

Abstract—This article adderesses the exact string matching

problem which consists in finding all occurrences of a given

pattern in a text.It is an extensively studied problem in the field of

computer science mainly due to despite its popularity in diverse

area of application such as cluster computing, image and signal

processing, speech analysis and recognition, information retrieval,

data compression,computational biology,intrusion detection and

virus scanning detection.In the last decade several new algorithm

has been proposed.In this paper we compares all improved of the

Boyer-Moore algorithm with my enhanced Boyer-Moore

algorithm practically and theoretically result.It is not only

generate the largest distance but also produces the minimum

shifting and frequency of comparisons steps.By this enhanced

algorithm we can reduce the number of comparisons frequency

and number of shifting steps during the searching

process.Moreover result of this enhanced Boyer-Moore algorithm

reveals the efficiency is higher than of previous improved Boyer-

Moore algorithms and time complexity is reduced in the concept

of worst case analysis and lower than BM algorithm.Our

enhanced algorithm 16% boost-up than previous improved

Boyer-Moore algorithm when executed on the CPU.This

enhanced Boyer-Moore algorithm can be plays an important role

in finding extremely fast genetic moleculer and complex sequence

pattern of interested database alignment of DNA.

Index Terms—Moving distance,BM,Index value,Linear worst

case Searching pattern,Enhanced algorithm,CUDA.

I. INTRODUCTION

The fastest known exact string matching algorithm are based

on the Boyer-Moore idea[BoM 77].The Boyer –Moore

algorithm is a string searching algorithm.It was developed by

Bob Boyer and J strother algorithm in 1977 as in [13].

Bob Boyer and J Strother Moore are both part of the computer

science faculty team at the University of Texas at Austin.

BM algorithm has high efficiency and sublinear on the average

due to it generally does not compare each character of the text

with the search string.

Menuscrip received February 24,2012.The author are with the Computer

Science and Information Technology,Bhopal,India.

This work was supported by the Maulana Azad National Institute of

Technology,Bhopal(India).

Moreover it uses the preprocessing phase about the search

string to help eliminate unwanted comparisons.BM algorithm

works fast when larger is the alphabet and longer is the

pattern.Boyer-Moore algorithm an important role play towards

the network security as in [3].It combines the network security

audit system and improves the original BM algorithm to detect

the intrusion.Our enhanced algorithm is based on the running

time executed on the CPU which means the running time of

that enhanced algorithm is less than as in [8].BMH algorithm

is an improved part of BM algorithm.Thus BMH in the

concept of practically is more suitable than BM algorithm.The

BMHS algorithm has enhanced the BMH algorithm as in [7]

which is used the bad character features of BMH

algorithm.Like the BM and BMH the BMHS always assumes

its the best case time complexity i.e if every time in the first

comparison a text symbol is found that does not occur at all in

the pattern.BM algorithm does not use the current matching

information but in the literature as in [2] it used.This paper is

organized as follows.Section two briefly describes the related

work in BM based string searching algorithm.Section third

describes our enhanced BM algorithm and section fourth

explain the working of our enhanced BM algorithm in the term

of worst case analysis.Section fifth draws the experiment result

of my enhanced BM algorithm based on the as in [8]-[7].

Eventually section VI contains the conclusion of our work.

II. RELATED WORK

A. Principle of Boyer-Moore algorithm

The BM algorithm successively aligns P with T and then

checks whether P matches the opposing characters of T.

However BM algorithm contains three clever ideas not

contained in the KMP or Naïve algorithm.

 Right to left scan

 The bad character shift rule

 Good suffix shift rule.

Boyer-Moore inspired by the KMP algorithm.Practically ,BM

algorithm is faster than KMP algorithm about 2 to 4 times as

in [11] and efficiency of the BM is higher than KMP.

