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Low-frequency in the Default Mode Brain Network
from Spiking Neuron Model

Teruya Yamanishi, Jian-Qin Liu,Member, IEEE,Haruhiko Nishimura,Member, IEEE,and Sou Nobukawa

Abstract—The approaches for regarding the functional char-
acteristics of the brain as the dynamical behavior of a multi-
scale neural system using neural network models are continued
to attempt since fluctuations on blood–oxygen–level–dependent
(BOLD) signals of the brain at a rate lower than 0.1 Hz
have been observed by functional magnetic resonance imaging
(fMRI) machines under the dozing situation. We construct a
complex brain network model by functionally connecting neural
clusters composed of spiking neurons with a complex network.
By transducing to BOLD signals from firing patterns obtained
by our new model, the network dynamics of the neural system
and its behavior are quantitatively discussed.

Keywords—Default-mode brain network, BOLD signals, Slow
synchronizations, Neural network, Time delay.

I. I NTRODUCTION

T RADITIONALLY, the brain in the same way as the body
has been thought to be in the state of resting for subjects

in a doze, namely for the state of no task. At the same time, it
has been implied that the brain consumes energy at 10 times
the rate of the resting body per gram of tissue [1]. This value
corresponds approximately to 20% of the total energy in the
body when a person is at rest, though the human brain is only
2% of the weight of the body [2], [3]. As the average power
consumption of typical adult is about 100 Watts, that of the
brain becomes 20 W. The energy consumption of the brain is
too large in proportion of active regions for neurons considered
so far for the doze. So, this is referred to as “dark energy” in
the words of astrophysics, and is the one of puzzles on the
Brain Science, which can not be solved so far [4].

Recently, the functional magnetic resonance imaging
(fMRI) machines allow observations of the brain for the long-
time range at a much higher resolution than ever before,
and the measurements of the blood–oxygen–level–dependent
(BOLD) signal in the brain for the dozing situation propose
a solution to the dark energy problem of the brain. The
observations have revealed a broad active region with changing
of the activity at the very slow frequency, which has been
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a spatiotemporally correlated synchronization at a rate lower
than0.1 Hz [5]–[7] and a functionally connected coactivation
of multiple regions in cerebral cortex. At present, this state
is so-called “default mode brain network” [8], where the
default means that the brain under unfocused on the external
environment, namely in the absence of an explicit task, is
keeping on wide ranges of the activity. So why does the
multiple regions active in spite of the rest state ? We infer
that the center of the brain activity is a network consisting
of several regions and, the network is considered to bring the
neural activity variety together in a synchronized rhythm in
order to correspond the events that may occur from now [6],
[8]. Namely, the brain is working at a plurality of regions each
while tuning in a resting state. Hence, the energy that is spent
in the activities of the brain in that state reaches to about 20
times the energy expended on conscious task [4]. This large
energy is seemed to be consistent with the dark energy of
the brain. Here we show functional connecting core regions
suggested as architectonics of the DMN in Table I, and imply
the regions represented by Brodmann’s areas at Fig.1.

At present, much knowledge and information on the DMN
have been obtained from experiments using measuring in-
struments on the brain. For example, it can be predicted
before the 30 minutes from the observation of the activities
of the DMN, which the subject is whether or not to miss [9].
Also, the abnormal DMN has been reported to be associated
with neurological disorders such as Alzheimer’s disease or
depressions. The area of the brain atrophy in patients with
Alzheimer’s disease almost overlaps with core regions of
the DMN [10]–[12]. Thus, the DMN is inferred to carry an
important role in order to oversee the activities of the brain,
and investigations on brain activity at the DMN rest can be
expected to provide new clues for understanding brain function
and neurological disease. As mentioned above, experimental
results or phenomena on the DMN have been reported, but
a theoretical explanation of the generation mechanism of the
DMN has not yet been established.

In this work, we suggest a complex brain network model
based on the Izhikevich spiking neuron model for nerve cells
of the cerebral cortex, and calculated raster plots for each
core region of the DMN. From our calculations, the firing
patterns of the spiking neuron model are mapped to the neuron
assemblies corresponding to different regions of the brain,
from which we estimate the proprieties of the network model.
It is considered that this approach contributes to a better
understanding of the overall activities of the relevant cortex
regions rather than focusing on the activities of each neuron
at the microscopic level. Furthermore, as slow fluctuations in
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TABLE I
CORE REGIONS OF THE DEFAULT MODE BRAIN NETWORK. THE

CORRESPONDING BRAIN AREAS GENERALLY IMPLYBRODMANN’ S AREAS

FROM REFS.[5], [8].

