
 

 
Abstract—Supporting real-time multimedia applications on 

multicore systems is a great challenge due to cache’s dynamic 
behavior. Studies show that cache locking may improve execution 
time predictability and power/performance ratio. However, entire 
locking at level-1 cache (CL1) may not be efficient if smaller 
amount of instructions/data compared to the cache size is locked. 
An alternative choice may be way (i.e., partial) locking. For some 
processors, way locking is possible only at level-2 cache (CL2). 
Even though both CL1 cache locking and CL2 cache locking 
improve predictability, it is difficult to justify the performance 
and power trade-off between these two cache locking 
mechanisms. In this work, we assess the impact of CL1 and CL2 
cache locking on the performance, power consumption, and 
predictability of a multicore system using ISO standard 
H.264/AVC, MPEG4, and MPEG3 multimedia applications and 
FFT and DFT codes. Simulation results show that both the 
performance and predictability can be increased and the total 
power consumption can be decreased by using a cache locking 
mechanism added to a cache memory hierarchy. Results also 
show that for the applications used, CL1 cache locking 
outperforms CL2 cache locking. 
 

Index Terms—Cache locking, multicore computer architecture, 
multimedia applications, performance evaluation 
 

I. INTRODUCTION 

ULTICORE computer architecture supporting real-
time multimedia applications deals with timing 

constraints and usually interact with the environment rather 
than the human operator. Because timeliness and reliability are 
so important in their behavior, real-time multimedia systems 
are often distributed among multiple program units (a.k.a., 
tasks) running simultaneously to perform required functions. 
Concurrent execution of tasks on a single processor, in many 
respects including energy and thermal constraints, is 
inadequate for achieving the required level of performance or 
required level of reliability. Therefore, the tasks are moved to 
different interconnected processors, making a real-time system 
parallel and/or distributed. If the communication time between 
processing units is negligible with respect to the processing 
time, then the system is referred as parallel; otherwise it is 
referred as distributed. Because of high performance and 
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reliability, the popularity and demand of multicore systems 
(supporting parallel/distributed processing) are increasing in 
both the desktop and the embedded markets [1]-[3].   

Multi-level cache memory hierarchy is a common choice for 
multicore systems, especially for embedded systems running 
real-time multimedia applications [4]-[8]. According to this 
memory hierarchy, CL1s are attached to and privately 
accessible by each core. A larger CL2 is shared by the cores 
(e.g., Intel Xeon). Please note that CL2 can be private to the 
core (like AMD Athlon); but that is beyond the scope of this 
work. The presence of a shared CL2 offers the flexibility in 
adjusting the memory allocated per core according to its 
requirement, as well as the possibility of multiple cores getting 
fast access to the shared code and/or data. New generation 
multicore designs have shown that normally two (or more) 
cores running at (or less than) one half of the frequency can 
approach the performance of a single core running at full 
frequency, while the multicore consumes less amount of 
power. However, the increasing usages of caches potentially 
increase the execution time unpredictability. Real-time 
multimedia applications cannot afford to miss deadlines and 
hence demand timing predictability. Therefore, it becomes a 
great challenge to support multimedia applications on 
multicore systems.  

Cache locking is introduced in single-core systems to 
increase the execution time predictability [9]-[19]. Cache 
locking is the ability to prevent some or all of the cache blocks 
from being overwritten during runtime. Cache entries can be 
locked for either an entire cache or for individual ways within 
the cache. Entire locking (at CL1) is inefficient if the number 
of instructions or the size of data to be locked is smaller than 
the cache size. Way locking at the CL1 is not permitted on 
some processors, but way locking at the CL2 is possible [20]. 
By locking at CL2, Xeon processor achieves the effect of 
using local storage by SPEs in Cell processor [21]. Cache 
locking should be beneficial for multimedia applications. In 
this work, we model a multicore system with four cores and 
two levels of caches. Using popular multimedia applications, 
we assess the effectiveness of cache locking at CL1 and CL2. 

