
Parallel Ant Colony Optimization on the University

Course-Faculty Timetabling Problem in MSU-IIT
Distributed Application in Erlang/OTP

Earth B. Ugat

Jennifer Joyce M. Montemayor

Mark Anthony N. Manlimos

Dante D. Dinawanao, M.Sc.

Department of Computer Science, School of Computer Studies

Mindanao State University–Iligan Institute of Technology

Andres Bonifacio Avenue, Tibanga, Iligan City 9200, Philippines

Abstract—The University Course-Faculty Timetabling Problem

(UCFTP) occurs in the Mindanao State University-Iligan

Institute of Technology (MSU-IIT) as the delegation of

classrooms for available subjects including time schedule and

appropriate faculty personnel, taking into consideration

constraints such as classroom capacities, location, and faculty

preferences, etc. It is a more difficult variant of the classical

University Course Timetabling Problem, which is an assignment

problem and known to be NP-hard. This paper presents parallel

Ant Colony Optimization Max-Min Ant System (ACO-MMAS)

algorithm as an approach in solving the UCFTP instance in the

institute. ACO employs virtual ants moving across a search space

and using an indirect form of constructive feedback by depositing

pheromones on the paths they traverse in order to influence other

ants in their searches. We have developed an application to

automate the timetabling process using Erlang/OTP, a functional

language specializing in concurrent and distributed systems.

UCFTP was successfully represented into a mathematical

problem instance and solved using the ACO-MMAS algorithm

applied on a distributed network setup under Parallel

Independent Run and Unidirectional Ring topologies. Extensive

testing was performed to properly analyze the search behavior

under different parameter settings.

Keywords—ant colony optimization; max-min ant system;

parallel algorithm; distributed application; university timetabling

I. INTRODUCTION

Every start of an academic semester in the Mindanao State
University–Iligan Institute of Technology (MSU-IIT), a
different kind of university timetabling problem occurs. Each
department in every college releases a certain number of
instances of the subjects they handle. These instances, or
courses, are then scheduled into timeslot schemes and rooms,

and given their own faculty teachers—all done before students
come and enroll.

As this scheduling is still being prepared manually, it is
prone to errors and faculty personnel often end up having
conflicting schedules both in timeslots and locations. Other
courses are sometimes labeled as pending while teachers try to
work out feasible timetables. This leads to delays in the actual
start of classes and is a constant challenge for the institute
administration every semester.

The problem, in its mathematical form, is the University
Course-Faculty Timetabling Problem (UCFTP) and is adapted
from a conventional definition of a university timetabling
problem [10], which is known to be NP-hard [3].

This paper
1
 describes the application of Ant Colony

Optimization (ACO) to solve the UCFTP. ACO is a swarm-
intelligence class, biologically-inspired algorithm introduced in
the early nineties as a revolutionary multi-agent metaheuristic
for combinatorial optimization problems [5]. It is inherently
parallel and is implemented here as a distributed system on
parallel network topologies using Erlang/OTP, a functional
programming language specializing in process concurrency,
fault-tolerance, and cross-processor parallelism [2].

II. UNIVERSITY COURSE-FACULTY TIMETABLING

PROBLEM

UCFTP consists of 5 sets: C, F, T, L, and Fe. Set C contains
all subject instances, or course events, each having a specific
college and department designation, maximum student
capacity, unit equivalent value, type classifications, and feature
requirements. Additionally, every course has a list of other
colleges in whose buildings it can also be scheduled if there is
no more room for it in its own designated college.

1This is the technical paper version of the undergraduate Computer
Science thesis entitled ―MyClass: MSU-IIT Faculty Workload and Class

Assignment System – A Concurrent and Distributed Max-Min Ant System

Application in Erlang‖ [16]

DOI: 10.5176_2010-2283_1.4.112

F is the set of all teaching faculty personnel, each one
having a minimum, maximum, and targeted unit load values. A
faculty has an ordered priority list of colleges and departments
where she belongs to, as well as a list of courses, within those
departments, that she is able to teach. T contains the timeslot
schedules (pre-determined day-time combinations, e.g. MWF
3-5PM) classified under multiple types. Some of these
elements may only be used by certain colleges or departments.

L is the set of all rooms or locations where course events
can take place. Each location has a maximum student capacity,
a list of features, and type classifications. A location also has
an ordered priority list of colleges and departments that are
allowed to use it. Set Fe is another event set of regular faculty
activities, called faculty-events, that concerns all teaching
personnel (e.g. weekly departmental meetings). A faculty-event
from a certain college or department has type classifications
and can either have a college-wide or department-wide scope.