Regions Abbreviation Corresponding brain areas

Lateral temporal cortex LTC 21

Medial prefrontal cortex MPFC 24, 32ac, 10m/10r/10p, 9

Inferior parietal lobule IPL 39, 40

Posterior cingulate cortex/
restrosplenial cortex PCC/Rsp 23/31, 26,29,30

Parahippocampal cortex PHC 36

Hippocampal formation HF −

Fig. 1. The Brodmann’s areas corresponding to the core regions in Table I
are mapped by colored white.

BOLD signals are observed by fMRI under the DMN, firing
patterns of active neurons obtained from our new model are
transduced to the fluctuations in BOLD signals.

In the next section, we explain the spiking neuron model
used here and the network structure in order to connect
between neurons. The construction of a model on the default
mode brain network and simulations are carried out in Section
III. By using the values of parameters obtained here, we
also estimate dependencies of strength of input stimulus on
the model. Section IV describes on a hemodynamics model
transforming the firing pattern of the neurons into fluctuations
of BOLD signals, and Section V is devoted to summary and
some discussions.

II. SPIKING NEURON MODEL AND NETWORK STRUCTURE

In 2003, Izhikevich has proposed a neuron model with
firing patterns represented by simultaneous linear ordinary
differential equations with four variables [13]. Their equations
derive the membrane potentialv [mV] of a neuron for the
input currentI flowing into the neuron, and are described as
follows:

dv(t)
dt

= 0.04 v(t)2 + 5 v(t) + 140− u(t) + I , (1)

whereu is the recovery variable related to ion permeation of
the membrane of neuron, which is given by

du(t)
dt

= a (b v(t)− u(t)) . (2)

The parametersa andb determine the time scale ofu and the
sensitivity ofu to v, respectively. Moreover, if the value ofv
exceeds the pre-specified firing threshold (Vth), v is returned to
the value of the resting membrane potentialc, and an inactivity

Fig. 2. Firing patterns of neurons in the Izhikevich model of Ref. [13].

periodd is added tou. Fig.2 shows typical firing patterns of
an excitatory neuron and an inhibitory neuron in this model.

For the constructing a model on the default mode brain
network that is our purpose here, we need discuss on not
only the neuron model but also the network structure because
the brain is organized as neuron assemblies with hierarchies
of complex network connectivity [14], [15]. At present, the
network structure can be generally classified graphs as follows:

• Complete graph
A network in which each node is linked to all other
nodes.

• Random graph[16]
A network in which two randomly selected nodes are
linked with a certain binding rate.

• Watts－ Strogatz (WS) model (small-world model)[17]
A network in which the average distance (the average
number of nodes) between nodes is small, and the
clustering (proportion of nodes adjacent to a random
node that are also adjacent to each other) is high.

• Scale free model[18]
A network in which, in addition to small average
distance and high clustering, the number of links from
a node follows a power law.

Examples of these graphs with 20 nodes are shown in Fig.3.
Let us consider a network of neuron assemblies using

Izhikevich’s spiking neuron model. 800 excitatory neurons and
200 inhibitory neurons are placed randomly in a simple, and
each neuron is also randomly coupled to all the others, namely
the random graph as shown at the top right in Fig.3. Coupling
strengthssij (i andj are the indices of the receiving and firing
neurons, respectively) are assigned a uniformly random value,
which is between0 and0.5 for firing by an excitatory neuron,
and−1 and0 for an inhibitory neuron. Then, (1)–(2) can be
rewritten as [15]

dvi(t)
dt

= 0.04 vi(t)2 + 5 vi(t) + 140− ui(t)

+Ii +
∑

j=Firing

sij , (3)
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Fig. 3. Graphs of typical networks. In the top row are complete (left) and
random (right) graphs; in the bottom row are Watts-Strogatz (left) and scale
free (right) models.

dui(t)
dt

= ai (bi vi(t)− ui(t)) , (4)

for the ith neuron, wherevi ← ci, and ui ← ui + di for
vi > Vi th in the same as (2). The values of other parameters
included in (3) and (4) are shown in Table II. The symbol
− in the table shows that a random value between the lower
and upper limits is taken. For example, for the time scalea
of an inhibitory neuron, a random value between 0.02 and 0.1
would be taken.

