

Abstract—Supporting real-time multimedia applications on

multicore systems is a great challenge due to cache’s dynamic
behavior. Studies show that cache locking may improve execution
time predictability and power/performance ratio. However, entire
locking at level-1 cache (CL1) may not be efficient if smaller
amount of instructions/data compared to the cache size is locked.
An alternative choice may be way (i.e., partial) locking. For some
processors, way locking is possible only at level-2 cache (CL2).
Even though both CL1 cache locking and CL2 cache locking
improve predictability, it is difficult to justify the performance
and power trade-off between these two cache locking
mechanisms. In this work, we assess the impact of CL1 and CL2
cache locking on the performance, power consumption, and
predictability of a multicore system using ISO standard
H.264/AVC, MPEG4, and MPEG3 multimedia applications and
FFT and DFT codes. Simulation results show that both the
performance and predictability can be increased and the total
power consumption can be decreased by using a cache locking
mechanism added to a cache memory hierarchy. Results also
show that for the applications used, CL1 cache locking
outperforms CL2 cache locking.

Index Terms—Cache locking, multicore computer architecture,
multimedia applications, performance evaluation

I. INTRODUCTION

ULTICORE computer architecture supporting real-
time multimedia applications deals with timing

constraints and usually interact with the environment rather
than the human operator. Because timeliness and reliability are
so important in their behavior, real-time multimedia systems
are often distributed among multiple program units (a.k.a.,
tasks) running simultaneously to perform required functions.
Concurrent execution of tasks on a single processor, in many
respects including energy and thermal constraints, is
inadequate for achieving the required level of performance or
required level of reliability. Therefore, the tasks are moved to
different interconnected processors, making a real-time system
parallel and/or distributed. If the communication time between
processing units is negligible with respect to the processing
time, then the system is referred as parallel; otherwise it is
referred as distributed. Because of high performance and

Manuscript received on February 15, 2011.
A. Asaduzzaman is with Wichita State University, Wichita, KS 67260-

0083 USA (phone: 316-978-5261; fax: 316-978-3984; e-mail:
Abu.Asaduzzaman@wichita.edu).

reliability, the popularity and demand of multicore systems
(supporting parallel/distributed processing) are increasing in
both the desktop and the embedded markets [1]-[3].

Multi-level cache memory hierarchy is a common choice for
multicore systems, especially for embedded systems running
real-time multimedia applications [4]-[8]. According to this
memory hierarchy, CL1s are attached to and privately
accessible by each core. A larger CL2 is shared by the cores
(e.g., Intel Xeon). Please note that CL2 can be private to the
core (like AMD Athlon); but that is beyond the scope of this
work. The presence of a shared CL2 offers the flexibility in
adjusting the memory allocated per core according to its
requirement, as well as the possibility of multiple cores getting
fast access to the shared code and/or data. New generation
multicore designs have shown that normally two (or more)
cores running at (or less than) one half of the frequency can
approach the performance of a single core running at full
frequency, while the multicore consumes less amount of
power. However, the increasing usages of caches potentially
increase the execution time unpredictability. Real-time
multimedia applications cannot afford to miss deadlines and
hence demand timing predictability. Therefore, it becomes a
great challenge to support multimedia applications on
multicore systems.

Cache locking is introduced in single-core systems to
increase the execution time predictability [9]-[19]. Cache
locking is the ability to prevent some or all of the cache blocks
from being overwritten during runtime. Cache entries can be
locked for either an entire cache or for individual ways within
the cache. Entire locking (at CL1) is inefficient if the number
of instructions or the size of data to be locked is smaller than
the cache size. Way locking at the CL1 is not permitted on
some processors, but way locking at the CL2 is possible [20].
By locking at CL2, Xeon processor achieves the effect of
using local storage by SPEs in Cell processor [21]. Cache
locking should be beneficial for multimedia applications. In
this work, we model a multicore system with four cores and
two levels of caches. Using popular multimedia applications,
we assess the effectiveness of cache locking at CL1 and CL2.