We define the string matching process by pattern string

P=P[0],P[1],P[2]……P[j] in the text string

T=T[0],T[1],T[2]……T[i],Where T[i] (0≤i≤n-1) and P[j]

An Enhanced Boyer-Moore Algorithm for Worst

Case Running Time
Manjit Jaiswal

1
, Dr. Nilay Khare

2
,

Department of Computer Science and information Technology,
1&2

Maulana Azad National Institute of Technology, Bhopal,462051,India
1
manjit.jaiswal222@gmail.com
2
nilay.khare@radiffmail.com

DOI: 10.5176_2010-2283_2.1.143

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

152 © 2012 GSTF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/233150124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:manjit.jaiswal222@gmail.com

(0≤j≤m-1) ∈∑ and m≤n.∑ is the set of the character

∑=C[0],C[1],C[3]……C[k-1].Now if the given pattern string

exists in the text string then we got match otherwise match

unsuccessful.Boyer-Moore’s algorithm preprocess define by

the pattern P and the alphabet ∑ to build the index function

(Index) mapping ∑ to integers,where Index[c] is defined as:

 j, if j of c in the pattern P is the last occurrence

position value where 0≤ j≤m-1

 -1,otherwise where

m is the number of character in the pattern i.e. length of the

pattern and n is the length of the text.

B. Idea

The algorithm of BM compares the pattern with the text from

right to left.If the symbol that is compared with rightmost

pattern symbol does not occur in the pattern at all then the

pattern shifted by m positions towards the right of text symbol

as in [10].These instance show in table I below illustrates

above situation.

Instance: Table I. Boyer-Moore

0 1 2 3 4 5 6 7 8 9

B A A B C B A B D A

A B A B D

 A B A B D

The first comparison C-D at position 4 produces a

mismatch.The text symbol C does not occur in the

pattern.Hence the pattern can not match at any positions of the

current text windows,therefore the pattern will be shifted at

position 5.The best case for the Boyer-Moore algorithm

requires only O(n/m) iff each attempt the first compared text

symbol does not occur in the pattern.

C. Bad character heuristics

This method is called bad character heuristics.It can also be

applied if the bad character i.e. the text symbol that causes a

mismatch,occurs somewhere else in the pattern.Then the

pattern will be shifted so that it is aligned to this text symbol.

For the bad character rule describes here by the formula is

given as in [3] below:

 n;k≠P[j],where 0≤j≤n;k∉P

Skip(c)= (2)

 else n-j,j=max(k);{j|P[j]=k,0≤j≤n

The following example describes this situation in tableII.

Instances: Table II. Bad character rule
0 1 2 3 4 5 6 7 8 9

A B E B C B A C D A

A C A E D

 A C A E D

Comparison C-D causes a mismatch .Text symbol C occurs in

the pattern at the positions 1,thus pattern will shifted so that

rightmost C in the pattern is aligned to text symbol C.

D. Good suffix heuristics

When bad character heuristics fails then in this situation the

comparison A-B causes a mismatch. An alignment of the

rightmost occurence of the pattern symbol A with the text

symbol A would produce a negative shift. Instead, a shift by 1

would be possible. However, in this case it is better to derive

the maximum possible shift distance from the structure of the

pattern. This method is called good suffix heuristics as in [3].

Instance: Table III. Good suffix rule
0 1 2 3 4 5 6 7 8 9

A B A A B A B A C B

C A B A B

 C A B A B

The suffix AB has matched. The pattern can be shifted until the

next occurence of AB in the pattern is aligned to the text

symbols AB, i.e. to position 2.In the table III shows following

situation the suffix AB has matched. There is no other

occurence of AB in the pattern.Therefore, the pattern can be

shifted behind AB, i.e. to position 5. For

instance: Table IV. Case 2 of good suffix rule

0 1 2 3 4 5 6 7 8 9

A B C A B A B A C B

C B A A B

 C B A A B

In the following situation the suffix BAB has matched. There

is no other occurence of BAB in the pattern. But in this case

the pattern cannot be shifted to position 5 as before, but only

to position 3, since a prefix of the pattern (AB) matches the

end of BAB. We refer to this situation as case 2 of the good

suffix heuristics.For good suffix rule there is formula as in [3]

follows:

