register

r in terms of a set ak at instruction i as r = f1 ({ak} , i).
If the definition at instruction i is the unique definition of a

register r that reaches an instruction j along all paths in the

program, without any of the registers ak being redefined, one

can forward substitute the register definition at instruction j
with s = f2 ({r} , j), resulting in:

s = f2 ({f1 ({ak} , i)} , j)

After analyzing a basic block, the content of each register

can be computed by forward substitution as an intermediate

level representation based on the Register Transfer Lists (RTL)

model by [19]. This model describes the effect of machine

instructions as a list of register transfers and is general enough

to support different kinds of architectures. For performance

reasons we represented these expressions by a tree of literals.

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

4 © 2012 GSTF

showspacesshowspaces
showspacesshowspaces showspaces1 s t r u c t pbuf {
showspacesshowspaces showspaces2 /∗ ∗ n e x t pbuf i n l i n k e d pbuf c h a i n ∗ /
showspacesshowspaces showspaces3 s t r u c t pbuf ∗ n e x t ;
showspacesshowspaces showspaces4 /∗ ∗ p o i n t e r t o t h e a c t u a l d a t a ∗ /
showspacesshowspaces showspaces5 vo id ∗ p a y l o a d ; }
showspacesshowspaces

Listing 2. pbuf structure definition as defined inside pbuf.h

These literals can be represented as nodes as seen in Figure 4.

Binary and unary operations are represented by an Operator-

Node with the corresponding operation (e.g., bit shift, binary

or/and/not or memory accesses). Unknown register contents

and variables are represented as VariableNodes, numerical

values as DataNodes. The binary operators implicitly define

an order on the tree, e.g., the memory access operator’s left

child defines the base address whereas the right child defines

the offset.

As an example for the expression generation, we may

analyze the first basic block, which has address 0x34e8, in

Figure 3. After forward substitution of the instructions, the

contents of the modified registers may be represented (in

textual RTL notation and using word memory accesses) as

follows:
showspacesshowspaces

showspacesshowspaces showspaces1 ∗32∗ r [4] =m[r [0] + 4]
showspacesshowspaces showspaces2 ∗32∗ r [3] =m[m[r [0] + 4]] [0 : 7] & 0xF0
showspacesshowspaces showspaces3 ∗32∗ r [5] = r [0]
showspacesshowspaces showspaces4 ∗32∗ r [7] = r [1]
showspacesshowspaces
Listing 3. RTL register expressions after analysis of basic block at address
0x34e8 of Figure 3

Inside these expressions we search for patterns of literals

that are either given by the system designer or automatically

generated from the header files, that contain the corresponding

structure information and/or method headers. Using gcc-xml

we are able to derive the byte layout, the members of struc-

tures and the method signatures, which are specified in the

provided header files. At this point it is important that the

implementation conforms to some known ABI, so that a well

defined correlation between input registers and method header

exists. For the following example let the structure pbuf be

defined as in Listing 2. Given this structure definition we know

whenever we are accessing the word at position zero of this

structure that we are accessing the next pointer. Accordingly

the word at position four stores the payload pointer. As the

basic block at address 0x34e8 is the first block of the method

ip6_input(struct pbuf *p), the term m[r[0]+4]
may be substituted with the term p->payload. This step

completely depends on the underlying ABI and the processor

architecture as the layout and byte order of the structure can

vary on different architectures.

In the next step we normalize the expressions, as depicted

in Figure 4, with respect to a set of reduction patterns. The

figure shows how a pattern inside the expression tree may be

used to reduce the tree to a smaller but semantically identical

expression tree. In this specific example the second expression

tree essentially describes the same halfword memory access

as the first expression tree, which is realized by two consec-

showspacesshowspaces
showspacesshowspaces sho1 i p 4 i n p u t () :
showspacesshowspaces sho2 / / don t s u p p o r t m u l t i c a s t
showspacesshowspaces sho3 i p 4 h e a d e r . s r c a d d r [0] > 239
showspacesshowspaces sho4 i p 4 h e a d e r . s r c a d d r [0] < 224
showspacesshowspaces sho5 e t h e r n e t i n p u t () :
showspacesshowspaces sho6 / / do n o t s u p p o r t i pv6
showspacesshowspaces sho7 e t h h e a d e r . t y p e != 0 x806
showspacesshowspaces

Listing 4. Exemplary constraint set

utive byte memory accesses. This kind of behavior can be

observed frequently within binaries, mainly due to alignment

restrictions of the hardware platform for memory accesses.