This paper is organized as follows. In Section II, some 
related articles are reviewed. Section III discusses the 
technique to model and simulate cache locking (at CL1 and 
CL2). In Section IV, the experimental setup is described. 
Some important simulation results are presented in Section V. 
Finally, this work is concluded in Section VI.  
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II. RELATED WORK 

Increasing predictability and performance/power ratio of 
multicore systems has become challenging research area in the 
recent years. Some published articles, closely related to our 
work, are discussed in this section.  

An invalidation cache lock mechanism is implemented in 
[13], which utilizes the exclusive state of the snooping cache. 
Experimental results demonstrate the benefits of the lock 
mechanism for a few lock contentions and confirm that, in 
most cases, the lock mechanism works well on the parallel 
processing machine. However, this mechanism may cause 
performance degradation in a tightly-coupled multiprocessor 
system in case of heavy contention. 

Various approaches to cope with the predictability problem 
due to the presence of caches in real-time systems are 
presented in [10]-[14]. According to these approaches, cache 
contents are statically locked so as to make memory access 
time and cache-related preemption delay predictable. 
However, more study is needed to see the impact of these 
approaches on performance for larger real benchmarks and the 
applicability of static cache locking techniques to caches. 

Cache locking techniques are introduced by different 
research groups to improve predictability. In [15], static cache 
analysis is combined with data cache locking to estimate the 
worst-case memory performance in a safe, tight, and fast way. 
Experimental results show that this scheme improves 
predictability. In [16], a memory hierarchy is proposed to 
provide high performance combined with high predictability 
for complex systems. In [17], an algorithm is proposed which 
partitions the task into a set of regions. Each region owns 
statically a locked cache content determined offline. A sharp 
improvement is observed, as compared with a system without 
any cache. In [18], a methodology to select a set of instructions 
to be preloaded in the cache using a genetic algorithm is 
proposed. In [19], various algorithms to select a set of 
instructions to be locked in cache are compared. These 
algorithms show better performance and simultaneously 
estimate a tight upper bound of the response time of tasks. 
Techniques discussed in [15]-[19] are used mainly to evaluate 
predictability in a single-core system. These techniques are not 
capable of power estimation – a crucial design factor for 
multicore systems. More importantly, these techniques are not 
adequate to analyze performance, power consumption, and 
predictability of multicore systems. 

An algorithm for off-line selection of the contents of two 
on-chip memory organizations is proposed in [11]. 
Experimental results show that the algorithm generates good 
ratios of on-chip memory accesses on the worst-case execution 
path for both locked cache and scratchpad memory. However, 
worst-case performance with locked caches may be degraded 
with larger cache lines due to cache pollution.  

In [9], an efficient memory block selection strategy is 
presented that can be used to improve the performance of 
cache memory subsystem. The selected blocks should produce 
more misses if not locked. Experimental results show that 

overall cache hit and system performance/power ratio are 
increased by locking these blocks in the cache. 

III. MODELING A MULTICORE SYSTEM FOR PERFORMANCE 

EVALUATION 

Understanding the impact of cache locking on the 
performance, power consumption, and predictability of 
multicore systems requires analyzing them separately and 
observing their interaction with the entire system architecture 
using the target applications. In the following subsections, we 
discuss the target architecture, modeling the architecture, 
simulation of the model, and cache locking techniques. 

A. Target Architecture 

According to the current design trend from Intel, IBM, Sun, 
and other big chip-vendors, cache memory organization that 
has two-level caches is very effective for multicore 
architecture. In this work, we select a popular Intel-like 
architecture that has four processing cores, CL1s, CL2, and 
main memory. As shown in Figure 1, each CL1 is split into 
instruction (I1) and data (D1) caches and CL2 cache is 
partitioned into two parts. Each part is connected to a group of 
two cores via a dedicated port. Also, each CL1 is private to its 
core and CL2 is shared by the cores. We assume the 
interconnection delay to be negligible making the system more 
like a parallel system (than a distributed system). We simulate 
cache locking on CL1 and CL2 on this architecture. 