Shift(j)=min{S|(P[j+1….n]=P[j-s+1…..n-s])&&(P[j]≠P[j-s])

(j>s),P[s+1…n]=P[1…n-s](j≤s)} (3)

E. BMH

Boyer-Moore Horspool in the practical application is much

more suitable than BM algorithm in literature as in [9].BMH

algorithm is not only used the bad character shift but also right

most character of the current text window i.e. distance of the

shift to right is determined by the character in the text string

which is aligned to the last one of the pattern string. BMH uses

the less space and has a simpler inner loop with less constant

overhead per iteration.Its average performance is O(n) but it

has worst case performance of O(m*n).In the best case

performance time complexity is O(n/m).

For instance: Table V. BMH rule
0 1 2 3 4 5 6 7 8 9

A B C A E E A A C B

E C A D E

 E C A D E

F. BMHS

Like the BM and the BMH algorithm the BMHS algorithm

assumes its best case,if every time in the first comparisons a

text symbol is found that does not occur at all in the

pattern.BMHS is an improved algorithm and it is based on

BMH algorithm.Pattern matching intrusion detection BMHS

algorithm maximum moving distance times of

comparing.Generally BMHS algorithm faster than the BM and

Index[c]=
(1)

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

153 © 2012 GSTF

http://search.cnki.com.cn/Search.aspx?q=pattern%20matching
http://search.cnki.com.cn/Search.aspx?q=intrusion%20detection
http://search.cnki.com.cn/Search.aspx?q=BMHS%20algorithm
http://search.cnki.com.cn/Search.aspx?q=BMHS%20algorithm
http://search.cnki.com.cn/Search.aspx?q=maximum%20moving%20distance
http://search.cnki.com.cn/Search.aspx?q=times%20of%20comparing
http://search.cnki.com.cn/Search.aspx?q=times%20of%20comparing

BMH algorithm as in [7].Moreover the shiftin distance of the

BMHS algorithm is estimulated by the character in the text

string which is under the character aligned to the last one of

the pattern string,if it is not find in the pattern string then

distance to the move to right side is m+1. BMHS algorithm

worst case time complexity is O (mn), the best case time

complexity is O (n / m +1).

For instance Table VI. BMHS rule

0 1 2 3 4 5 6 7 8 9

A B C A B D A A C B

B C A A B

 B C A A

At all position of this pattern D does not occur,thus the pattern

will be shifted past this position.

III. DESIGN OF OUR ENHANCED BOYER-MOORE ALGORITHM

First some make some assumption and definition:There are

two string text(T) and pattern(P) needed to be matching

process where,

P=P[1],P[2]…….P[j] and |P|=j where 0≤j≤ m |m=length of the

pattern.

T=T[1],T[2]………..T[i] and |T|=i and 0≤i≤ n |n=length of the

text.

The preprocessor table which is described refer to (1) always

used by the enhanced BM algorithm.We will take an

experimental example here for mention all about string

matching process by enhanced BM algorithm.

The main key concept of the BM algorithm is the MovDist

function which is keep the numeric value called as movement

distance(MovDist) and it is defined as follows:

MovDist={i+m-MIN(j,1+Index[T[i]])} (4)

MovDist shows and provide the an index value such as if at

any position mismatch occurs between the character of text

and pattern then MovDist calculate the how many move the

pattern toward the right direction of the text.

Where,Function Index[c] have mentioned refer to (1) and

where

0≤j≤m-1|m=length of the pattern string.

0≤i≤n-1|n=lengh of the text string.

Preprocessing phase is calculated by taken the an array for

Index[c].Moreover there is not only preprocessing phase for

pattern but also for some time required to text string .MovDist

function is consist by the bad characteristics rule and addition

of an integer type value taken from at which text position we

will start the pattern matching process.We will start the

searching process with the text from there, where that

character of the text should be available in the pattern string

which is described in the table X and this process is achieved

by taken an integer type variable to keep the such type of

information that how many we moved towards the right side of

the text from initially position to search the available

character in the pattern.The improved algorithm and searching

process described here:

Enhanced BM Algorithm (T,P)

Input:text length n and pattern length (m) Compute Index[c]

function that is preprocessing phase.

