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Abstract—The University Course-Faculty Timetabling Problem 

(UCFTP) occurs in the Mindanao State University-Iligan 

Institute of Technology (MSU-IIT) as the delegation of 

classrooms for available subjects including time schedule and 

appropriate faculty personnel, taking into consideration 

constraints such as classroom capacities, location, and faculty 

preferences, etc. It is a more difficult variant of the classical 

University Course Timetabling Problem, which is an assignment 

problem and known to be NP-hard. This paper presents parallel 

Ant Colony Optimization Max-Min Ant System (ACO-MMAS) 

algorithm as an approach in solving the UCFTP instance in the 

institute. ACO employs virtual ants moving across a search space 

and using an indirect form of constructive feedback by depositing 

pheromones on the paths they traverse in order to influence other 

ants in their searches. We have developed an application to 

automate the timetabling process using Erlang/OTP, a functional 

language specializing in concurrent and distributed systems. 

UCFTP was successfully represented into a mathematical 

problem instance and solved using the ACO-MMAS algorithm 

applied on a distributed network setup under Parallel 

Independent Run and Unidirectional Ring topologies. Extensive 

testing was performed to properly analyze the search behavior 

under different parameter settings. 

Keywords—ant colony optimization; max-min ant system; 

parallel algorithm; distributed application; university timetabling 

I.  INTRODUCTION 

Every start of an academic semester in the Mindanao State 
University–Iligan Institute of Technology (MSU-IIT), a 
different kind of university timetabling problem occurs. Each 
department in every college releases a certain number of 
instances of the subjects they handle. These instances, or 
courses, are then scheduled into timeslot schemes and rooms, 

and given their own faculty teachers—all done before students 
come and enroll. 

As this scheduling is still being prepared manually, it is 
prone to errors and faculty personnel often end up having 
conflicting schedules both in timeslots and locations. Other 
courses are sometimes labeled as pending while teachers try to 
work out feasible timetables. This leads to delays in the actual 
start of classes and is a constant challenge for the institute 
administration every semester. 

The problem, in its mathematical form, is the University 
Course-Faculty Timetabling Problem (UCFTP) and is adapted 
from a conventional definition of a university timetabling 
problem [10], which is known to be NP-hard [3]. 

This paper
1
 describes the application of Ant Colony 

Optimization (ACO) to solve the UCFTP. ACO is a swarm-
intelligence class, biologically-inspired algorithm introduced in 
the early nineties as a revolutionary multi-agent metaheuristic 
for combinatorial optimization problems [5]. It is inherently 
parallel and is implemented here as a distributed system on 
parallel network topologies using Erlang/OTP, a functional 
programming language specializing in process concurrency, 
fault-tolerance, and cross-processor parallelism [2]. 

II. UNIVERSITY COURSE-FACULTY TIMETABLING 

PROBLEM 

UCFTP consists of 5 sets: C, F, T, L, and Fe. Set C contains 
all subject instances, or course events, each having a specific 
college and department designation, maximum student 
capacity, unit equivalent value, type classifications, and feature 
requirements. Additionally, every course has a list of other 
colleges in whose buildings it can also be scheduled if there is 
no more room for it in its own designated college. 

1This is the technical paper version of the undergraduate Computer 
Science thesis entitled ―MyClass: MSU-IIT Faculty Workload and Class 

Assignment System – A Concurrent and Distributed Max-Min Ant System 

Application in Erlang‖ [16] 
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F is the set of all teaching faculty personnel, each one 
having a minimum, maximum, and targeted unit load values. A 
faculty has an ordered priority list of colleges and departments 
where she belongs to, as well as a list of courses, within those 
departments, that she is able to teach. T contains the timeslot 
schedules (pre-determined day-time combinations, e.g. MWF 
3-5PM) classified under multiple types. Some of these 
elements may only be used by certain colleges or departments. 

L is the set of all rooms or locations where course events 
can take place. Each location has a maximum student capacity, 
a list of features, and type classifications. A location also has 
an ordered priority list of colleges and departments that are 
allowed to use it. Set Fe is another event set of regular faculty 
activities, called faculty-events, that concerns all teaching 
personnel (e.g. weekly departmental meetings). A faculty-event 
from a certain college or department has type classifications 
and can either have a college-wide or department-wide scope. 