The reduction takes place as long as there exists a pattern

that can be applied. The normalization is mandatory as there

exist an infinite amount of possible combinations for the same

expression which makes the computation overhead huge and

the comparison of two expressions hard, if not impossible.

If enough information is given by the header files we may

then use the normal-form high-level expressions to annotate

the conditional edges as seen in Figure 5. The approach is

limited by the availability of information that can be extracted

from the set of header files. Edges which are not annotated

cannot be checked against the constraints of the following

optimization process. However even a single annotated edge

may allow the removal of huge parts of the binary, reachable

over this edge as we will see in the section VII.

B. Configuration

Using the annotated control flow graph we are now able to

identify under which conditions control flow occurs between

basic blocks. Precisely the expression of a conditional edge

describes the condition that must be fulfilled for the edge to be

taken. The basic idea for the configuration step is to use a set

of constraints, given by the user who wants the program to be

adapted, check them against the conditions of the conditional

edges and thus identify which basic blocks are not reachable

using the constraints.

1) Constraints: The set of constraints for the optimization

process contains constraints on expressions that are used inside

the binary. An example of such a constraint set, for the exam-

ple scenario, is given in Listing 4. Constraints are specified on

input parameters of methods. Since parameters may have the

same name for different methods, it is mandatory to specify

the method as well. Line two and three state that the value of

the first byte of the supported IPv4 source addresses inside the

method ip4_input will be lower than 224 and greater than

239. This essentially represents all non multicast addresses.

Line five states that ethernet packets that contain IPv6 frames

shall not be supported inside the method ethernet_input.

All other ethernet packets would be valid if the type field

inside the ethernet header would be different to the value of

0x806.

The subsequent optimization mechanism now searches the

annotated control flow graph for conditional control flow

edges. Selected edges are forwarded to the constraint checker

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

5 © 2012 GSTF

���������	�
��

���
����

����
����

����
����

����������������������
���� �����!

����
����

����������������������
��� �����!

����
��������������������������
���� ����!��

��"�
��"�

����������������������
��� ����!��

����
����

����������������������
��� �����

��

��#�
��#� ��

�������####���
�������####���

Fig. 5. The annotated control flow graph of the method ethernet input(struct pbuf ∗ p). The selected parts define a partition that may be removed for
the constraint eth header− > type! = 0x806.

which uses the set of constraints to check whether the ex-

pression of the edge will be fulfilled or not. Edges containing

only one variable that is related to at least one constraint are

tested using the Algorithm 1. The algorithm checks whether

the condition of an edge will only be fulfilled for constraint

values. If the condition is fulfilled for values different to the

ones of the constraints, the edge cannot be removed, since

the edge may be taken for values that are not specified as

constraints.

Algorithm 1 Edge evaluation algorithm

proc isRemovable(Edge e,Constraints Set c i) ≡
isRemovable := false;
do if condition(e) only contains one variable v

comment: test all possible values of the variable
for value := minval(v) to maxval(v) do

do if value is a constraint
comment: check if the constraint is fulfilled
if evaluate(e, value) == true
isRemovable = true; fi

else
comment: edge must evaluate to false
if evaluate(e, value) == true
return false; fi

od
od

od
return isRemovable;

else
return false; fi od.

As the expression evaluation is a non-trivial task, the amount

of expressions that can be evaluated by using the constraints

heavily depends on the application and the data analysis

technique. Some expressions may even contain function calls,

which makes the evaluation ambiguous. As an example, con-

sider the expressions in Figure 5. All of the expressions contain

function calls to the method htons which modifies the

input parameter eth_header->type. However evaluating

the expression is not impossible. One may inline the method

into the expression, use summary functions ([20]) or even

emulate the expression under certain circumstances. Anyhow,

the quality of the optimization scales with the amount of

expressions that can be evaluated. Fortunately even being able

to evaluate only small parts of the binary may still lead to

very good optimization results.