Main()

{ Preprocessing

phase,match the character of the text(t) with the pattern(p)

starting with the zero position from line 1 to 2.

 1. for i=0 to n-1

{

 1.1. for j=0 to m-1

 {

 1.2. if(P[j]=T[i]) then

 1.3. goto label;

 }

 1.4. t=i+1;

 }

 2. label:

 2.1. if t=n then

 {

 2.2. print “we did not find the match”.

 }

 3. i=m+t-1;

 3.1. j=m-1;

 Repeat //searching process start

 3.2. if P[j]==T[i] then

 {

 3.3. if j=0 then

 3.4. Return i; //we got match

 }

 3.5. else

 {

 3.6. i=i-1;

 3.7. j=j-1;

 }

 4. else

 {

 4.1. for i=i+1 to n

 {

 4.2. if Index[i]=-1then //refer to “(1)”

 {

 4.3 i=i+1;

 }

 4.4 else

 4.5. break;

}

5. i=i+m-Min(j,1+Index[T[i]]); //refer to “ (4)”

 5.1 j=m-1;

}

 5.2 until i> n-1;

}

 print “we did not get match”.

Enhanced BM algorithm describes as following:

 First implement the preprocessing table as Index[c] function

reveals in the table VII.In preprocessing phase,time

complexity is O(m+∑).Our preprocessing phase is

estimation and searching the position at the text where we

start the string searching process of the pattern.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

154 © 2012 GSTF

 Begin with the matching character of the text string with the

pattern string ,if there are successive characters which are

not in the pattern string they are ignored.We start the

comparison from at which position of the text that are

available in pattern string.For instance table X reveals that

how to ignored those type of the character .

 After then we start the searching process,compare the

character of the pattern with text string and when P[m-1] and

T[k] match successfully,compare the character P[m-2] with

character T[k-1].If the match successfully ,continue to

comparing P[m-3] and T[k-2] and so on.if the any instant of

time mismatch occur at position T[k-3]and P[m-4] then we

should decide the distance to move according to MovDist

function refer to (4).

 But we also check the index value of the position T[k-2] by

Index[c] function and if there is value -1 then value of

MovDist would be changed and by addition of the number

of the occurences value which have Index function value is -

1 otherwise the MovDist value will be according to the

MovDist function refer to enhanced algorithm. Here is a

flow chart of enhanced algorithm show above in the figure

one:

 But we also check the index value of the position T[k-2] by

Index[c] function and if there is value -1 then value of

MovDist would be changed and by addition of the number

of the occurences value which have Index function value is -

1 otherwise the MovDist value will be according to the

MovDist function refer to enhanced algorithm. Here is a

flow chart of enhanced algorithm show below in the figure

one:

IV. WORKING OF ENHANCED BM ALGORITHM

First,we take an example for experiment and according to that

example define a function Index[c] then put the results into an

array Index[c]. The function Index[c] are described in table

VII as follows:

For instance :

Text string: THIS IS A VERY GOOD BOY

Pattern string: BOY

TABLE VII. VALUE OF Index[c]

C T H I S A V E R Y G O D B

Index[c] -1 -1 -1 -1 -1 -1 -1 -1 2 -1 1 -1 0

 In the above table VII of Index[c] indicates that whose

character which have -1 Index value then these all character

did not appeared in the pattern string.

Table VIII to table X shows that how to matching processes

of BM, improved BM and enhanced BM algorithm being.

 TABLE VIII. BM ALGORITHM

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Text T H I S I S A V E R Y G O O D B O Y

pattern B O Y

 B O Y

 B O Y

 B O Y

 B O Y

 B O Y

 B O Y

start

Initially Compute the number of the

ignoring character of the text that is

t

Initialize

i=0 to n-1 and

j=0 to m-1

Compare the P[j] and T[i]

Is equal?
j=j++

N

Y

t=i+1

i=m+t-1

j=m-1

P[j]=T[i]?

i=i+1

Index[i]=-

1

J=0?

i=i+1

j=j+1

i=i+m-

min(j,1+Index[T[i]])

j=m-1

matche

d

Did the search total

string?