The result of the simulation experiment is shown in Fig.4
as firing patterns indicated by a black point, when a neuron is
firing. Here the input currentIi flowing into theith neuron in
(3) is given as

Ii = ki ·R(m = 0, σ2 = 1) , (5)

with a Gaussian random numberR(m,σ2) at a meanm and a
standard deviationσ. ki represents a strength of the stimulus,
and is taken as 5 and 2 for the excitatory and the inhibitory
ith neuron, respectively, by considering the sensitivity of the
stimulus for different neurons. One can see an alpha rhythm
(∼ 10 Hz) appears very early, and a gamma rhythm (∼40 Hz)
of even shorter cycle appears approximately 500 ms later. This
agrees with the results of Izhikevich[13]. Taking into account
the fact that synchronization can arise from the assembly of
this spiking neuron model, we proceed to apply this model
to study the dynamic behavior of the brain’s default mode
network, and attempt to understand the mechanism of how
fast local dynamics in the alpha and/or gamma rhythms for
the neurons emerge the slow 0.1 Hz fluctuations as typical
signature of the resting brain.

III. M ODEL AND SIMULATION

Based on such functionally connected system of the brain
in Fig.1, we assume that the cortex region is composed of the

Fig. 4. Simulations of a randomly coupled network with 1000 Izhikevich
spiking neurons. Top: spike raster plot with 800 excitatory neurons and 200
inhibitory ones. Bottom: typical spike train of an excitatory neuron.

TABLE II
PARAMETER VALUES OF THE IZHIKEVICH NEURON MODEL USED IN OUR

SIMULATIONS.

Parameters Excitatory neuron Inhibitory neuron

Time scalea 0.02 0.02− 0.10

Sensitivityb 0.20 0.20− 0.25

Resting membrane
potentialc −65 − −50 −65

Inactivity periodd 2 − 8 2

neuronassembly formed by placing 160 excitatory neurons
and 40 inhibitory neurons in one dimension, and construct
a new neural network with the spiking neuron model for
the default mode brain network. The ratio of the excitatory
neuron’s number to the inhibitory one in the region is fixed
to follow that of anatomical insight for the human brain. In
addition, the neural network takes into account 2 different
intrinsic properties as follows:

• Hierarchic neuroanatomical connectivity structure

– Neuron assembly in each region
The network is taken to be randomly coupled
with the strengths as shown at the graph of the top
right in Fig.3 because if neurons in the brain are
connected by a complete network, the capacity
of the brain would be so large that it could not
placed in our head.

– Collective regions in clusters
The coupling strength between each region is
given as the functional correlation one with the
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Fig. 5. A network model with the spiking neuron model on the default
mode brain network is illustrated. Each region has 200 spiking neurons with
intra-connections, and is functionally connected at correlation strengths from
anatomical analyses with inter-connections indicated by colored white. The
open and closed circles in left indicate the excitatory neuron and inhibitory
neuron, respectively. The solid-line circles on the image of the brain represent
core areas of the default mode brain network indicated in Table I.

default mode brain network, which is named an
inter-connection here. On the other hand, we
call an intra-connection the coupling strength
between each neuron.

The conceptual diagram of new neural network with
this hierarchic structure is shown in Fig.5.

• Time delay in the transmission of information [19], [20]
The delay is simply considered as temporal transmis-
sion, and obtained by a common propagation velocity
and 3D Euclidean distance between any 2 different
regions. Then, we take the velocity as a parameterv,
and estimate the distance from the typical locations
of the regions in 3D space from the human data.