Edges which do not fulfill the constraints are so called

”Configuration Points” and candidates for removal. However

not all configurations points improve the overall performance

or reduce the overall code size if removed. Thus an evaluation

step may filter the edges for the following steps.

2) Graph Partitioning: In general the graph can be par-

titioned into sets of basic blocks based on the configuration

points. In our case, if a set of blocks is identified to be only

reachable by a specific edge these blocks are grouped into one

partition. In Figure 5 the control flow graph of the method

ethernet_input(struct pbuf *p) of our IP-Stack

implementation has been annotated and the marked part has

been identified to be only reachable by an edge that can be

removed from the binary using the constraints given in Listing

3.

Using the following algorithm we can calculate the parti-

tions of basic blocks for all configuration points:

Let the application be given as a graph: G = (N,E) with

N being the set of nodes (static basic blocks) of the graph

and E the set of edges of the graph, set S ⊆ N of start nodes

(entry points) and set R ⊆ E of configuration points.

1) Define the set T of nodes that can be reached from

the start nodes without taking any removable edge: T =
{n ∈ N : ∃w = (w1, w2, ..., wn), w1 ∈ S∧(wi, wi+1) ∈
E\R∧wn = n}. This essentially defines the set of basic

blocks that are mandatory given a specific execution

environment.

2) For every removable edge ri ∈ R with ri = (n1, n2)
create the set Nri of nodes that can be reached over

the removable edge without reaching a node that is

mandatory (inside set T): Nri = {k ∈ N : ∃w =
(w1, w2, ..., wn) ∧ w1 = n2 ∧ (wj , wj+1) ∈ E ∧ wj /∈
T ∧ wn = k}. These sets define the configurations.

3) For any two sets Nri and Nrj calculate Kij = Nri∩Nrj .

Every edge going from any of the two sets into the

intersection Kij needs to be treated specially during

code reconfiguration/reloading. (There can not be any

edges going from Kij into Nri or Nrj since these nodes

would then be part of Kij . This can be seen if we

reconsider the construction of Nri and Nrj .)

Each of the sets Nri \Kij , Nrj \Kij and Kij itself may then

be used inside the configuration process and may be removed

from the binary. The removed configurations are stored and

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

6 © 2012 GSTF

linked separately. Thus each basic block inside a configuration

needs to be updated with the correct memory addresses of

depending configurations and symbols inside the final binary.

This can be done off-line so reloading the code can be done

without any kind of online address translation. Each configura-

tion defines a node inside the TEReCS configuration process.

Dependencies between the static binary and the configurations

is modeled by corresponding AND/OR edges.

As we now obtained the sets Nri , we can replace the first

basic block inside the set that is reached by the edge ri with

a call to the FRM. This needs to be done for edges ri that

are evaluated by the configuration process to be removed

from the initial configuration. Taking one of these edges

during runtime triggers the reconfiguration process of the

FRM. Using a connection to the configuration database the

configuration and all depending configurations (given by the

TEReCS configuration tree) are loaded. The execution of the

program then continues at the reloaded configuration.

C. Binary Modification

Given the partitions of basic blocks, we can now remove

those sets of blocks Nri from the object files. We parse the

basic blocks of the object file in a linear manner and remove

the basic blocks that are specified to be removed. Thus all

following basic blocks move to lower addresses. This process

continues until all basic blocks are parsed. Using the standard

libelf library we now modify the executable .text area, the

symbol and the relocation tables of the object files to reflect

the changes made on the control flow graph. The major part of

the rewriting process involves modifying all instructions that

reference other basic blocks inside the object files. For the

ARMv4(T) ISA this involves changing the following set of

eleven different instructions specified in Table II (see [21] for

details on the instruction types).