End

Figure 1. flow chart of enhanced BM

algorithm

j≤m-

1?

i=i++

i≤n-1?

Y

N

Y

Not found

N

Y

N

Y

Y N

N

N

Y

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

155 © 2012 GSTF

 B O Y

 B O Y

In this BM method the pattern string shift 8 time and compares of character 11 times as in [12].

TABLE IX. IMPROVED BM ALGORITHM

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Text T H I S I S A V E R Y G O O D B O Y

Patter

n

B O Y

 B O Y

 B O Y

 B O Y

In this method the pattern string shift 3time and compares of character 6 times as in [9].

Table X. OUR ENHANCED BM ALGORITH

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Text T H I S I S A V E R Y G O O D B O Y

Patter

n

 B O Y

 B O Y

 B O Y

In this method the character T,H,I,S,A,V,E,R are not in pattern string that why these are ignored and starting the search process

from as in [13].Thus shifted 2 time and compares of character 5times.

A. Analysis of worst case time complexity of enhanced

algorithm

According the BM algorithm if the longer pattern then there

are less comparison needed.In the enhanced algorithm average

time taken atmost O(n).In the worst case analysis if there are

constant number of matches of the pattern in the text then

Boyer moore algorithm takes O(n) comparisons in the

searching phase.Moreover if the pattern did not match with the

text string then in this situation comparisons are till the last

character of the pattern and displacement is only one then time

taken to comparisons in worst case analysis of the algorithm

with the pattern is (n-m+1)*m as in [8].In preprocessing phase

time required atleast O(m+∑),where ∑ is the alphabet.In the

searching phase when we consider the best case (all the

characters in the pattern is completely different compared to

the characters in the text),matching m characters of the pattern

in the text (see example below) yields a shift of m+1 at each

attempt and hence the time complexity is O ([(n/(m + 1))]).

For instance:

Text: mnmnmnmnmn

Pattern: ssss

V. EXPERIMENT RESULTS AND ANALYSIS

An experimental environment (CPU: Intel core i7 with 4.0

GHz, Memory RAM: 4GB, OS: Windows 7 with 32 bit) to test

the enhanced BM algorithms. Meanwhile,we used two counter

variable by which it could be count the number of shifting and

comparisons among the text and pattern character.we take 22

Kbyte,44 Kbyte,66 Kbyte and so on text string and 4 byte

character of pattern string.We can see there that enhanced BM

algorithm is doing matching process and taken approximately

13-16% less time than improved BM algorithm.Results are

show below in the table XII to XIV.

TABLE XI. EXPERIMENT RESULTS

 The number of comparison

frequency

The number of shifting

frequency

Text Size(Kbytes) The run time of CPU(ms)

BM algorithm 1832 434 22 9.8903

Improved BM algorithm 1601 293 22 7.1002

Enhanced BM algorithm 1071 223 22 6.6201

TABLE XII. EXPERIMENT RESULTS

 The number of comparison

frequency

The number of shifting

frequency

Text Size(Kbytes) The run time of CPU(ms)

BM algorithm 1832 434 44 9.8903

Improved BM algorithm 1601 293 44 7.1002

Enhanced BM algorithm 1071 223 44 6.6201

TABLE XIII. EXPERIMENT RESULTS

 The number of comparison

frequency

The number of shifting

frequency

Text Size(Kbytes) The run time of CPU(ms)

BM algorithm 1832 434 22 9.8903

Improved BM algorithm 1601 293 22 7.1002

Enhanced BM algorithm 1071 223 22 6.6201

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

156 © 2012 GSTF

VI. CONCLUSION

In the worst case analysis actual time requires for BM

O(nm+∑) but if there are only a constant number of matches of

the pattern in the text,the Boyer-Moore searching algorithm

perfoms O(n) comparisons.Normally best time complexity of

BM,BMH and BMHS algorithm O(n/m),O(n/m) and

O(n/m+1).Any string matching algorithm in the worst case

must be examined at least n-m+1 character of the text.The best

time complexity of proposed enhanced algorithm is O(n/m+1).