Taking into account these intrinsic properties, the membrane
potential of theith neuron in theM -region for the synaptic
currentIMi flowing into its neuron is extended to

dvMi(t)
dt

= 0.04 vMi(t)2 + 5 vMi(t) + 140− uMi(t)

+IMi , (6)

with

IMi = Ii +
∑

Mj=Firing

sMiMj

+µ
∑

N(N 6=M)

CMN xN (t− τMN ) , (7)

wheresMiMj , CMN , andµ in (7) are taken as the strengths
of intra-, inter-connections, and the parameter of the coupling
strength for the inter-connection, respectively.Ii is an input
current and is given by (5). The first two terms in (7) are
Izhikevish terms with the pulse-coupled implementation, and
last term is newly introduced by the inter-connection between
regions. The value ofCMN is taken same value as Fig. 8 of
Ref. [8], and is shown in Table III. In (7), the first sum is a
sum of the coupling strength between the firing pre-synaptic
neuronj and the post-synaptic neuroni in the regionM at
time t, and its strength generally depends to the strength of
the synaptic current. Here the coupling strength ofsMiMj is
simply taken as an independence of the synaptic current and
a random number.xN is the firing rate of the regionN and is
written by the amount of the firing neuron to the total neuron

Fig. 6. The core regions suggested as default mode brain network are
collected into three communities. The community 1, 2, and 3 are depicted
with the solid line, the dashed line, and the dash-dotted line including each
region, respectively.

on N at time t. Also, τMN is the time delay from the region
N to M [19]:

τMN =
LMN

v0
, (8)

wherev0 andLMN are the velocity as parameter and typical
distance between regionsM andN , respectively.

For simulation experiments, we use the result of hubs and
subsystem within the default mode brain network mapped
and estimated from functional connectivity analysis asCMN

in (6). As a result, our each region now is regarded as in
the functional connectivity region in the brain. The other
parameters in (6)–(8) are taken as same values on simulations
of 1000 neuron case shown in Table II.

Now, we examined raster plots in our default mode brain
network. Then, the result is implied as one for clusters of
communities collecting some regions. Because fMRI data
on the default mode brain network is not observed at each
core region, but at functional collective region constructed
by core regions, it is important to carry out the simulation
experiments on the power spectrum of the signals of the
communities clustered core regions by the strength of the
functional correlation. So we collect eleven regions into three
communities by taking into account strengths of the correlation
between regions given at Table III as follows:
• Community 1 : L LTC and R LTC regions

The functional attribution of these regions is the
memory and learning.

• Community 2 : dMPFC, vMPFC, L IPL, R IPL, and
PCC/Rsp regions

These regions carry the cognition, integration of sen-
sory information, and so on.

• Community 3 : L PHC, R PHC, L HF, and R HF regions
Here is the memory encoding and retrieval, and long-
term memory.

We graphically represent three communities composed of
some core regions with lines at Fig.6. For their communities
we show results on raster plots in Fig.7 for the parameter of
the coupling strength for the inter-connectionµ = 49 in (7)
and the velocityv0 = 78 mm/ms in (8).

Next, we find the behavior of this model at large stimulus,
which corresponds the wakefulness from the doze. For a large
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TABLE III
FUNCTIONAL CORRELATION STRENGTHS OF EACH REGION WITHIN THE DEFAULT MODE NETWORK[8], [?].

Nodes L LTC R LTC dMPFC vMPFC L IPL R IPL PCC/Rsp L PHC R PHC L HF R HF

L LTC 1.00 0.41 0.16 0.12 0.14 0.12 0.12 0.11 0.06 0.18 0.14

R LTC 1.00 0.16 0.18 0.07 0.20 0.19 0.08 0.10 0.15 0.17

dMPFC 1.00 0.47 0.22 0.31 0.34 −0.06 −0.10 −0.01 −0.04

vMPFC 1.00 0.27 0.31 0.52 0.11 0.06 0.20 0.16

L IPL 1.00 0.47 0.49 0.25 0.10 0.11 0.06

R IPL 1.00 0.42 0.12 0.05 0.09 0.07

PCC/Rsp 1.00 0.23 0.16 0.26 0.21

L PHC 1.00 0.57 0.31 0.28

R PHC 1.00 0.28 0.28

L HF 1.00 0.61

R HF 1.00

Fig. 7. Spike raster plot of each community under the doze state from0 to
3750 ms with µ = 49 and v0 = 78 mm/ms. The dots means the neuroni
with firing at t where the neuroni is in the core regionM of any community.
In the core region, the neuron numbers from0 to 159 and from160 to 199
represent excitatory and inhibitory neurons in each core region, respectively.
A line in figure differentiates the areas of excitatory and inhibitory neurons.
Figures (a), (b), and (c) correspond to the community 1 (L LTC and R LTC
regions), 2 (dMPFC, vMPFC, L IPL, R IPL, and PCC/Rsp regions), and 3 (L
PHC, R PHC, L HF, and R HF regions), respectively.