Instruction Encoding Type

Branch B T1-B, T2-B, A1-B
Branch and Link BL T1-BL, A1-BL
Load Register LDR T1-LDR, A1-LDR
Load Byte LDRB A1-LDRB
Load Halfword LDRH A1-LDRH
Load Signed Byte LDRSB A1-LDRSB
Load Signed Halfword LDRSH A1-LDRSH

TABLE II
INSTRUCTIONS THAT NEED TO BE MODIFIED INSIDE THE BINARY

REWRITING PROCESS.

For each of the instructions the corresponding offset to the

basic block referenced needs to be recalculated and changed.

However this only needs to be done for object files that need

to be modified.

Additionally the symbol and relocation tables need to be

changed. Symbols and relocatable instructions may now be

defined at different positions inside the text area. Thus the table

entries are updated with the new positions. Some symbols and

relocation entries may even be removed since the basic blocks,

which referenced these symbols, do not exist any more, thus

Nr Offset Type Sym. Name

1 000010 R ARM THM CALL htons
2 00002c R ARM THM CALL ethar ip input
3 000036 R ARM THM CALL pbuf header
4 00004a R ARM THM CALL ip4 input
5 000054 R ARM THM CALL ethar ip input
6 00005e R ARM THM CALL pbuf header
7 00006e R ARM THM CALL libprintf
8 000078 R ARM THM CALL ip6 input

1 000010 R ARM THM CALL htons
2 00002c R ARM THM CALL ethar ip input
3 000036 R ARM THM CALL pbuf header
4 00004a R ARM THM CALL ip4 input
5 000058 R ARM THM CALL libprintf

TABLE III
RELOCATION TABLE BEFORE AND AFTER THE BINARY REWRITING

PROCESS.

Nr Value Bind Ndx Name

...
19: 00000001 GLOBAL 1 ethernet input
20: 00000000 GLOBAL UND htons
21: 00000000 GLOBAL UND ethar ip input
22: 00000000 GLOBAL UND pbuf header
23: 00000000 GLOBAL UND ip4 input
24: 00000000 GLOBAL UND libprintf
25: 00000000 GLOBAL UND ip6 input

...
19: 00000001 GLOBAL 1 ethernet input
20: 00000000 GLOBAL UND htons
21: 00000000 GLOBAL UND ethar ip input
22: 00000000 GLOBAL UND pbuf header
23: 00000000 GLOBAL UND ip4 input
24: 00000000 GLOBAL UND libprintf
25: 00000000 GLOBAL UND

TABLE IV
SYMBOL TABLE BEFORE AND AFTER THE BINARY REWRITING PROCESS.

removing the dependency between these object files containing

these basic blocks. The result of such a rewriting process

on a relocation table can be seen in table III. During the

process, entries five, six and eight have been removed from the

relocation table as the basic blocks containing these relocatable

instructions have been deleted. For all other entries the offset

has been updated. The basic block removal also results in

symbols to be changed or removed inside the symbol table of

the binary, as seen in table IV. This also means that linking

this object no longer depends on the removed symbols, which

had to be provided in some other object files.

VII. EVALUATION

We evaluated the approach on the IP-Stack and the hardware

platform described inside the illustration scenario. We com-

piled the whole IP-Stack to contain all functionality although

not all functions would be used to communicate with other

peers.

In a first evaluation we tried to remove the TCP support

from the IP-Stack using the constraints shown in line one

to four of listing 4. The first line states that the lower 16

bit of the _ttl_proto field may not contain the value six.

This essentially states that there should not be a TCP header

after a IPv4 header. For our second evaluation we tried to

remove the IPv6 support by using the constraints in line three

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

7 © 2012 GSTF

showspacesshowspaces
showspacesshowspaces showspaces1 i p 4 i n p u t () :
showspacesshowspaces showspaces2 i p 4 h e a d e r . t t l p r o t o & 0 x 0 0 f f != 0x06
showspacesshowspaces showspaces3 e t h e r n e t i n p u t () :
showspacesshowspaces showspaces4 e t h h e a d e r . p r o t o != 0 x806
showspacesshowspaces