The problem is to assign every course event to a faculty, 
timeslot, and location, and every faculty-event to a timeslot so 
that the following hard constraints are satisfied: 

 A faculty cannot be teaching more than one course at a 
time; 

 A faculty can only teach her allowed courses, and only 
in locations her college-department designation allows; 

 A faculty cannot go below or above her minimum and 
maximum unit load values, respectively; 

 A faculty cannot be scheduled on a time (or timeslot) 
or location that she indicates; 

 There must be no unassigned faculties; 

 A timeslot or location must have all type classifications 
of the course or faculty-event assigned to it; 

 A timeslot or location is only usable by certain colleges 
or departments; 

 No two courses can occur in the same location at the 
same time; 

 A location must be able to accommodate the course’s 
capacity and meet all its feature requirements; 

 Faculties within scope must not be teaching any course 
if a faculty-event that concerns them is being held; 

 No two faculty-events of conflicting college-
department designation and scope can occur at the 
same time. 

The quality of the problem solution is penalized 
accordingly for every violation of the following soft 
constraints: 

 A faculty should be scheduled only on timeslots and 
locations of her preference; 

 A faculty or location’s list of college-department 
designations indicates their priorities for course 
assignment (i.e., courses belonging to departments at 
the top of the list are preferred); 

 Faculties should not be required to teach for more than 
4.5 consecutive hours in a day; 

 A faculty should not teach only 1 course in a day; 

 A faculty’s total unit load should match her targeted 
unit load value; 

 A teacher’s assigned courses should not vary too much 
in terms of subject kind; 

 A course’s student capacity should match the 
location’s seating capacity; 

 A faculty-event should be scheduled only on timeslots 
of its preference; 

 Timeslots of a higher priority value are assigned first. 

The objective, therefore, is to find a solution (satisfying all 
hard constraints) with the least number of soft constraint 
violations.  

Formally, the definition of the UCFTP is taken from [4] as 
a combination of an Axial 4-index and 2-index assignment 

problems in the following: Let (x), (x), (x), (y) be the 
feasible assignments of course x to a faculty, course x to a 
timeslot, course x to a location, and faculty-event y to a 
timeslot, respectively. Let c

1
ijkl be the cost of assigning course i 

to faculty j to timeslot k in location l, and c
2
mn be the cost of 

assigning faculty-event m to timeslot n. UCFTP is finding the 
assignment that will minimize the total cost, as in

 

where Sm and Sn are the sets of all feasible assignments for 
courses and faculty-events, respectively, or the search space 
sets. 

III. ANT COLONY OPTIMIZATION 

In ACO, virtual colonies of ants iteratively construct 
solutions by moving through a search space graph and making 
component assignments through every step on the graph edges. 
The ants leave pheromone values on the paths they traverse 
depending on the quality of the solution they have built. Paths 
with higher pheromone content are more likely to be chosen by 
a traveling ant than ones with lower values. Additionally, 
pheromones on all edges are evaporated at a constant rate to 
prevent overwhelming differences between path values. This 
concept of pheromone trails, along with the mathematical 
graph representation of the problem, lies at the core of the 
ACO algorithm. 

A. Search Space Graph Representation 

The graphical representation of the UCFTP is taken directly 
from course timetabling problem in [12] where the list of 
events is iterated from start to end points and the elements of 
the set to be assigned to are replicated under each event as 
shown in Fig. 1. These elements are either all from F, T, or L if 
the events are courses, or from T if iterating through faculty-
events. 



procedure MMAS_UCFTP 
 InitializeSearchSpace 
 while not terminate 
  for each ant 
   ConstructSolution 
   EvaluateSolutionQuality 
  end for 
  OptionalLocalSearch 
  UpdatePheromones 
 end while 
end procedure 

 
Figure 1.  An ant builds a solution by travelling from start to end nodes, 

making probabilistic decisions at every step through the graph edges. Each 

step made in this way creates an assignment of event e to element k.  

Programmatically, the assignable elements, or components, 
under each event are generated on-demand as they depend on 
the previous assignments so far, which is the present state of 
the partial solution at every event point. Thus, the search space 
matrices are at least the size of C x F, C x T, C x L, and Fe x T 
for course-faculty, course-timeslot, course-location, and 
faculty-event-timeslot assignments, respectively. 

B. Pheromone Trail Model 

A pheromone matrix is created based on the search space 
graphs by designating a value to every edge on the graph. This 
will influence an ant’s decision when making assignments. An 
ant will assign a component to an event by randomly moving 
from one node to the next within its dynamically-created 
neighbor list. The probability p

k
ij of ant k in node i to move to 

node j is the probabilistic decision function: 

where ij is the pheromone value of the edge [i,j], ij is a pre-
determined heuristic information value of that same edge, and 
N

k
i is the neighborhood of ant k when in node i. After 

successfully creating a solution (i.e., moving from the start to 
the end nodes of the graphs), the ant will update the pheromone 

values of the paths it used by adding a value 
k
 to each graph 

edge, implemented as follows: 

, 

where ij is the pheromone content of edge [i,j] and A
s
 is the set 

of all edges in the ant solution. Evaporating the pheromone 
trails is done in a similar manner, but on every edge of the 
graph. It is implemented as follows: 

– , 

where A is the set of all edges the search space graph. 