value of the input currentIi in (5), where the values ofki

are given as7.5 and 3 for the ith excitatory and inhibitory
neuron, respectively, raster plots for the communities are
shown in Fig.8 by using the same parameter values as in Fig.4.
The firing patterns of our model for the largeIMi become
to be synchronized both spatially and temporally for each
community.

We also attempt to simulate on the model under a lack
of properties on the brain. When the time delay in the
transmission of information is simply considered as temporal
transmission, it is brought by the finite propagation velocity
between neurons. So, we vanish the time delay by taking the
infinite of the velocity in (8). The result of raster plots is
shown in Fig.9 at same values of the synaptic currentIMi

and parameters as case of Fig.7. The synchronization of the
neuron firing spatially and temporally becomes stronger as in
case of large stimulus.

Fig. 8. Same as Fig.7 except for the strength of the stimulus giving to
neurons. The strength of the stimulus is set 1.5 times larger than case of the
doze state. It is found that neurons both spatially and temporally fire more
than Fig.7 because of the large stimulus.

Fig. 9. Same as Fig.7 except for the time delay raised by transmitting of
information between core regions. For the lack of the time delay, we can see
that synchronizations of this case become stronger than ones of the doze state
since the neuron is strongly mutually interfere with each other by transmitting
instantaneously the stimulus from other firing neurons.
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IV. TRANSFORMATION OFBOLD SIGNALS FROM FIRING

PATTERNS

In previous sections, we estimated the raster plots of the
default mode brain network using Izhikevich’s spiking neuron
model. However, in order to accurately compare the fluctuation
obtained our brain model with the result of fMRI measure-
ments, the firing pattern of the neurons arising from our brain
network model should be transformed into fluctuations of
BOLD signals. So, let us consider to calculate BOLD sig-
nals using Balloon–Windkessel hemodynamics model which
specifies the coupling of perfusion to the BOLD signals [23],
[24].

In the measurement principle of fMRI, when the neural
activity becomes more active, the consumption of oxygen in
that area is increased. Then, the blood volume increases to
expand the blood vessels in order to avoid oxygen deficiency
due to consumption of oxygen, and the increase in blood flow
in blood vessels is measured as an increase of the BOLD
signal. For the neuron signalNi(t) in the regionM at the
time t, the neuron activity causes an increase in a vasodilatory
signal sMi(t) that is subject to an autoregulatory feedback.
Inflow of blood fMi(t) and outflowfMout(t) correspond in
proportion to this signal with concomitant changes in blood
volume VMi(t) and deoxyhemoglobin contentqMi(t). These
variables are represented by differential equations and given
by [24]

dsMi(t)
dt

= Ni(t)− κ sMi(t)− γMi (fMi(t)− 1) ,

dfMi(t)
dt

= sMi(t) ,

(9)

λMi
dVMi(t)

dt
= fMi(t)− fMout(t) ,

λMi
dqMi(t)

dt
=

fMi(t) E(fMi, ρMi)
ρMi

− fMout(t) qMi(t)
VMi(t)

.

HereE(fMi, ρMi) in (9) is a function of flow for the oxygen
extraction with the resting oxygen extraction fractionρMi =
0.8 at the active neuroni in the regionM , and fMout(t) is
related toVMi(t) with Grubb’s exponentα = 0.2, fMout(t) =
V

1/α
Mi (t) [25]. Also, the biophysical parametersκ, γMi, and

λMi in (9) are a rate of signal decay, a rate of flow-dependent
elimination, and a hemodynamic transit time, respectively. We
put κ = 1.25, γMi = 2.5, and λMi = 1 [24]. Taking the
BOLD signal as a static nonlinear function of volume and
deoxyhemoglobin that comprises a volume-weighted sum of
extra- and intra-vascular signals, the BOLD signalyMi(t) is
given by

yMi(t) = V0

{
ε1

(
1− qMi(t)

)
+ ε2

(
1− qMi(t)

VMi(t)

)

+ε3

(
1− VMi(t)

)}
+ y0 , (10)

with

ε1 = 7ρMi , ε2 = 2 , ε3 = 2ρMi − 0.2 , (11)

whereV0 is resting blood volume fraction and is taken as0.02
[24], andy0 the initial condition.