Listing 5. Constraints set for removing the TCP and IPv6 support

and four given in Listing 5. The IP-Stack object files have

been analyzed, optimized and rewritten using the constraint set

given above. The complete analysis, annotation, configuration

and rewriting process of 80 Kilobytes of assembler code

took about two minutes on a general purpose linux machine

(Core2 Duo, 2,4 GHz, 1 GB Ram). The most time-consuming

part (about 60%) is the annotation phase as the annotation

step involves analyzing every basic block (sometimes multiple

times for loops). The reduction inside each of the components

is depicted in Figure 6. The complete TCP component is

82%
reduction

53% reduction 53% reduction

Fig. 6. Binary size reduction for each component.

about eight Kilobytes in size. Using the simple constraint

set in Listing 5 it was possible to remove 82% of the TCP

implementation using the optimization approach in this paper.

The remaining bytes of the implementation may be removed

with a more sophisticated constraint set as not all control

flows are covered by the set in Listing 5. A similar statement

holds for the IPv6 reduction case in Figure 6 although only

53% could be removed by the single constraint in line four

of Listing 5. This is due to the fact that the constraint only

restricts control flow from the lower ethernet packet layer.

Control flow from higher layers, as e.g., the application layer,

was not considered by the constraint set. This is however

absolutely possible.

VIII. CONCLUSIONS

In the last sections we proposed a way of configuring

and reconfiguring a software product on binary level which

was not designed to support configurability in general. The

proposal is based on the idea of analyzing the existing software

product with decompilation techniques in order to partition

the code into sets of mandatory and optional static basic

blocks. The evaluation showed that the approach can be used

to automatically remove huge parts of the binary using only

small sets of constraints. We then proposed a way to use

these removable sets as configurations by the FRM approach

to add reconfiguration to the software product, which allows

the freed memory resources to be used for other components

of the system. By this methodology it is possible to adapt

binary objects to a requirement specification, given as a set

of constraints, and allow the reconfiguration of the binary

whenever the specification changes at runtime.

REFERENCES

[1] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger, “A survey
of self-management in dynamic software architecture specifications,”
in Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems, ser. WOSS ’04. ACM, 2004, pp. 28–33.

[2] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” IEEE Intelligent
Systems, vol. 14, pp. 54–62, 1999.

[3] B. De Bus, D. Kästner, D. Chanet, L. Van Put, and B. De Sutter, “Post-
pass compaction techniques,” Commun. ACM, vol. 46, pp. 41–46, August
2003. [Online]. Available: http://doi.acm.org/10.1145/859670.859696

[4] B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and K. De Bosschere,
“Link-time compaction and optimization of arm executables,” ACM
Trans. Embed. Comput. Syst., vol. 6, February 2007.

[5] R. Wahbe, S. Lucco, and S. L. Graham, “Adaptable binary programs,”
IN, Tech. Rep., 1994.

[6] S. Kogekar, S. Neema, and X. Koutsoukos, “Dynamic software recon-
figuration in sensor networks,” in Proceedings of the 2005 Systems
Communications. Washington, DC, USA: IEEE Computer Society,
2005, pp. 413–420.

[7] R. Keller and U. Hölzle, “Binary component adaptation,” in Proceedings
of the 12th European Conference on Object-Oriented Programming.
London, UK: Springer-Verlag, 1998, pp. 307–329.

[8] C. Cifuentes, “Reverse Compilation Techniques,” PhD thesis, Queens-
land University of Technology, Brisbane, Australia, 1994.

[9] C. Böke, “Software Synthesis of Real-Time Communication System
Code for Distributed Embedded Applications,” in Proc. of the 6th
Annual Australasian Conf. on Parallel and Real-Time Systems (PART).
Melbourne, Australia: IFIP, IEEE, Dec. 1999.

[10] C. Böke, “Automatic Configuration of Real-Time Operating Systems and
Real-Time Communication Systems for Distributed Embedded Applica-
tions,” PhD thesis, Faculty of Computer Science, Electrical Engineering,
and Mathematics, Paderborn University, Paderborn, Germany, 2003.

