
Agile Software Development and Service Science
How to develop IT-enabled Services in an Interdisciplinary Environment

Andreas Meier, Jenny C. Ivarsson

Abstract— This paper shows the necessary steps, which should be

taken in order to get the most out of agile software development in

interdisciplinary settings involving scientific experts. If applied

properly, Agile delivers increased productivity, higher quality

and, last but not least, higher customer satisfaction. The task of

developing high quality software is already difficult. Developing

software for a new IT-enabled service in an interdisciplinary team

however, is even more challenging.

In interdisciplinary projects scientific experts from different fields

need to work together with computer scientists, developers,

testers, business analysts and domain experts. Software

engineering is very time-consuming and scientific experts who

have never been involved in a software project, often find it hard

to understand why progress sometimes seems so slow. Therefore,

it is important that they understand what it takes to write high-

quality code, i.e. code that is clean, tested, documented and

extendable at the right points. The best way to achieve this goal is

to expand the software team, make the scientific experts an

integral part of it and thus profit from their know-how.

Keywords-component; agile software development, service

science, scrum, scientific expert

I. INTRODUCTION

In the last decade, there has been a shift away from
traditional towards agile software methodologies. Many people
felt that the overhead imposed by traditional methods like the
waterfall model, Unified Process etc. slowed down the
development process and did not deliver the needed quality.
Nowadays, many companies and software developers have
adopted agile methodologies like Scrum [1], eXtreme
Programming [2] (XP), Lean [4] or Kanban [5]. There are
several reasons that brought about this shift from traditional, Big
Design Up Front1 (BDUF) to Agile Software Development [7],
[10].

The sixth annual “State of Agile Development” survey [11]
sheds some light on the benefits of Agile Software Development
and its worldwide adaption. The survey data includes
information from more than 6,000 respondents from different
countries and was collected at the end of 2011.

According to the survey, the following main benefits were
obtained by implementing Agile:

1 “Big Design Up Front is a software development approach in which the
program's design is to be completed and perfected before that program's

 84% responded that the ability to manage changing
priorities got better.

 75% reported that they experienced an increased
productivity.

 71% had a faster time-to-market.

 68% said that the quality of the software got better.

 68% responded that the alignment between IT &
Business Objectives got better

 65% found that Agile reduced the risk in the project.

These are impressive figures which show that agile
methodologies improve productivity and increase both quality
and customer satisfaction.

In the Swiss Agile Study [12], a survey conducted by Meier
and Kropp, these findings have been confirmed for companies
and IT-professionals. More than half of the participating
companies are using an agile methodology like Scrum or XP. –
Agile has become mainstream! Agile methodologies deliver
results successfully and are superior for some categories of
projects.

In this paper, we will first show which category of projects
benefit from using Agile and in what category the IT-based
service projects belong. To determine the category, the concept
of project noise level has to be introduced. Next, we will give a
short overview of Scrum, its terminology and how it works.
Scrum alone or used in combination with eXtreme Programming
(Scrum / XP hybrid) is the most widely used agile
methodologies. They make up about two-thirds of the agile
methodologies being used. Therefore, the focus will be on
Scrum and XP in this paper. Following this, we will have a look
at the different levels of agile planning and the importance of
feedback cycles. To give a practical example of how scientific
experts can be made an integral part of a functional Scrum team,
we will then tell you about a project conducted by our Institute
in the form of a case study. Finally, it will be discussed how
software quality can be improved by following agile practices.

II. DEFINED AND EMPIRICAL PROCESS CONTROL MODELS

Agile methodologies, as opposed to traditional
methodologies, are an implementation of the empirical process
control model. When should I use agile methods and when

implementation is started. It is often associated with the waterfall model of
software development.” http://en.wikipedia.org/wiki/Big_Design_Up_Front

 DOI: 10.5176/2251-3043_3.3.278

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

103 © 2013 GSTF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/233150044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traditional? To answer this question we first have to look at the
noise and complexity in a development project.

A. Noise Level and Project Complexity

Noise in a system development project is a function of these
three vectors:

1. Requirements

2. Technology

3. People

If the requirements of the new service or product are well
known, the noise of the first vector is probably low. If they are
only partly understood, the noise level is higher, i.e. the
uncertainty increases. Often the requirements are not well
understood, poorly communicated or incomplete.

In software development projects we usually work with five
or more different technologies like programming languages,
databases, scripting languages, query languages, web services,
markup languages, servers, networks etc. If all the technologies
are familiar, the noise level is probably low. If any of the
technologies are complicated, emergent and have not fully been
tested, then the noise level is high.

When people are involved, nothing is simple. In IT-related
service projects we have interdisciplinary teams and this
increases the noise level even further.