The problem is to assign every course event to a faculty,
timeslot, and location, and every faculty-event to a timeslot so
that the following hard constraints are satisfied:

 A faculty cannot be teaching more than one course at a
time;

 A faculty can only teach her allowed courses, and only
in locations her college-department designation allows;

 A faculty cannot go below or above her minimum and
maximum unit load values, respectively;

 A faculty cannot be scheduled on a time (or timeslot)
or location that she indicates;

 There must be no unassigned faculties;

 A timeslot or location must have all type classifications
of the course or faculty-event assigned to it;

 A timeslot or location is only usable by certain colleges
or departments;

 No two courses can occur in the same location at the
same time;

 A location must be able to accommodate the course’s
capacity and meet all its feature requirements;

 Faculties within scope must not be teaching any course
if a faculty-event that concerns them is being held;

 No two faculty-events of conflicting college-
department designation and scope can occur at the
same time.

The quality of the problem solution is penalized
accordingly for every violation of the following soft
constraints:

 A faculty should be scheduled only on timeslots and
locations of her preference;

 A faculty or location’s list of college-department
designations indicates their priorities for course
assignment (i.e., courses belonging to departments at
the top of the list are preferred);

 Faculties should not be required to teach for more than
4.5 consecutive hours in a day;

 A faculty should not teach only 1 course in a day;

 A faculty’s total unit load should match her targeted
unit load value;

 A teacher’s assigned courses should not vary too much
in terms of subject kind;

 A course’s student capacity should match the
location’s seating capacity;

 A faculty-event should be scheduled only on timeslots
of its preference;

 Timeslots of a higher priority value are assigned first.

The objective, therefore, is to find a solution (satisfying all
hard constraints) with the least number of soft constraint
violations.

Formally, the definition of the UCFTP is taken from [4] as
a combination of an Axial 4-index and 2-index assignment

problems in the following: Let (x), (x), (x), (y) be the
feasible assignments of course x to a faculty, course x to a
timeslot, course x to a location, and faculty-event y to a
timeslot, respectively. Let c

1
ijkl be the cost of assigning course i

to faculty j to timeslot k in location l, and c
2
mn be the cost of

assigning faculty-event m to timeslot n. UCFTP is finding the
assignment that will minimize the total cost, as in

where Sm and Sn are the sets of all feasible assignments for
courses and faculty-events, respectively, or the search space
sets.

III. ANT COLONY OPTIMIZATION

In ACO, virtual colonies of ants iteratively construct
solutions by moving through a search space graph and making
component assignments through every step on the graph edges.
The ants leave pheromone values on the paths they traverse
depending on the quality of the solution they have built. Paths
with higher pheromone content are more likely to be chosen by
a traveling ant than ones with lower values. Additionally,
pheromones on all edges are evaporated at a constant rate to
prevent overwhelming differences between path values. This
concept of pheromone trails, along with the mathematical
graph representation of the problem, lies at the core of the
ACO algorithm.

A. Search Space Graph Representation

The graphical representation of the UCFTP is taken directly
from course timetabling problem in [12] where the list of
events is iterated from start to end points and the elements of
the set to be assigned to are replicated under each event as
shown in Fig. 1. These elements are either all from F, T, or L if
the events are courses, or from T if iterating through faculty-
events.

procedure MMAS_UCFTP
 InitializeSearchSpace
 while not terminate
 for each ant
 ConstructSolution
 EvaluateSolutionQuality
 end for
 OptionalLocalSearch
 UpdatePheromones
 end while
end procedure

Figure 1. An ant builds a solution by travelling from start to end nodes,

making probabilistic decisions at every step through the graph edges. Each

step made in this way creates an assignment of event e to element k.

Programmatically, the assignable elements, or components,
under each event are generated on-demand as they depend on
the previous assignments so far, which is the present state of
the partial solution at every event point. Thus, the search space
matrices are at least the size of C x F, C x T, C x L, and Fe x T
for course-faculty, course-timeslot, course-location, and
faculty-event-timeslot assignments, respectively.

B. Pheromone Trail Model

A pheromone matrix is created based on the search space
graphs by designating a value to every edge on the graph. This
will influence an ant’s decision when making assignments. An
ant will assign a component to an event by randomly moving
from one node to the next within its dynamically-created
neighbor list. The probability p

k
ij of ant k in node i to move to

node j is the probabilistic decision function:

where ij is the pheromone value of the edge [i,j], ij is a pre-
determined heuristic information value of that same edge, and
N

k
i is the neighborhood of ant k when in node i. After

successfully creating a solution (i.e., moving from the start to
the end nodes of the graphs), the ant will update the pheromone

values of the paths it used by adding a value
k
 to each graph

edge, implemented as follows:

,

where ij is the pheromone content of edge [i,j] and A
s
 is the set

of all edges in the ant solution. Evaporating the pheromone
trails is done in a similar manner, but on every edge of the
graph. It is implemented as follows:

– ,

where A is the set of all edges the search space graph.