[11] R. P. Chivukula, C. Böke, and F. J. Rammig, “Customizing the Configu-
ration Process of an Operating System Using Hierarchy and Clustering,”
in Proc. of the 5th IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC). Crystal City, VA, USA: IFIP
WG 10.5, 29 April – 1 May 2002, pp. 280–287, iSBN 0-7695-1558-4.

[12] H. S. Lichte and S. Oberthür, “Schedulability Criteria and Analysis for
Dynamic and Flexible Resource Management,” Electron. Notes Theor.
Comput. Sci., vol. 200, no. 2, pp. 3–19, 2008.

[13] S. Burmester, M. Gehrke, H. Giese, and S. Oberthür, “Making Mecha-
tronic Agents Resource-aware in order to Enable Safe Dynamic Re-
source Allocation,” in Proc. of Fourth ACM International Conference
on Embedded Software 2004 (EMSOFT 2004), Pisa, Italy, B. Georgio,
Ed. ACM Press, September 2004, pp. 175–183.

[14] ARM Ltd., “ELF for the ARM Architecture,” 2009.
[15] C. Cifuentes and M. V. Emmerik, “Recovery of jump table case

statements from binary code,” in Science of Computer Programming,
1999, pp. 2–3.

[16] B. D. Sutter, B. D. Bus, K. D. Bosschere, P. Keyngnaert, and B. Demoen,
“On the static analysis of indirect control transfers in binaries,” in In
PDPTA, 2000, pp. 1013–1019.

[17] C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to high-level
language translation,” in In Int. Conf. on Softw. Maint. IEEE-CS Press,
1998, pp. 228–237.

[18] C. Cifuentes, “Interprocedural data flow decompilation,” Journal of
Programming Languages, vol. 4, pp. 77–99, 1996.

[19] C. Cifuentes and S. Sendall, “Specifying the semantics of machine
instructions,” in Proceedings of the 6th International Workshop on
Program Comprehension, ser. IWPC ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 126–.

[20] S. Gulwani and A. Tiwari, “Computing procedure summaries for inter-
procedural analysis,” in European Symp. on Programming, ESOP 2007,
ser. LNCS, R. De Nicola, Ed., vol. 4421, 2007, pp. 253–267.

[21] ARM Ltd., “ARM Architecture Reference Manual,” 2009.

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

8 © 2012 GSTF

Daniel Baldin, born 1983 in Germany, is a research assis-

tant, working at the research group ”Design of Distributed

Embedded Systems” of Prof. Dr. rer. nat. Franz Josef Rammig

at the University of Paderborn since 2009. He is an associated

member of the software quality lab (s-lab) at the University

of Paderborn. His research interest covers embedded real-

time virtualization, binary optimization and reconfigurable

embedded systems. Mr. Baldin finished his master thesis in

2009 with the title Proteus, a hybrid Virtualization Platform

for Embedded Systems. Since 2010 he is working on a

research project targeted at binary reconfiguration for smart

card systems.

Stefan Groesbrink was born in Germany in 1983. He studied

computer science with electrical engineering at the University

of Paderborn (Germany) and the Carleton University Ottawa

(Canada). Since 2011, he is member of the research staff of the

group ”Design of Distributed Embedded Systems” of Prof. Dr.

rer. nat. Franz Josef Rammig and associated member of the s-

lab, a multi-private-public partnership institute for knowledge

and technology transfer between academia and industry. His

research focus are scheduling for embedded real-time systems

and system virtualization.

Dr. Simon Oberthuer was born 1977 in Steinheim (West-

phalia), Germany and is scientific staff at the workgroup

”Design of Distributed Embedded Systems” of Prof. Dr. rer.

nat. Franz Josef Rammig since 2002. He has studied computer

science at the University of Paderborn. His research focus

is dynamic resource management for real-time systems. His

dissertation is titled Towards an RTOS for Self-optimizing

Mechatronic Systems and was submitted in 2009.

GSTF Journal on Computing (JoC) Vol.1 No.4, January 2012

9 © 2012 GSTF