This paper is organized as follows. In Section II, some
related articles are reviewed. Section III discusses the
technique to model and simulate cache locking (at CL1 and
CL2). In Section IV, the experimental setup is described.
Some important simulation results are presented in Section V.
Finally, this work is concluded in Section VI.

Performance Evaluation of Multicore Cache
Locking using Multimedia Applications

Abu Asaduzzaman, Wichita State University, IEEE Member

M

DOI: 10.5176_2010-2283_2.1.137

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

110 © 2012 GSTF

II. RELATED WORK

Increasing predictability and performance/power ratio of
multicore systems has become challenging research area in the
recent years. Some published articles, closely related to our
work, are discussed in this section.

An invalidation cache lock mechanism is implemented in
[13], which utilizes the exclusive state of the snooping cache.
Experimental results demonstrate the benefits of the lock
mechanism for a few lock contentions and confirm that, in
most cases, the lock mechanism works well on the parallel
processing machine. However, this mechanism may cause
performance degradation in a tightly-coupled multiprocessor
system in case of heavy contention.

Various approaches to cope with the predictability problem
due to the presence of caches in real-time systems are
presented in [10]-[14]. According to these approaches, cache
contents are statically locked so as to make memory access
time and cache-related preemption delay predictable.
However, more study is needed to see the impact of these
approaches on performance for larger real benchmarks and the
applicability of static cache locking techniques to caches.

Cache locking techniques are introduced by different
research groups to improve predictability. In [15], static cache
analysis is combined with data cache locking to estimate the
worst-case memory performance in a safe, tight, and fast way.
Experimental results show that this scheme improves
predictability. In [16], a memory hierarchy is proposed to
provide high performance combined with high predictability
for complex systems. In [17], an algorithm is proposed which
partitions the task into a set of regions. Each region owns
statically a locked cache content determined offline. A sharp
improvement is observed, as compared with a system without
any cache. In [18], a methodology to select a set of instructions
to be preloaded in the cache using a genetic algorithm is
proposed. In [19], various algorithms to select a set of
instructions to be locked in cache are compared. These
algorithms show better performance and simultaneously
estimate a tight upper bound of the response time of tasks.
Techniques discussed in [15]-[19] are used mainly to evaluate
predictability in a single-core system. These techniques are not
capable of power estimation – a crucial design factor for
multicore systems. More importantly, these techniques are not
adequate to analyze performance, power consumption, and
predictability of multicore systems.

An algorithm for off-line selection of the contents of two
on-chip memory organizations is proposed in [11].
Experimental results show that the algorithm generates good
ratios of on-chip memory accesses on the worst-case execution
path for both locked cache and scratchpad memory. However,
worst-case performance with locked caches may be degraded
with larger cache lines due to cache pollution.

In [9], an efficient memory block selection strategy is
presented that can be used to improve the performance of
cache memory subsystem. The selected blocks should produce
more misses if not locked. Experimental results show that

overall cache hit and system performance/power ratio are
increased by locking these blocks in the cache.

III. MODELING A MULTICORE SYSTEM FOR PERFORMANCE

EVALUATION

Understanding the impact of cache locking on the
performance, power consumption, and predictability of
multicore systems requires analyzing them separately and
observing their interaction with the entire system architecture
using the target applications. In the following subsections, we
discuss the target architecture, modeling the architecture,
simulation of the model, and cache locking techniques.

A. Target Architecture

According to the current design trend from Intel, IBM, Sun,
and other big chip-vendors, cache memory organization that
has two-level caches is very effective for multicore
architecture. In this work, we select a popular Intel-like
architecture that has four processing cores, CL1s, CL2, and
main memory. As shown in Figure 1, each CL1 is split into
instruction (I1) and data (D1) caches and CL2 cache is
partitioned into two parts. Each part is connected to a group of
two cores via a dedicated port. Also, each CL1 is private to its
core and CL2 is shared by the cores. We assume the
interconnection delay to be negligible making the system more
like a parallel system (than a distributed system). We simulate
cache locking on CL1 and CL2 on this architecture.