C. Max-Min Ant System Algorithm

The Max-Min Ant System (MMAS) [14] variant of ACO is
used in the implementation. In MMAS, minimum and
maximum pheromone values are imposed on the trails and the
pheromone matrix is initially set to the maximum value.
Evaporation is done at a slower rate to promote exploration of
the search space. Strong exploitation of the search history is
encouraged by allowing only the ant with the best solution to
update the pheromone trails. Extended initial exploration and
exploiting of the best solutions make the MMAS algorithm one
of the best existing metaheuristic variant for combinatorial
optimization problems like timetabling [13].

Furthermore, to prevent stagnation of solution quality when
ants converge on or near a single path they perceive as
optimum, the pheromone trails are reinitialized to maximum
values whenever such a situation is detected. Fig. 2 shows the
pseudo-algorithm for MMAS-UCFTP.

An option is added in pheromone updating wherein the
algorithm can choose whether to implement an iteration-best
method, where the best ant of the iteration will update the
pheromone trails, or best-so-far method, which updates the
trails based only on the best existing solution created by the
ants so far.

IV. PARALLEL AND DISTRIBUTED ARCHITECTURE

The nature of the ACO algorithm makes parallelizing it
very natural [6]. Different parallelization topologies in the
literature have been considered. This includes fully-connected,
ring, 2D and 3D meshes, and hypercube network topologies
[1][7]. The aim is to improve performance by distributing the
computation load across multiple processor nodes, at the same
time minimizing the communication overhead over the parallel
network cluster.

A proven best-performing parallelization strategy for the
ACO algorithm is the Parallel Independent Run (PIR) topology
[8]. It effectively cuts all communication overhead by
implementing no communication between nodes at all. The
server only communicates to the slave nodes at the beginning
of the search process when all necessary data are obtained, and
at the end of the search when the slave nodes send their results
to the server (Fig. 3). PIR is used in this implementation.

Figure 2. High-level pseudo algorithm for the MMAS-UCFTP.

Figure 3. In a Parallel Independent Run topology, colonies get the initial
data from the master at the start of the search process. No inter-node

communication occurs until the search is done. During which, all colonies

submit their results to the server.

Another network topology employed to solve the UCFTP is
the Unidirectional Ring (UR) topology. It has been tested in
similar researches [8] and seen as very effective for ACO when
data relay across slave nodes only involves the solutions being
exchanged, instead of the entire pheromone matrix state. From
time to time, a slave node (or ant colony) will send its best-
solution-so-far to the next node within its ring. The recipient
node will then compare that new solution to its own best one. If
it exceeds the existing best solution in quality, it becomes the
new best. This is shown in Fig. 4.

V. SEARCH PARAMETER CALIBRATION AND TEST RESULTS

Seven real-world UCFTP instances were used for the test
runs. These problem data were taken from groups of colleges
within MSU-IIT during the 2nd semester of SY 2010-2011.
The sizes of these instances are shown in Tab. I. The testing
process was performed with an HP Proliant DL585 G7 AMD
Opteron 6174 4x12 cores 2.20GHz 128GB RAM on CentOS
5.6 using the Erlang/OTP functional programming language.
Every test was run for 20 minutes, utilizing 40 cores as ant
colonies and 1 core for the main ant server. A total of 6 search
classes were made and different parameters were entered for

each class. Parameter m is the number of ants per colony, and

 represent the ants’ sensitivity to the pheromone and heuristic
information, respectively, and pr is the pheromone evaporation
rate. Update method is a choice between a best-so-far update,
an iteration-best, or both methods at once. An initial number of
iterations, ifs, is given where no pheromone update or
evaporation is allowed. Finally, each colony will send its best
solution to the next one every ring iterations. A zero value
indicates a PIR search.

During every test run, the algorithm was successfully able
to generate feasible solutions. Thus, the objective of the testing
was to observe the algorithm behavior under different settings
and to find the optimum parameters for better search
performance. The search parameters used for every test class
are shown in Tab. II.

Test results are shown in Fig. 5-8. They are arranged to
show the test search classes per problem instance. The first 3
test classes (URR, URN, and URX) are of the Unidirectional
Ring network topology, while the rest use PIR.