By the way, as fMRI is the measurement of cerebral
blood flow changes with time corresponding to the stimulation
the extraction on active region of neurons is obtained by
using the t-test method, difference method, or the correlation
method. Considering the difference method for simplicity on
the fluctuations of neuron firing patterns simulated from (6)–
(8) shown in Figs.7–9 to the BOLD signal, we introduce an
order parameter for the regionM [19]:

KM (tf ) =
K ′

M (tf )− < K ′
M (tf ) >

< K ′
M (tf ) >

, (12)

where<> denotes the average over time, and

K ′
M (tf ) =< |Σi∈MFi(t)− < Σi∈MFi(t) > | > , (13)

with Fi(t) representing the neuron firingi in the regionM
at the timet. KM (tf ) is obtained in a sliding time window
shifted by step time, where each time window starts at timeti
and ends at timetf . For neuroni, Fi(t) is considered as1 for
firing and0 for no firing. Note that<> in (13) is the average
taken over each time window. AsKM describes the change
in the ratio of the amount of firing neurons to the average
at each time window, the magnitude ofKM is smaller when
firing neurons begin to be fickle spatiotemporally. On the other
hand, the more the firing neurons localize spatially, the greater
the magnitude ofKM .

Calculating the order parameterKM in (12) by using neuron
firing patterns in Fig.7 simulated from (6)–(8) and substituting
KM obtained here for the neuron signalNi in (9), we engender
fluctuations of BOLD signals from our brain network model.
For the community 1 we show the result of the BOLD signal
on KM in (12) at the parameter of the coupling strength for
the inter-connectionµ = 49 in (7) and the velocityv0 = 78
mm/ms in (8) in Fig.10. Here, it notes that the power spectrum
on the BOLD signal is derived by the fluctuation of one
over 15 seconds because our fluctuations of the BOLD signal
obtained from three differential equations (9) are unstable for
the initial time. From this figure, we can find that our model
of the default mode brain network has the slow fluctuation
at < 0.1 Hz and consists with the observed behavior of the
BOLD signal on the default mode network of the brain with no
task. This result is derived that synchronized firing patterns of
each core region through the intra-connection between neurons
become to be weak alpha rhythms but no gamma ones at
the rest state as the doze condition, and cluster communities
arise synchronous firings with the slow fluctuation of the
rate lower than 0.1 Hz by time delay in propagating local
synchronizations created at each core region through the inter-
connection.

Similarly, Figs.11 and 12 are the results of the BOLD signal
for the large stimulus and the lack of time delay by using
neuron firing patterns in Figs.8 and 9, respectively. In case of
the large stimulus in Fig.8, the power spectrums peak ofKM

sharply arounds the frequencies of the alpha rhythms, and the
fluctuations at less than0.1 Hz are relatively small. Our brain
network model reproduce a fact well, which neurons become
to active and raise the alpha rhythms (5− 10 Hz) under any
stimulus. However, the power spectrums peak of the BOLD
signal has no frequencies with the alpha rhythms, and becomes
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Fig. 10. (a) Behavior of the fluctuation parameterKM in a term of the
time t in (12) obtained from simulated neuron firing activities in Fig.7 for
community 1 withµ = 49 andv0 = 78 mm/ms. (b) Power spectrum ofKM

for community 1. The vertical and horizontal axes are both logarithmic scales.
The power spectrum peaks for the fluctuations at low frequencies (< 0.1 Hz).
(c) Result of the BOLD signalyMi in a term of the timet in (10) derived
from the parameterKM of community 1. (d) Power spectrum onyMi for
community 1. The calculation result reveals the peak of the power spectrum at
< 0.1 Hz on the fluctuation of the BOLD signal. Then, the power spectrum
is estimated att ≤ 15 [s] because our BOLD signal obtained from three
differential equations (9) are unstable for the initial time.

at near0.1 Hz. As well-known, the temporal resolution of
fMRI is the order of a few seconds, and the BOLD signal
cannot respond in real time to the firing of neurons. The vanish
of the peak of the spectrum of the BOLD signal with the
alpha rhythms proves that the transformation model from firing
patters of neurons to the BOLD signal used here is legitimate.