B. Modeling the Target Architecture

We abstract the selected architecture by considering only
the important components and ignoring any non-relevant
minor details. We model the higher level abstraction of the
target architecture using VisualSim simulation tool. VisualSim

Fig. 1. Simulated multicore architecture

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

111 © 2012 GSTF

simulator from Mirabilis Design is a graphical simulation tool
to build model and execute simulation program [24].
VisualSim contains a complete suite of modeling libraries,
simulation engines, report generators, and debugging tools.
Model is developed using system components (such as
processing core, cache, bus, and memory) and appropriate
connections are made between components.

C. Simulation of the Model

We develop a simulation platform using the VisualSim
model and execute the simulation program using VisualSim
simulation cockpit. VisualSim provides simulation cockpit
with functionalities to run the simulation program and to
collect simulation results. Simulation cockpit can also be used
to change the values of the input parameters without modifying
the model. The VisualSim results can be stored as text and/or
graph files. In this work, we run the simulation program using
three representative multimedia applications (H.264/AVC,
MPEG4, and MPEG3) and two algorithms (DFT and FFT) by
varying cache size, line sizes and associativity levels. We
obtain the average delay per task and total power consumed by
the system for no locking, CL1 locking, and CL2 locking.
Based on the suggestion made in [9], we lock up to 25% of the
cache size in order to achieve the maximum performance gain.
In the simulation, we randomly select the blocks to be locked.

D. Cache Locking

Cache locking is a mechanism that prevents some or all of
the instructions or data from being replaced from cache. Cache
entries can be locked for either an entire cache or for
individual ways within the cache [23].

1) Entire Locking: In entire cache locking, cache hits are
treated in the same manner as hits to an unlocked cache. Cache
misses are treated as a cache-inhibited access. Invalid cache
entries at the time of the locking will remain invalid and
inaccessible until the cache is unlocked. Entire cache locking
is inefficient if the number of instructions or the size of data to
be locked is small compared to the cache size.

2) Way Locking: In way locking, only a portion of the cache
is locked by locking ways within the cache. Invalid entries in
way locking are accessible and available for data placement –
this behavior differs from entire cache locking. Unlocked ways
of the cache behave normally. Way cache locking is a potential
alternative of entire cache locking. Way locking is more
suitable in multicore architecture. In this work, we use way
cache locking at CL1 and Cl2.

IV. EXPERIMENTAL SETUP

In this work, we model and simulate a multicore system
using multimedia applications to investigate the impact of CL1
and CL2 cache locking on the performance, power
consumption, and predictability. Discussed below are the
assumptions, workloads, and input/out parameters related to
the simulation program used in this work.

A. Assumptions

Important assumptions for modeling the target architecture
and for running the simulation program include the following:

 -- Cache locking at CL1 and CL2 is implemented. Both
CL1 and CL2 locking are not applied at the same time.

 -- For both CL1 and CL2, write-back memory update
policy and random cache replacement strategy are used as
required.

 -- The delay introduced by the bus that connects CL2 and
the main memory (Bus2 in Figure 1) is 10 times longer than
the delay introduced by the bus that connects CL1s and CL2
(Bus1 in Figure 1).

B. Workloads

In this work, we use workloads of three ISO standard
popular multimedia applications and two important algorithms
to run the simulation program. Multimedia applications are:
Advanced Video Coding – widely known as H.264/AVC,
Moving Picture Experts Group’s MPEG3, and MPEG4 (part-
2). Algorithms are: Discrete Fourier Transform (DFT) and
Fast Fourier Transform (FFT). Table I shows some important
characteristics of the applications. The workloads are
generated using Heptane simulation package [25].

TABLE I

CHARACTERISTICS OF THE APPLICATIONS

Applications
Code Size

(Byte)
Number of
Instructions

H.264/AVC 156274 5207118

MPEG3 196305 6258432

MPEG4 182736 5772085

DFT 1165 287209

FFT 2335 365184

C. Input / Output Parameters

Important input parameters used in this simulation program
include CL2 cache size and CL1 and CL2 line sizes and
associativity levels [see Table II].