C. Max-Min Ant System Algorithm 

The Max-Min Ant System (MMAS) [14] variant of ACO is 
used in the implementation. In MMAS, minimum and 
maximum pheromone values are imposed on the trails and the 
pheromone matrix is initially set to the maximum value. 
Evaporation is done at a slower rate to promote exploration of 
the search space. Strong exploitation of the search history is 
encouraged by allowing only the ant with the best solution to 
update the pheromone trails. Extended initial exploration and 
exploiting of the best solutions make the MMAS algorithm one 
of the best existing metaheuristic variant for combinatorial 
optimization problems like timetabling [13]. 

Furthermore, to prevent stagnation of solution quality when 
ants converge on or near a single path they perceive as 
optimum, the pheromone trails are reinitialized to maximum 
values whenever such a situation is detected. Fig. 2 shows the 
pseudo-algorithm for MMAS-UCFTP. 

An option is added in pheromone updating wherein the 
algorithm can choose whether to implement an iteration-best 
method, where the best ant of the iteration will update the 
pheromone trails, or best-so-far method, which updates the 
trails based only on the best existing solution created by the 
ants so far. 

IV. PARALLEL AND DISTRIBUTED ARCHITECTURE 

The nature of the ACO algorithm makes parallelizing it 
very natural [6]. Different parallelization topologies in the 
literature have been considered. This includes fully-connected, 
ring, 2D and 3D meshes, and hypercube network topologies 
[1][7]. The aim is to improve performance by distributing the 
computation load across multiple processor nodes, at the same 
time minimizing the communication overhead over the parallel 
network cluster. 

A proven best-performing parallelization strategy for the 
ACO algorithm is the Parallel Independent Run (PIR) topology 
[8]. It effectively cuts all communication overhead by 
implementing no communication between nodes at all. The 
server only communicates to the slave nodes at the beginning 
of the search process when all necessary data are obtained, and 
at the end of the search when the slave nodes send their results 
to the server (Fig. 3). PIR is used in this implementation. 

Figure 2.  High-level pseudo algorithm for the MMAS-UCFTP. 

 

 



 
 

Figure 3.  In a Parallel Independent Run topology, colonies get the initial 
data from the master at the start of the search process. No inter-node 

communication occurs until the search is done. During which, all colonies 

submit their results to the server. 

Another network topology employed to solve the UCFTP is 
the Unidirectional Ring (UR) topology. It has been tested in 
similar researches [8] and seen as very effective for ACO when 
data relay across slave nodes only involves the solutions being 
exchanged, instead of the entire pheromone matrix state. From 
time to time, a slave node (or ant colony) will send its best-
solution-so-far to the next node within its ring. The recipient 
node will then compare that new solution to its own best one. If 
it exceeds the existing best solution in quality, it becomes the 
new best. This is shown in Fig. 4. 

V. SEARCH PARAMETER CALIBRATION AND TEST RESULTS 

Seven real-world UCFTP instances were used for the test 
runs. These problem data were taken from groups of colleges 
within MSU-IIT during the 2nd semester of SY 2010-2011. 
The sizes of these instances are shown in Tab. I. The testing 
process was performed with an HP Proliant DL585 G7 AMD 
Opteron 6174 4x12 cores 2.20GHz 128GB RAM on CentOS 
5.6 using the Erlang/OTP functional programming language. 
Every test was run for 20 minutes, utilizing 40 cores as ant 
colonies and 1 core for the main ant server. A total of 6 search 
classes were made and different parameters were entered for 

each class. Parameter m is the number of ants per colony,  and 

 represent the ants’ sensitivity to the pheromone and heuristic 
information, respectively, and pr is the pheromone evaporation 
rate. Update method is a choice between a best-so-far update, 
an iteration-best, or both methods at once. An initial number of 
iterations, ifs, is given where no pheromone update or 
evaporation is allowed. Finally, each colony will send its best 
solution to the next one every ring iterations. A zero value 
indicates a PIR search. 

During every test run, the algorithm was successfully able 
to generate feasible solutions. Thus, the objective of the testing 
was to observe the algorithm behavior under different settings 
and to find the optimum parameters for better search 
performance. The search parameters used for every test class 
are shown in Tab. II.  