How do you know when to use which process control
model? Well, the higher the noise level, the more complex the
project. So, if you have a simple project with a low noise level,
a defined process like waterfall or Unified Process can be used.
If the noise level is high, i.e. a complex project, an empirical
process is better suited. Scrum is built on an empirical process
model and therefore works well for complex IT-projects like the
ones found in service science.

III. SCRUM BASICS

A. Scrum Terminology

Scrum is made up of three roles, four ceremonies, and three
artifacts. These are the three roles that Scrum prescribes [13]:

 Product Owner: responsible for the business value of
the project.

 Scrum Master: ensures that the team is functional and
productive.

 Cross-functional Team: self-organizes to get the work
done.

The following are the four ceremonies:

 Sprint Planning: the team meets with the Product
Owner to choose a set of tasks to deliver during a sprint.

 Daily Scrum (aka Daily Standup): the team meets each
day to share struggles and progress.

 Sprint Reviews: the team demonstrates to the Product
Owner what it has completed during the sprint.

 Sprint Retrospectives: the team looks for ways to
improve the product and the process.

And the following are the three artifacts:

1. Product Backlog: prioritized list of desired project
outcomes/features.

2. Sprint Backlog: set of features from the Product
Backlog that the team agrees to complete in a sprint,
broken into tasks.

3. Burn Down Chart: at-a-glance look at the work
remaining.

B. The Scrum Framework

The Scrum Framework according to the description of the
Scrum Alliance [14]: A Product Owner creates a prioritized wish
list called a Product Backlog. During Sprint Planning (aka
Iteration Planning), the team pulls a small chunk from the top of
that wish list, a Sprint Backlog, and decides how to implement
those pieces. The team has a certain amount of time, a sprint, to
complete its work - usually two to four weeks - but meets each
day to assess its progress (Daily Scrum). Along the way, the
Scrum Master keeps the team focused on its goal. At the end of
the sprint, the work should be potentially shippable, i.e. ready to
hand to a customer, to put on a store shelf, or to show to a
stakeholder. The sprint ends with a Sprint Review and a
Retrospective. As the next sprint begins, the team chooses
another chunk of the Product Backlog and begins working again.

C. Agile Planning

Agile Planning [6] is an important part of the empirical
process model and is done on different levels:

Daily Standup: 78% of the respondents of the “State of Agile
Development” survey [11] report that they actually have Daily
Standups.

Iteration Planning: 74% of the respondents use this agile
technique, too. In this kind of meeting, which is based on the
newly gained knowledge, the goals of the iteration are planned.

Release Planning: In intervals of typically three to six
months, there is a Release Planning meeting. In this meeting, the
content of the next release is planned on a rather coarse-grained
level. 65% of the respondents report using this agile practice.

At the end of every sprint there is a demo of the new piece of
functionality to the customer. The customer tests the new
functionality and gives feedback. Does it meet the customer’s
expectations? Does it not? This feedback is used for planning
the next iteration and helps ensure that the best possible system
is built.

IV. AIRLINE CATERING CASE STUDY

A. How to Integrate Scientific Experts in Scrum Teams

Where do scientific experts belong in Scrum? Are they
customers, business analysts or do they belong to the team? We
will try to clarify these questions by looking at a case study.

A while ago, we had an R&D project at our institute. This
was a joint project between different institutes of our university,
an airline catering company and an IT-company. The goal of the

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

104 © 2013 GSTF

project was to deliver a new IT-enabled service for companies
in the airline catering business. Andreas Meier was the academic
project leader whose task it was to coordinate the scientific
experts and the developers. There was another project manager
in the role of the Scrum Master. He was responsible for the
business stakeholders and their developers. We had a Product
Owner (PO) from the senior management of the airline catering
company. The PO was responsible for the items on the Product
Backlog. He made sure that the items were ordered by business
priority and developed correspondingly. Most importantly, there
was the Scrum team, which consisted of four to eight people.

In the Scrum team, there were software developers, a user
interface expert, testers and domain experts (which varied
depending on the features that were to be developed during the
sprint). The domain experts were from different fields in the
airline business. For instance, there was a dispatcher, a chef,
people from the front and back office, a lawyer and even the
CEO. The domain experts all had their normal jobs to do and so
it was quite a challenge to get them to work in the team. The
CEO made sure, that all the domain experts understood the
importance of this project and that they would sporadically be
part of the Scrum team. The Scrum Master did a tremendous job
guaranteeing that their time was used to the most. In the
beginning there were some misunderstandings, but once the
domain experts could see, at the Sprint demo, that their know-
how and expertise was actually correctly transformed into
working software, they became really committed.

The scientific experts had a very important part in the
project. They came from the fields of Data Analysis and Process
Design and were responsible for the innovation, which was new
at that time for the airline catering industry. This innovation was
one of the main reasons for the project. The scientific experts
had already done a lot of research and had developed a
prototype, which was based on artificial but not live data. In
other words, they were ready and eager to get their prototype
implemented and tested in a productive environment.