TABLE II

INPUT PARAMETERS

Parameter Value

CL2 cache size (KB) 64, 128, 256, 512, or 1024

CL1/CL2 line size (Byte) 16, 32, 64, 128, or 256

CL1/CL2 associativity level 1-, 2-, 4-, 8-, or 16-way

We keep CL1 cache size fixed at I1 = 4KB and D1 = 4KB

and change CL1/CL2 line size and associativity level. We
obtain mean delay per task and total power consumption by the
system as the output parameters. Delay is the time between the
start of execution of a task and its end [24]. Mean delay is the
average delay for all the tasks.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

112 © 2012 GSTF

V. RESULTS AND DISCUSSION

In this work, we evaluate the impact of cache locking at
CL1 and CL2 on the performance, power consumption, and
predictability in a multicore system running H.264/AVC,
MPRG4, MPEG3, DFT, and FFT workloads. Cache locking
improves the predictability by making the block local and
closer to the cores. However, aggressive cache locking may
decrease the performance/power ratio due to the reduction of
the effective cache size. In both CL1 and CL2 cache locking,
we lock 25% of the cache size (as suggested in [9]) and
randomly select the blocks to be locked. Some important
simulation results are presented in the following subsections.

A. CL2 Cache Size

We first investigate the impact of cache locking at CL1 and
CL2 on delay (i.e., performance) and power consumption by
varying CL2 cache size. The average delay per task for no

cache locking and cache locking at CL1 and CL2 is shown in
Figure 2. Experimental results show that for any CL2 cache
size, mean delay per task for H.264/AVC, MPRG4, and
MPRG3 decreases when we move from no locking to cache
locking. Mean delay per task increases when we move from
CL1 locking to CL2 locking for the used applications. Results
also indicate that cache locking has no positive impact on FFT
and DFT codes as they entirely fit inside I1 cache.

Figure 3 illustrates the impact of CL1 and CL2 cache
locking on total power consumption. Up to CL2 cache size
256KB, total power consumption for H.264/AVC, MPRG4,
and MPRG3 decreases when cache locking is applied.
However, total power consumption increases for CL2 larger
than 256KB. It is noted that CL1 locking has more impact on
total power consumption than CL2 locking for the used
applications. For FFT and DFT, total power consumption
increases as CL2 cache size increases from 64KB.

Fig. 2. Mean delay per task Vs. L2 cache size

Fig. 3. Total power consumption Vs. L2 cache size

B. CL1 and CL2 Line Sizes

We now discuss the impact of CL1 cache locking and CL2
cache locking on delay and power consumption by varying

both CL1 and CL2 line size. We discard the results due to FFT
and DFT as cache locking has no positive impact on small
applications like them. The average delay per task for no
locking, CL1 locking, and CL2 locking is shown in Figure 4.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

113 © 2012 GSTF

Experimental results also show that for any line size, mean
delay per task for H.264/AVC, MPRG4, and MPRG3
decreases when we move from no locking to cache locking.
Comparing the impact of CL1 and CL2 cache locking, mean
delay per task decreases more for CL1 locking than CL2
locking. It is noted that the mean delay per task goes down
with increasing line size leveling off at a line size of 64B. This
is because of the cache pollution due to larger cache line.

Fig. 4. Mean delay per task Vs. line size

Figure 5 shows the total power consumption for no cache

locking, CL1 cache locking, and CL2 cache locking for
various line sizes. Simulation results reveal that the total power
consumption goes down for all three applications used with the
increase in line size for line size between 16B and 64B; after
that total power consumption increases. Like mean delay per
task, total power consumption decreases when cache locking is
applied and CL1 cache locking outperforms CL2 cache
locking.

Fig. 5. Total power consumption Vs. line size

C. CL1 and CL2 Associativity Levels

Finally, we present the impact of CL1 and CL2 cache
locking on delay and power consumption due to different CL1

and CL2 associativity levels. The average delay per task for
without and with cache locking is shown in Figure 6. From
simulation results, it is noticed that the mean delay per task
decreases significantly as associativity level increases up to 4-
way. It is also noticed that for H.264/AVC, MPRG4, and
MPRG3, mean delay per task decreases when we move from
no locking to cache locking. Simulation results also indicate
that CL1 cache locking has more impact on the average delay
per task than CL2 cache locking.