Test results are shown in Fig. 5-8. They are arranged to 
show the test search classes per problem instance. The first 3 
test classes (URR, URN, and URX) are of the Unidirectional 
Ring network topology, while the rest use PIR.  

Figure 4.  Unidirectional Ring topology diagram. In the MMAS-UCFTP, 
solution data are exchanged instead of the pheromone information. A colony 

will send its best solution to the next node in the ring and in the same way 

receives a new solution from the node behind it. 

TABLE I.   SIZES OF THE UCFTP INSTANCES 

Problem 

Instances 

courses faculties timeslots locations faculty-

events 

large1 741 150 44 58 10 

large2 663 134 44 62 5 

medium1 390 60 44 29 4 

medium2 349 69 44 59 12 

small1 278 37 44 85 0 

small2 247 46 44 18 4 

tiny1 175 40 44 29 4 

TABLE II.  PARAMETER SETTINGS OF THE SEARCH CLASSES 

Search 

Class 

m pr stagnation 

sensitivitya 

update 

method 

ifs ring 

URR 20 1 0 0.05 5 BSF 200 10 

URN 7 1 1 0.2 10 IBU 100 10 

URX 2 2 0 0.2 7 Both 100 30 

PIRR 20 1 0 0.05 5 BSF 200 0 

PIRN 7 1 1 0.2 10 IBU 100 0 

PIRX 2 2 0 0.2 7 Both 100 0 

a. A lower value means more sensitive to stagnation. 

 

On larger problem instances large1 and large2, PIR 
searches performed better than UR. On the other hand, UR is 
more likely to obtain better solutions on medium and smaller-
sized instances. This behavior has been verified in literature [9] 
where a higher solution exchange frequency can have an 
adverse effect on the search due to communication overhead. It 
is made clearer in this implementation wherein the frequency 
of communication is dictated by a fixed parameter ring, instead 
of a function of the problem size, and the stopping condition is 
a time limit, not reaching some objective value. 

Parameter settings from search classes suffixed -R and -N 
(URR, URN, PIRR, PIRN) are designed to encourage the ants 
to explore the search space, instead of over-emphasizing the 
use of pheromones and quickly converging on some local 
optimum (URX, PIRX). Researches have pointed out the 
importance of exploration over exploitation especially during 
the initial part of the search [5]. Tests indicate, however, that 
there must be a balance between exploration and exploitation 
as shown by the results of URR and PIRR, which are designed 
to make ants as purely explorative as possible. Both searches 
got the worst results in almost all instances.  



  

   

   

 

Figure 5.  Search results for problem instances large1 (left) and large2 (right). 

Figure 6.  Search results for problem instances medium1 (left) and medium2 (right). 

Figure 7.  Search results for problem instances small1 (left) and small2 (right). 

It is better to let ants explore ―normally‖ (URN, PIRN) and 
not set the ifs value too high as to make the ants almost never 
converge at all.  

Interestingly, exploitative ants on a Unidirectional Ring 
topology had the best results on instance small1. Upon 
manually examining this problem instance, it was determined 
that a solution without at least 30% soft constraint violations is 
mathematically impossible to obtain because of the problem 
elements’ individual properties. Thus, in this case, it is more 
advantageous to converge on a quickly-found local optimum 
than to keep exploring a search space that would only yield 
solutions of no better, if not worse, quality, anyway. 

VI. CONCLUSIONS 

Past works [11] have confirmed that each ACO 
configuration will behave differently, even unexpectedly, in 
different problem instances or sizes. This is why it is very 
difficult to find an optimal, ―one-size-fits-all‖ configuration 
best for all future cases of real-world UCFTP instances. For an 
effective MMAS-UCFTP, the algorithm implementation’s 
parameter setting will then have to be calibrated and the 
problem instance’s characteristics examined when such a case 
occurs. 

 



 

Figure 8.  Search results for problem instance tiny1. 

The following conclusions are made from this work: 

 The ACO virtual ants must be given enough initial 
time during which they are encouraged to explore the 
search space. This has been verified in [5] and 
established that exploration is an integral part of the 
ACO-MMAS algorithm. The ants must also be able to 
finally exploit the best-solution memory and converge 
on a solution path upon concluding the search. 

 Communication overhead should be taken into account 
when parallelizing an ACO algorithm. A policy where 
only solution information is exchanged within the ant 
colony cluster is best [15], although the most essential 
factor is the frequency of this exchange, which should 
be proportional to the search duration and problem 
instance size. 
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