B. Modeling the Target Architecture 

We abstract the selected architecture by considering only 
the important components and ignoring any non-relevant 
minor details. We model the higher level abstraction of the 
target architecture using VisualSim simulation tool. VisualSim 

 
Fig. 1.  Simulated multicore architecture 
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simulator from Mirabilis Design is a graphical simulation tool 
to build model and execute simulation program [24]. 
VisualSim contains a complete suite of modeling libraries, 
simulation engines, report generators, and debugging tools. 
Model is developed using system components (such as 
processing core, cache, bus, and memory) and appropriate 
connections are made between components.  

C. Simulation of the Model 

We develop a simulation platform using the VisualSim 
model and execute the simulation program using VisualSim 
simulation cockpit. VisualSim provides simulation cockpit 
with functionalities to run the simulation program and to 
collect simulation results. Simulation cockpit can also be used 
to change the values of the input parameters without modifying 
the model. The VisualSim results can be stored as text and/or 
graph files. In this work, we run the simulation program using 
three representative multimedia applications (H.264/AVC, 
MPEG4, and MPEG3) and two algorithms (DFT and FFT) by 
varying cache size, line sizes and associativity levels. We 
obtain the average delay per task and total power consumed by 
the system for no locking, CL1 locking, and CL2 locking. 
Based on the suggestion made in [9], we lock up to 25% of the 
cache size in order to achieve the maximum performance gain. 
In the simulation, we randomly select the blocks to be locked. 

D. Cache Locking 

Cache locking is a mechanism that prevents some or all of 
the instructions or data from being replaced from cache. Cache 
entries can be locked for either an entire cache or for 
individual ways within the cache [23]. 

1) Entire Locking: In entire cache locking, cache hits are 
treated in the same manner as hits to an unlocked cache. Cache 
misses are treated as a cache-inhibited access. Invalid cache 
entries at the time of the locking will remain invalid and 
inaccessible until the cache is unlocked. Entire cache locking 
is inefficient if the number of instructions or the size of data to 
be locked is small compared to the cache size. 

2) Way Locking: In way locking, only a portion of the cache 
is locked by locking ways within the cache. Invalid entries in 
way locking are accessible and available for data placement – 
this behavior differs from entire cache locking. Unlocked ways 
of the cache behave normally. Way cache locking is a potential 
alternative of entire cache locking. Way locking is more 
suitable in multicore architecture. In this work, we use way 
cache locking at CL1 and Cl2. 

IV. EXPERIMENTAL SETUP 

In this work, we model and simulate a multicore system 
using multimedia applications to investigate the impact of CL1 
and CL2 cache locking on the performance, power 
consumption, and predictability. Discussed below are the 
assumptions, workloads, and input/out parameters related to 
the simulation program used in this work. 

A. Assumptions 

Important assumptions for modeling the target architecture 
and for running the simulation program include the following: 

 -- Cache locking at CL1 and CL2 is implemented. Both 
CL1 and CL2 locking are not applied at the same time. 

 -- For both CL1 and CL2, write-back memory update 
policy and random cache replacement strategy are used as 
required. 

 -- The delay introduced by the bus that connects CL2 and 
the main memory (Bus2 in Figure 1) is 10 times longer than 
the delay introduced by the bus that connects CL1s and CL2 
(Bus1 in Figure 1). 

B. Workloads 

In this work, we use workloads of three ISO standard 
popular multimedia applications and two important algorithms 
to run the simulation program. Multimedia applications are: 
Advanced Video Coding – widely known as H.264/AVC, 
Moving Picture Experts Group’s MPEG3, and MPEG4 (part-
2). Algorithms are: Discrete Fourier Transform (DFT) and 
Fast Fourier Transform (FFT). Table I shows some important 
characteristics of the applications. The workloads are 
generated using Heptane simulation package [25]. 