Fig. 6. Mean delay per task Vs. associativity level

Finally, Figure 7 shows the total power consumption for no

cache locking and CL1/CL2 cache locking for various
associativity levels. Simulation results show that for all three
applications used, the total power consumption goes down
sharply with the increase in associativity level for associativity
level up to 4-way; after that total power consumption remains
almost the same. It is also observed that the total power
consumption decreases when cache is locked and CL1 cache
locking outperforms CL2 cache locking for H.264/AVC,
MPRG4, and MPRG3.

Fig. 7. Total power consumption Vs. associativity level

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

114 © 2012 GSTF

VI. CONCLUSION

Demands for supporting real-time multimedia applications
are growing more than ever. Computing systems are adopting
multicore architecture to meet the requirements for high
processing speed and low power consumption. However, the
presence of multiple caches in multicore architecture makes
the execution time predictability even worse and total power
consumption even more. Studies show that predictability can
be improved using cache locking techniques. Cache locking
can be entire (all cache blocks are locked) or way (in a set-
associative or fully associative cache, only certain ways are
locked). In a single-core system, cache locking can be
implemented at CL1 or CL2. Some processors do not allow
way locking at CL1, but they allow way locking at CL2.
Although both CL1 and CL2 cache locking may improve
predictability, it is difficult to justify the performance and
power trade-off between CL1 and CL2 cache locking
mechanisms.

In this work, we assess the impact of CL1 and CL2 cache
locking on the performance, power consumption, and
predictability of a multicore system running multimedia
applications. We model and simulate a system with four cores
and two levels of caches. Three popular ISO standard
multimedia applications (H.264/AVC, MPEG4, and MPRG3)
and two important algorithms (DFT and FFT) are used to run
the simulation program. As cache locking holds the blocks in
the cache for the entire execution time, predictability is
enhanced by applying cache locking. Experimental results
show that the mean delay per task and total power
consumption can be decreased by using a cache locking
mechanism added to an efficient cache memory organization.
It is observed from the simulation results that for large
applications like MPEG4, CL1 cache locking performs better
than CL2 cache locking. This is because the main loop of these
applications (like MPEG4) has a better fit in the CL1 cache. It
is also observed that for small algorithms like FFT and DFT,
cache locking (at CL1 or CL2) has no positive impact on
predictability and performance/power ratio.

We plan to investigate the impact of a multipurpose victim
cache without cache locking on performance, power
consumption, and predictability of a multicore architecture in
our next endeavor.

REFERENCES

[1] J.P. Lozi, G. Thomas, J. Lawall, G. Muller. (2011). Efficient locking for
multicore architectures. RESEARCH REPORT N 7779 Project-Teams
REGAL. Available: http://hal.upmc.fr/docs/00/64/12/52/PDF/rr7779.pdf

[2] V. Suhendra, T. Mitra. (2008). Exploring Locking & Partitioning for
Predictable Shared Caches on Multi-Cores. DAC'2008. Anaheim, CA.

[3] B. Pfarr, A. Zimmerman, S. Brandt. (2002). Parallel and Distributed
Real-Time Systems. Scientific International Journal for Parallel and
Distributed Computing. Vol. 5, No. 1.

[4] R.M. Ramanathan. (2006). Intel Multi-Core Processors: Making the
Move to Quad-Core and Beyond. White Paper.

[5] V. Romanchenko. (2006). Quad-Core Opteron: architecture and
roadmaps. Digital-Daily.com.

[6] V. Romanchenko. (2006). Evaluation of the multi-core processor
architecture Intel core: Conroe, Kentsfield…Digital-Daily.com.

[7] Multi-core (computing). (2012). Wikipedia. Available:
http://en.wikipedia.org/wiki/Xeon; http://en.wikipedia.org/wiki/Athlon

[8] D.K. Every. (2005). IBM’s Cell Processor: The next generation of
computing? Shareware Press. Available:
http://www.mymac.com/fileupload/CellProcessor.pdf

[9] A. Asaduzzaman. (2011). An Efficient Memory Block Selection
Strategy to Improve the Performance of Cache Memory Subsystem.
ICCIT-2011. Bangladesh.