Moreover, the results on the power spectrums peak ofKM

and the BOLD signal on the lack of the time delay are
shown in Fig.12, and also are similar as those on the large
stimulus. For the result onKM , the power spectrum declines
steadily for frequencies less than0.04 Hz; in contrast, the
strength increases in Fig.10. This result suggests that the
peak fluctuation at< 0.1 Hz is formed from the dilution
of different rhythms of synchronization generated in each
region by certain transmission delay for finite propagation
velocity. Here the transmission is proportional to the product
of the strength of the interconnection and the number of firing
neurons inside each region. Therefore, the transmission with
no delay enhances the synchronization of the intrinsic rhythm
generated by each region, and the intrinsic synchronizations
of each region strongly and directly affect the fluctuation in
the firing pattern for communities.

Fig. 11. (a) Behavior of the fluctuation parameterKM in a term of the
time t in (12) obtained from simulated neuron firing activities in Fig.8 for
community 1 under the large stimulus withµ = 49 and v0 = 78 mm/ms.
The value of the strength of the stimuluski included the input currentIi

in (5) is put at 1.5 times more than that for case of Fig.10. The values of
other parameters are same for case of Fig.10. (b) Power spectrum ofKM for
community 1. The vertical and horizontal axes are both logarithmic scales.
The power spectrum peak also arises for the alpha rhythm region. It shows
that the strength of the power spectrum at< 0.1 Hz is almost same as an
order of one at the alpha rhythm. (c) Result of the BOLD signalyMi in a
term of the timet in (10) derived from the parameterKM of community 1
under the large stimulus. (d) Power spectrum onyMi for community 1. The
calculation result vanishes the peak of the power spectrum at the alpha rhythm
on the fluctuation ofKM . As the temporal resolution of fMRI is the order
of a few seconds, the BOLD signal cannot respond to the high frequencies.

V. SUMMARY AND FUTURE WORK

We simulated the power spectrum of communities clustered
from raster plots of the default mode network with eleven
core regions functionally connected using Izhikevich’s spiking
neuron model. In estimations with neurons having a random
connection in each node as the network structure, the fluc-
tuation of the BOLD signal has peaked in the region with
< 0.1 Hz. The result agrees with fMRI data of the brain for
experiments under the doze. However, the power spectrums of
the order parameterKM on firing patterns of neurons under
the large stimulus or the lack of the time delay between core
regions of the default mode brain network have disappeared
the peaks of frequencies with< 0.1 Hz though those of
the BOLD signal barely kept around0.1 Hz. From these
results, we found that the time delay on the transmission of
information between core regions carried out a role on one
of functions on the brain, namely default mode brain network
state. Also, the analysis of the BOLD signal was only difficult
to distinguish neuron activities of the doze state from ones
with the large stimulus because of the temporal resolution of
fMRI.

In this work, both the connections among neurons in each
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Fig. 12. (a) Behavior of the fluctuation parameterKM in a term of the timet
in (12) obtained from simulated neuron firing activities in Fig.9 for community
1 with the lack of the time delay atµ = 49 andv0 = 78 mm/ms. The values
of other parameters are same for case of Fig.10. (b) Power spectrum ofKM

for community 1. As in Fig.10, the vertical and horizontal axes are both
logarithmic scales. In contrast of Fig.10, the value of the power spectrum
does not become larger as the value of frequency becomes small. (c) Result
of the BOLD signalyMi in a term of the timet in (10) derived from the
parameterKM of community 1 with the lack of the time delay. (d) Power
spectrum onyMi for community 1. The calculation result reveals no increase
in the peak of the power spectrum at< 0.1 Hz.

core region and those among core regions in the default mode
network are simply considered as the random graph [16], but
one generally infers a relation to the network of Watts-Strogatz
[17] or the scale free [18] for the network of the brain [21],
[22]. So it is important to explore the dependence of firing
patterns and the power spectrum on a topology of the network
structure in our model.
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