 
TABLE I 

CHARACTERISTICS OF THE APPLICATIONS 

Applications 
Code Size 

(Byte) 
Number of 
Instructions 

H.264/AVC 156274 5207118 

MPEG3 196305 6258432 

MPEG4 182736 5772085 

DFT 1165 287209 

FFT 2335 365184 

 

C. Input / Output Parameters 

Important input parameters used in this simulation program 
include CL2 cache size and CL1 and CL2 line sizes and 
associativity levels [see Table II]. 

 
TABLE II 

INPUT PARAMETERS 

Parameter Value 

CL2 cache size (KB) 64, 128, 256, 512, or 1024 

CL1/CL2 line size (Byte) 16, 32, 64, 128, or 256 

CL1/CL2 associativity level 1-, 2-, 4-, 8-, or 16-way 

 
We keep CL1 cache size fixed at I1 = 4KB and D1 = 4KB 

and change CL1/CL2 line size and associativity level. We 
obtain mean delay per task and total power consumption by the 
system as the output parameters. Delay is the time between the 
start of execution of a task and its end [24]. Mean delay is the 
average delay for all the tasks. 
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V. RESULTS AND DISCUSSION 

In this work, we evaluate the impact of cache locking at 
CL1 and CL2 on the performance, power consumption, and 
predictability in a multicore system running H.264/AVC, 
MPRG4, MPEG3, DFT, and FFT workloads. Cache locking 
improves the predictability by making the block local and 
closer to the cores. However, aggressive cache locking may 
decrease the performance/power ratio due to the reduction of 
the effective cache size. In both CL1 and CL2 cache locking, 
we lock 25% of the cache size (as suggested in [9]) and 
randomly select the blocks to be locked. Some important 
simulation results are presented in the following subsections. 

A. CL2 Cache Size 

We first investigate the impact of cache locking at CL1 and 
CL2 on delay (i.e., performance) and power consumption by 
varying CL2 cache size. The average delay per task for no 

cache locking and cache locking at CL1 and CL2 is shown in 
Figure 2. Experimental results show that for any CL2 cache 
size, mean delay per task for H.264/AVC, MPRG4, and 
MPRG3 decreases when we move from no locking to cache 
locking. Mean delay per task increases when we move from 
CL1 locking to CL2 locking for the used applications. Results 
also indicate that cache locking has no positive impact on FFT 
and DFT codes as they entirely fit inside I1 cache. 

Figure 3 illustrates the impact of CL1 and CL2 cache 
locking on total power consumption. Up to CL2 cache size 
256KB, total power consumption for H.264/AVC, MPRG4, 
and MPRG3 decreases when cache locking is applied. 
However, total power consumption increases for CL2 larger 
than 256KB. It is noted that CL1 locking has more impact on 
total power consumption than CL2 locking for the used 
applications. For FFT and DFT, total power consumption 
increases as CL2 cache size increases from 64KB. 

 
Fig. 2.  Mean delay per task Vs. L2 cache size 

 
Fig. 3.  Total power consumption Vs. L2 cache size 

 

B. CL1 and CL2 Line Sizes 

We now discuss the impact of CL1 cache locking and CL2 
cache locking on delay and power consumption by varying 

both CL1 and CL2 line size. We discard the results due to FFT 
and DFT as cache locking has no positive impact on small 
applications like them. The average delay per task for no 
locking, CL1 locking, and CL2 locking is shown in Figure 4. 
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Experimental results also show that for any line size, mean 
delay per task for H.264/AVC, MPRG4, and MPRG3 
decreases when we move from no locking to cache locking. 
Comparing the impact of CL1 and CL2 cache locking, mean 
delay per task decreases more for CL1 locking than CL2 
locking. It is noted that the mean delay per task goes down 
with increasing line size leveling off at a line size of 64B. This 
is because of the cache pollution due to larger cache line. 