[10] I. Puaut. (2007). Cache Analysis Vs Static Cache Locking for
Schedulability Analysis in Multitasking Real-Time Systems. Available:
http://citeseer.ist.psu.edu/534615.html

[11] I. Puaut, C. Pais. (2007). Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. Design, Automation &
Test in Europe Conference & Exhibition (DATE'07). pp. 1-6.

[12] A.M. Campoy, E. Tamura, S. Saez, F. Rodriguez, J.V. Busquets Mataix.
(2005). On Using Locking Caches in Embedded Real-Time Systems.
ICESS-05, LNCS 3820. pp. 150-159.

[13] T. Tarui, T. Nakagawa, N. Ido, M. Asaie, M. Sugie. (1992). Evaluation
of the lock mechanism in a snooping cache. ACM Proceedings of the
6th international conference on Supercomputing.

[14] I. Puaut, D. Decotigny. (2002). Low-Complexity Algorithms for Static
Cache Locking in Multitasking Hard Real-Time Systems. IEEE.

[15] X. Vera, B. Lisper. (2003). Data Cache Locking for Higher Program
Predictability. SIGMETRICS'03. CA.

[16] E. Tamura, F. Rodriguez, J.V. Busquets-Mataix, A.M. Campoy. (2004).
High Performance Memory Architectures with Dynamic Locking Cache
for Real-Time Systems. Proceedings of the 16th Euromicro Conference
on Real-Time Systems. pp. 1-4, Italy.

[17] A. Arnaud, I. Puaut. (2005). Dynamic Instruction Cache Locking in
Hard Real-Time Systems. IEEE.

[18] A.M. Campoy, A.P. Jimenez, A.P. Ivars, J.V. Busquets Mataix. (2001).
Using Genetic Algorithms in Content Selection for Locking-Caches.
Proceedings of IASTED International Symposia Applied Informatics.
pp. 271-276, Austria.

[19] E. Tamura, J.V. Busquets-Mataix, J.J.S. Martin, A.M. Campoy. (2005).
A Comparison of Three Genetic Algorithms for Locking-Cache
Contents Selection in Real-Time Systems. Proceedings of the
International Conference in Coimbra, Portugal.

[20] C. Harrison. (2005). Programming the cache on the PowerPC
750GX/FX - Use cache management instructions to improve
performance. IBM Microcontroller Applications Group. Available:
http://www-128.ibm.com/developerworks/library/pa-ppccache.html

[21] J. Stokes. (2005). Xenon's L2 vs. Cell's local storage, and some notes on
IBM/Nintendo's Gekko. Available:
http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/6

[22] S.S. Mukherjee, S.V. Adve, T. Austin, J. Emer, P.S. Magnusson.
(2002). Performance Simulation Tools. IEEE Computer.

[23] (2008). MPC8272 PowerQUICC II – Family Reference Manual.
Available: http://www.freescale.com/files/32bit/doc/
ref_manual/MPC8272RM.pdf

[24] VisualSim Architecture. (2012). VisualSim – A system-level simulator
from Mirabilis Design, Inc. Available: http://www.mirabilisdesign.com/

[25] Heptane. (2012). A tree-based WCET analysis tool. Available:
http://ralyx.inria.fr/2004/Raweb/aces/uid43.htm

Abu Asaduzzaman (M’96) received the Ph.D. and
M.S. degrees, both in computer engineering, from
Florida Atlantic University, Florida in 2009 and
1997. He received the B.S. degree in electrical
engineering from Bangladesh University of
Engineering and Technology (BUET), Dhaka,
Bangladesh in 1993.

Currently, Abu is working as an Assistant
Professor in EECS department at Wichita State
University, Kansas. Previously he worked at FAU.

His research interests include computer architecture, embedded systems,
parallel computing, and performance evaluation.

Mr. Asaduzzaman is a member of the IEEE, ASEE, and various
prestigious honor societies He served as Session Chair and TPC/IPC member
of various major conferences and as reviewer of NSF TUES (CS) and GRFP
programs.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

115 © 2012 GSTF