But still we can improve the common preprocessing phase

performance of BM algorithm by the use of another improved

BM algorithm.We can also improve the performance of BM

algorithm by using compute unified device architecture

over(CUDA) the graphics processors unit(GPU).

Acknowledgment

This work was totally supported by the Maulana Azad

National Institute of technology,Bhopal(India).Special thanks

are to be Dr. Nilay Khare.He gave to many suggestions.

References
[1] Lingling yuan,”An improved algorithm for Boyer-Moore string

MatchingChinese Information Processing” , IEEE.pp. 182-184,2011.

[2] Zhengda Xiong,”A composite Boyer-Moore Algorithm for the string

Matching Problem” IEEE.pp. 492-496,2010.

[3] Xingxing Wang,” A BM algorithm oriented on Network Security Audit

System” IEEE.978-1-4244-5895,2010.

[4] Yang Tong,Qiao Xiang-dong, “Analyze and Improvement of BM

Algorithm” IEEE:978-1-4244-3693,2009.

[5] Prasad JC,Dr.K.S.M. Panicker,”Single Pattern Search Implementations

in a Cluster Computing Environment” , IEEE.pp391-396,2010.

[6] Knuth,D.E,Morries,Jr.,J.H.,and pratt,V.B.” fast pattern matching in

string SIAM J.comptng.6,2(1977),pp323-350.

[7] Yuting Han,Guoai Xu “Improved algorithm of pattern matching based

on BMHS”,IEEE.pp238-241,2010.

[8] Zhu Yong giang,”Two enhanced BM algorithm in pattern matching”,

IEEE.pp341-346,2011.

[9] Yihui SHAN, Yuming JIANG, Shiyuan TIAN, “Improved Pattern

Matching Algorithm of BMHS for Intrusion Detection”. Computer

Engineering, vol.35, 2009, pp.170-173

[10] Zhanjun REN, Quanzhu YAO, Xiaofeng WANG, Youjiao

ZOU,“Application of Pattern Matching Algorithm in Intrusion

Detection Technique”. Modern electronic technology, vol.2, 2009,

pp.63-67

[11] Lianying MIN, Tingting ZHAO, “Improvement based on BM

algorithm”. Journal of Wuhan University of Technology (Transportation

Science & Engineering), vol.30, 2006, pp.528-530.

[12] Baishuhong. Eason, An Impovement on BM Algorith for Chinese,

 fujiandiannao, pp. 90–91, october. 2009.

[13] Yi Ping, Jiang Xinghao, Wu Yue and Liu Ning. Distributed intrusion

detection for mobile ad hoc networks. Journal of systems engineering

and electronics, 19(4):851-859, 2008.

AUTHORS PROFILE

Manjit Jaiswal is pursuing Master of Technology in

Computer Science and Engineering (2010-2012)from

Maulana Azad National Institute of technology,

Bhopal(462051),India.He did his B.E. degree in

Computer Science and Engineering from Government

Engineering College,Raipur(492001),India.His

research interest towards the area of String

matching,Single-core,Multi-core Architectures and

compute unified device architecture(CUDA)

programming over the GPU.

Associate Prof. Dr. Nilay khare is a senior faculty member

at the MANIT ,Bhopal,India . He received his M.Tech.

degree from Indian Institute of

Technology,(IIT)Delhi,India. At, present he is head of

department of Computer science and engineering and

information technology in the MANIT,Bhopal,India.He had

authored more than 50 research papers of national and

international journal.His interests include toward of

Wireless networks and theoretical computer science.He

had more than 21 years work experience.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

157 © 2012 GSTF