 
Fig. 4. Mean delay per task Vs. line size 

 
Figure 5 shows the total power consumption for no cache 

locking, CL1 cache locking, and CL2 cache locking for 
various line sizes. Simulation results reveal that the total power 
consumption goes down for all three applications used with the 
increase in line size for line size between 16B and 64B; after 
that total power consumption increases. Like mean delay per 
task, total power consumption decreases when cache locking is 
applied and CL1 cache locking outperforms CL2 cache 
locking. 

 
Fig. 5. Total power consumption Vs. line size 

C. CL1 and CL2 Associativity Levels 

Finally, we present the impact of CL1 and CL2 cache 
locking on delay and power consumption due to different CL1 

and CL2 associativity levels. The average delay per task for 
without and with cache locking is shown in Figure 6. From 
simulation results, it is noticed that the mean delay per task 
decreases significantly as associativity level increases up to 4-
way. It is also noticed that for H.264/AVC, MPRG4, and 
MPRG3, mean delay per task decreases when we move from 
no locking to cache locking. Simulation results also indicate 
that CL1 cache locking has more impact on the average delay 
per task than CL2 cache locking.  

 

 
Fig. 6. Mean delay per task Vs. associativity level 

 
Finally, Figure 7 shows the total power consumption for no 

cache locking and CL1/CL2 cache locking for various 
associativity levels. Simulation results show that for all three 
applications used, the total power consumption goes down 
sharply with the increase in associativity level for associativity 
level up to 4-way; after that total power consumption remains 
almost the same. It is also observed that the total power 
consumption decreases when cache is locked and CL1 cache 
locking outperforms CL2 cache locking for H.264/AVC, 
MPRG4, and MPRG3. 

 
Fig. 7. Total power consumption Vs. associativity level 
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VI. CONCLUSION 

Demands for supporting real-time multimedia applications 
are growing more than ever. Computing systems are adopting 
multicore architecture to meet the requirements for high 
processing speed and low power consumption. However, the 
presence of multiple caches in multicore architecture makes 
the execution time predictability even worse and total power 
consumption even more. Studies show that predictability can 
be improved using cache locking techniques. Cache locking 
can be entire (all cache blocks are locked) or way (in a set-
associative or fully associative cache, only certain ways are 
locked). In a single-core system, cache locking can be 
implemented at CL1 or CL2. Some processors do not allow 
way locking at CL1, but they allow way locking at CL2. 
Although both CL1 and CL2 cache locking may improve 
predictability, it is difficult to justify the performance and 
power trade-off between CL1 and CL2 cache locking 
mechanisms.  

In this work, we assess the impact of CL1 and CL2 cache 
locking on the performance, power consumption, and 
predictability of a multicore system running multimedia 
applications. We model and simulate a system with four cores 
and two levels of caches. Three popular ISO standard 
multimedia applications (H.264/AVC, MPEG4, and MPRG3) 
and two important algorithms (DFT and FFT) are used to run 
the simulation program. As cache locking holds the blocks in 
the cache for the entire execution time, predictability is 
enhanced by applying cache locking. Experimental results 
show that the mean delay per task and total power 
consumption can be decreased by using a cache locking 
mechanism added to an efficient cache memory organization. 
It is observed from the simulation results that for large 
applications like MPEG4, CL1 cache locking performs better 
than CL2 cache locking. This is because the main loop of these 
applications (like MPEG4) has a better fit in the CL1 cache. It 
is also observed that for small algorithms like FFT and DFT, 
cache locking (at CL1 or CL2) has no positive impact on 
predictability and performance/power ratio.  

We plan to investigate the impact of a multipurpose victim 
cache without cache locking on performance, power 
consumption, and predictability of a multicore architecture in 
our next endeavor. 
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