Figure 4. Unidirectional Ring topology diagram. In the MMAS-UCFTP,
solution data are exchanged instead of the pheromone information. A colony

will send its best solution to the next node in the ring and in the same way

receives a new solution from the node behind it.

TABLE I. SIZES OF THE UCFTP INSTANCES

Problem

Instances

courses faculties timeslots locations faculty-

events

large1 741 150 44 58 10

large2 663 134 44 62 5

medium1 390 60 44 29 4

medium2 349 69 44 59 12

small1 278 37 44 85 0

small2 247 46 44 18 4

tiny1 175 40 44 29 4

TABLE II. PARAMETER SETTINGS OF THE SEARCH CLASSES

Search

Class

m pr stagnation

sensitivitya

update

method

ifs ring

URR 20 1 0 0.05 5 BSF 200 10

URN 7 1 1 0.2 10 IBU 100 10

URX 2 2 0 0.2 7 Both 100 30

PIRR 20 1 0 0.05 5 BSF 200 0

PIRN 7 1 1 0.2 10 IBU 100 0

PIRX 2 2 0 0.2 7 Both 100 0

a. A lower value means more sensitive to stagnation.

On larger problem instances large1 and large2, PIR
searches performed better than UR. On the other hand, UR is
more likely to obtain better solutions on medium and smaller-
sized instances. This behavior has been verified in literature [9]
where a higher solution exchange frequency can have an
adverse effect on the search due to communication overhead. It
is made clearer in this implementation wherein the frequency
of communication is dictated by a fixed parameter ring, instead
of a function of the problem size, and the stopping condition is
a time limit, not reaching some objective value.

Parameter settings from search classes suffixed -R and -N
(URR, URN, PIRR, PIRN) are designed to encourage the ants
to explore the search space, instead of over-emphasizing the
use of pheromones and quickly converging on some local
optimum (URX, PIRX). Researches have pointed out the
importance of exploration over exploitation especially during
the initial part of the search [5]. Tests indicate, however, that
there must be a balance between exploration and exploitation
as shown by the results of URR and PIRR, which are designed
to make ants as purely explorative as possible. Both searches
got the worst results in almost all instances.

Figure 5. Search results for problem instances large1 (left) and large2 (right).

Figure 6. Search results for problem instances medium1 (left) and medium2 (right).

Figure 7. Search results for problem instances small1 (left) and small2 (right).

It is better to let ants explore ―normally‖ (URN, PIRN) and
not set the ifs value too high as to make the ants almost never
converge at all.

Interestingly, exploitative ants on a Unidirectional Ring
topology had the best results on instance small1. Upon
manually examining this problem instance, it was determined
that a solution without at least 30% soft constraint violations is
mathematically impossible to obtain because of the problem
elements’ individual properties. Thus, in this case, it is more
advantageous to converge on a quickly-found local optimum
than to keep exploring a search space that would only yield
solutions of no better, if not worse, quality, anyway.

VI. CONCLUSIONS

Past works [11] have confirmed that each ACO
configuration will behave differently, even unexpectedly, in
different problem instances or sizes. This is why it is very
difficult to find an optimal, ―one-size-fits-all‖ configuration
best for all future cases of real-world UCFTP instances. For an
effective MMAS-UCFTP, the algorithm implementation’s
parameter setting will then have to be calibrated and the
problem instance’s characteristics examined when such a case
occurs.

Figure 8. Search results for problem instance tiny1.

The following conclusions are made from this work:

 The ACO virtual ants must be given enough initial
time during which they are encouraged to explore the
search space. This has been verified in [5] and
established that exploration is an integral part of the
ACO-MMAS algorithm. The ants must also be able to
finally exploit the best-solution memory and converge
on a solution path upon concluding the search.

 Communication overhead should be taken into account
when parallelizing an ACO algorithm. A policy where
only solution information is exchanged within the ant
colony cluster is best [15], although the most essential
factor is the frequency of this exchange, which should
be proportional to the search duration and problem
instance size.

ACKNOWLEDGMENT

We would like to thank the Computer Science Department,
the Computer Facilities and Support Services, and the High
Performance Computing Facility at the MSU-IIT for allowing
us to conduct this study; and the MSU-IIT Computer Science
Alumni Association for the financial help extended.

REFERENCES

[1] Alba, E., "Parallel metaheuristics: A new class of algorithms," in Wiley
Series on Parallel and Distributed Computing. Hoboken, NJ. Wiley-
Interscience, 2005.

[2] Armstrong, J., Programming in Erlang: Software for a Concurrent
World. Raleigh, NC, USA: The Pragmatic Bookshelf, 2007.