Here we ran into a timing problem, which is very common:
The scientific experts were ready before the developers had even
started to write the first line of code. In the Airline Catering
project it took about half a year, before the developers could start
implementing the prototype.

In Scrum, the aim of a sprint is to develop working software,
i.e. something that adds value for the customer. Implementing a
standalone prototype, in our case software, without the
underlying components and data, is not useful to the customer.
Therefore it should be avoided. In our project, the developers
first had to develop working components before they could think
about starting on the innovation. How can you avoid that the
scientific experts get frustrated and lose focus while waiting?
Our approach was to make them part of the Scrum team.

B. Tasks Performed by the Scientific Experts in the Scrum
Team

If the scientific experts are part of the Scrum team, it is no
longer just cross functional but interdisciplinary. Ideally, the

2 This is also known as Continuous Integration (CI), one of the agile practices.
Usually, the build server notices when software has been added to the repository

whole team is co-located and the scientific experts take part in
the daily Standup Meeting. Often that is not possible, since the
scientific experts only work full-time sporadically for the
project. If they work part-time, it is important that the scientific
experts attend at least the Scrum Demo as well as the Iteration
and Release Planning Meeting at the end of each sprint.

Which tasks do the scientific experts perform?

 They write the user stories for the features, which are
part of their field of expertise. That includes the
acceptance criterions.

 They write the acceptance tests for their features,
preferably automated tests. Acceptance tests are useful
in two ways: 1. They serve as documentation for the
developer who is implementing the feature. 2. They can
be run every time after new source code has been added
to the source code repository2.

 They write or support developers writing automatic
unit tests. Occasionally, it is advisable that the
scientific experts write low-level unit tests. This makes
sense for calculations, where the output is a direct
function of the input and is not dependent on some
internal state of the software system.

 They do testing.

 They perform tests to further improve the usability of
their features.

 They adapt the newly gained knowledge. This is
probably the most important task. During the course of
a software development project two important things
happen: working software is written and new
knowledge is gained. Both are equally important.
Based on the new knowledge, better decisions can be
made, which in turn might change the requirements and
improve the service.

It is important to note that the knowledge of the scientific
experts will spread throughout the Scrum team, which in turn
results in better solutions, higher quality and customer
satisfaction.

V. IMPROVING SOFTWARE QUALITY

A. Common techniques

There are a number of techniques known to improve
software quality [8]. Both traditional and agile development
approaches have merit. Best is to use a combination of the two.
The following are some of these practices:

 Code Inspections improve the code quality. Code
inspections can take the form of peer reviews, code
walkthroughs or pair programming (see below). They
are best done daily and in small batches.

and automatically starts building and testing the system. If there is a problem, the
team gets notified. There are many CI-Systems available.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

105 © 2013 GSTF

 Pair Programming is an agile software development
practice in which two developers work together at one
computer. The Driver writes code while the Observer
reviews each line of code as it is typed in. The two
programmers switch roles frequently.

 Clean Code. What is clean code? There are many
definitions [9]; probably every programmer has one.
Most seem to agree, that clean code is a simple and
elegant one3.

 Professional testers and Quality Assurance (QA) make
sure that the system is without defects and possible
problems. They should be part of the Scrum team from
the beginning of the project.

 Design Patterns are solutions to well-known problems
within a given context in software design. The use of
design patterns helps to reduce defects.

 Automatic Unit Testing. There are a number of
frameworks for automatic unit testing. The most
widely used is the family of xUnit4.

 Test Driven Development (TDD) is a practice in which
a developer first writes automated unit tests that define
code requirements and then immediately writes the
code [3]. TDD ensures that the code is right, i.e.
correct.

 Acceptance Test Driven Development (ATDD) is a
practice in which the customer, the scientific experts
and other stakeholders discuss acceptance criteria and
write the acceptance tests for the system5. Writing the
acceptance tests before development begins ensures
that the right code is built.

 Continuous Integration aims to improve the software
quality. For every increment to the software all tests are
executed and the system is built. A build server6 that
also reports any problems back to the team usually does
this.

 Limited Work-In-Progress. “Limit work in progress
and deliver often”. This is one of the core practices of
the Kanban method [5]. Limiting work in progress
helps to avoid that too much work is pulled into the
developing process and therefore has a positive effect
on software quality.

B. Agile Techniques in Practice

The “State of Agile Development” survey [11] lists the
following figures about the techniques employed to improve
software quality:

3 In his noted book (Martin 2009) the author explains how to write

good code and how to transform bad code into good code. This book

has had a tremendous impact on the quality of our own development

projects. We have even started teaching Clean Code in our software

engineering lectures for undergraduate students with good results.

The students have since been writing much better code and they seem
to enjoy it.