[3] Burkard, R. E. and Cella, E., "Linear assignment problems and
extensions," in Handbook of Combinatorial Optimization, supp. vol. A,
P. M. Pardalos and D. Za. Du, Eds. Kluwer Academic Publishers, 1999,
pp. 75-149.

[4] Burkard, R. E., Dell'Amico, M., and Martello, S., Assignment Problems.
Philadelphia, USA: Society for Industrial and Applied Mathematics,
2009, pp. 305-306.

[5] Dorigo, M. and Stützle, T., Ant Colony Optimization. Cambridge, MA,
USA: The MIT Press, 2004.

[6] Dorigo, M. and Stützle, T., "The ant colony optimization metaheuristic:
Algorithms, applications, and advances," in Handbook of
Metaheuristics, F. Glover and G. Kochenberger, Eds. Kluwer, 2002.

[7] Janson, S., Merkle, D., and Middendorf, M., "Parallel ant colony
algorithms," in Parallel Metaheuristics. Wiley, 2005.

[8] Manfrin, M., Birattari, M., Stützle, T., and Dorigo, M., "Parallel ant
colony optimization for the traveling salesman problem," in Ant Colony

Optimization and Swarm Intelligence, 5th International Workshop,
ANTS 2006, vol. 4150, Lecture Notes in Computer Sciences, M.
Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T.
Stützle, Eds. Berlin, Germany. Springer-Verlag, 2006.

[9] Manfrin, M., Birattari, M., Stützle, T., and Dorigo, M., "Parallel
multicolony ACO algorithm with exchange of solutions." Brussels,
Belgium: IRIDIA, CoDE, Université Libre de Bruxelles, 2006.

[10] Mayer, A., Nothegger, C., Chwatal, A., and Raidl, G. R., "Solving the
post enrolment course timetabling problem by ant colony optimization."
2007.

[11] Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo,
M., et al., "A comparison of the performance of different metaheuristics
on the timetabling problem". Metaheuristics Network, 2002.

[12] Socha, K., Knowles, J., and Sampels, M., "A max-min ant system for the
university course timetabling problem," in The Proceedings of the
International Workshop on Ant Algorithms, ANTS 2002, vol. 2463, pp.
1-13, Springer Lecture Notes in Computer Science. Springer-Verlag,
2002.

[13] Stützle, T. and Hoos, H., "Max-min ant system," in Future Generation
Computer Systems, vol. 16, M. Dorigo, T. Stützle, and G. DiCaro, Eds.
2000, pp. 889-914.

[14] Stützle, T. and Hoos, H., "Improvements on the ant system: Introducing
the max-min ant system," in Proc. Int. Conf. Artificial Neural Networks
and Genetic Algorithms. Wien: Springer-Verlag, 1997.

[15] Twomey, C., Stützle, T., Dorigo, M., Manfrin, M., and Birattari, M.,
"An analysis of communication policies for homogenous multi-colony
ACO algorithms," in Information Sciences Direct 180(2010), pp. 2390-
2404. Information Sciences, Elsevier, Inc., 2010.

[16] Ugat, E., Montemayor, J.J., and Manlimos, M.A., ―MyClass: MSU-IIT
Faculty Workload and Class Assignment System – A Concurrent and
Distributed Max-Min Ant System Application in Erlang,‖ unpublished.

ABOUT THE AUTHORS

Earth B. Ugat
earth.ugat@g.msuiit.edu.ph

Earth is a developer and administrator of small
to large scale network systems. He is a senior BS

Computer Science student in MSU-IIT who also finds interest
in PHP, C++, Java, skateboarding, and reading fantasy novels.

Jennifer Joyce M. Montemayor
jenniferjoyce.montemayor@g.msuiit.edu.ph

Jennifer is an experienced programmer, web
designer, mobile applications developer and movie

buff hailing from Baguio City. She received her BS in
Computer Science at MSU-IIT in 2011 where she now works
as an assistant lecturer for the Computer Science Department.

Mark Anthony N. Manlimos
markanthony.manlimos@g.msuiit.edu.ph

Mark earned his BS in Computer Science at
MSU-IIT in 2011 and has since worked there as an

assistant lecturer for the Computer Science Department. He is a
PHP, MySQL, and web frontend engineer who is also into
experimental cooking, dancing, and reading.

Dante D. Dinawanao, M.Sc.
dante.dinawanao@g.msuiit.edu.ph

Dante is a systems administrator and assistant
professor in the MSU-IIT Computer Science

Department. He obtained his Master’s degree at De La Salle
University in 2003. He finds programming, distributed
computing, music, education, and beer terribly exciting.