Unit testing is used by 70%, Continuous Integration by 54%,
Automated Builds by 53%, Coding standards by 51%,
Refactoring by 48%, Test-Driven Development (TDD) by 38%,
Pair programming by 30% and Automated Acceptance Testing
by 25% of the respondents.

VI. CONCLUSION

Scrum is the most widely used agile methodology in
practice. It is an implementation of the empirical process model
and therefore well suited for complex IT-based service
development projects. Scrum is known to increase productivity,
quality, and customer satisfaction:

 Increased productivity: the aim of every sprint is a new
piece of working software. Progress is only measured
in features that are tested and accepted by the customer.
This assures that all project activities are focused on
developing software that adds customer value.

 High quality: agile practices like for instance Test
Driven Development, Refactoring and Continuous
Integration deliver better software.

 High customer satisfaction: the ability to respond to
changing requirements and managing oscillating
priorities leads to satisfied customers.

In this paper, we have shown that special attention has to be
paid to how scientific experts are integrated in Scrum teams and
how they can actively help improve the software development
effort and hence the new IT-enabled service.

Agile methodologies do not guarantee a successful project in
an interdisciplinary environment – but applied properly they
increase the possibility of a successful software development
project considerably.

REFERENCE LIST

[1] Schwaber, Ken and Beedle, Mike (2002), Agile Software Development
with Scrum, International Edition, Pearson Prentice-Hall, Upper Saddle
River NJ, ISBN 0-13-207489-3

[2] Beck, Kent with Andres, Cynthia (2004), Extreme Programming
Explained, Second Edition: Embrace change, Addison-Wesley, Boston,
ISBN 0321-27865-8 (aka “Second White Book”)

[3] Beck, Kent (2002), Test-Driven Development: By Example, 2002,
Addison-Wesley, Boston, ISBN 0321146530

[4] Poppendieck, Mary and Poppendieck, Tom (2007), Implementing Lean
Software Development, From Concept to Cash, ISBN 0-321-43738-1

[5] Anderson, David (2010), Kanban: Successful Evolutionary Change for
Your Technology Business, ISBN: 978-0-9845214-0-1

4 JUnit for Java, CppUnit for C++, NUnit for .Net etc.

5 Frameworks like FitNesse make it possible to run these tests

automatically.

6 There are a number of continuous integration tools like Jenkins,

CruiseControl etc. available.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

106 © 2013 GSTF

http://en.wikipedia.org/wiki/Continuous_integration

[6] Cohn, Mike (2006), Agile Estimating and Planning, Prentice Hall, Upper
Saddle River NJ, ISBN 0-13-147941-5

[7] Highsmith, Jim (2004), Agile Project Management, Creating Innovative
Products,
Addison-Wesley, Boston, ISBN 0-321-21977-5

[8] Martin, Robert C. (2003), Agile Software Development, Principles,
Patterns, and Practices,
Pearson Prentice-Hall, Upper Saddle River NJ, ISBN 0-13-597444-5

[9] Martin, Robert C. (2009), Clean Code, A Handbook of Agile Software
Craftsmanship,
Prentice Hall, Upper Saddle River NJ, ISBN 0-13-235088-2

[10] Shore, James and Warden, Shane (2008), The Art of Agile Development,
O’Reilly, Sebastopol CA, ISBN 978-0-596-52767-9

[11] VersionOne, Sixth State of Agile Development Survey, 2011, Online
publication:
http://www.versionone.com/state_of_agile_development_survey/11/,
20.4.2013

[12] Martin Kropp, Andreas Meier, Swiss Agile Study - Einsatz und Nutzen
von Agilen Methoden in der Schweiz. http://www.swissagilestudy.ch,
20.1.2013

[13] Scrum 101 http://www.scrumalliance.org/pages/scrum_101, 8.5.2013

[14] ScrumAlliance: http://www.scrumalliance.org/pages/what_is_scrum ,
8.5.2013

Andreas Meier was born and raised in Zurich, Switzerland. Since
the early 1980s, when he first got a Sinclair ZX81 to play with, he has
been interested in computers and programming. He studied computer
science at the Swiss Federal Institute of Technology (ETH Zurich) and
graduated 1992 with a master’s degree. Afterwards he worked in the
software industry for almost 10 years. In 1993 he was elected lecturer
at Zurich University of Applied Sciences. He has been teaching
programming and software engineering courses both on bachelor and
master levels. His special interests are software engineering and agile
methodologies.

Jenny Ivarsson was born in Sweden and grew up in Sweden,
Denmark and Bermuda. She studied English language and literature as
well as business administration at the University of Zurich where she
graduated in 2002. She was working as a teacher before she became
interested in agile software engineering. She is the founder and CEO of
a software development company, which is successfully implementing
its IT-enabled services with agile methodologies.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

107 © 2013 GSTF

