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Abstract 
In this paper, we present a GPU-based sorting algorithm, 

GPUMemSort, which achieves high performance in 
sorting large-scale in-memory data by take advantage of 
GPU processors. It consists of two algorithms: an in-core 
algorithm, which is responsible for sorting data in GPU 
global memory efficiently, and an out-of-core algorithm, 
which is responsible for dividing large-scale data into 
multiple chunks that fit GPU global memory.  
GPUMemSort is implemented based on NVIDIA’s CUDA 
framework and some critical and detailed optimization 
methods are also presented.  The tests of different 
algorithms have been run on multiple data sets.  The 
experimental results show that our in-core sorting can 
outperform other comparison-based algorithms and 
GPUMemSort is highly effective in sorting large-scale in-
memory data. 
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1. Introduction 

With the improvement of CPU performance and multi-

core CPUs, bandwidth between CPU and memory be-

comes the bottleneck of large-scale computing. Many hard-

ware vendors, such as AMD, IBM, and NVIDIA integrate 

co-processors to offload tasks from the CPU, and this can 

alleviate the effects of low CPU-memory bandwidth. 

Meanwhile, high performance computers have ever-increasing 

amounts of memory, so it is very important to develop efficient 

co-processor algorithms to deal with large-scale in-memory 

data. 

Recently, GPUs (Graphics Processing Units) have become 

the best-known  co-processor. They have been utilized in many 

different sorts of general purpose applications.  GPUs are 

suitable for highly parallel, compute-intensive workloads 

because of higher memory bandwidth and thousands of 

hardware thread contexts with hundreds of parallel compute 

pipelines  executing programs in a SIMD (single instruction 

multiple data) fashion.  The peak performance of GPUs has 

been increasing at the rate of 2.5–3.0 times a year, much faster 

than the performance of CPUs. 

Several GPGPU (General Purpose computing on GPUs) 

languages, such as OpenCL [2] and NVIDIA CUDA [1] are 

proposed for developers to use GPUs with extended C 

programming language, instead of graphics API. In CUDA, 

threads are organized in a hierarchy of grids, blocks, and 

threads executed in a SIMT (single-instruction, multiple- 

thread) manner; threads are virtually mapped to an arbitrary 

number of streaming multiprocessors (SMs) through warps. 

There exist several types of memory, such as register, local 

memory, shared memory, global memory, constant memory, 

etc. Different types of memory have different 

characteristics. Therefore, how to organize the memory 

access hierarchy is very important for improving programs’ 

performance.  In this paper, the GPU part of our algorithm 

is implemented with CUDA and we will show how we 

design and optimize memory access pattern in details. 

Main Contribution:  We propose a novel graphics 

co-processor sorting algorithm to sort large-scale in-

memory data.  Our idea is to split a large-scale sorting task 

into a number of disjoint ones which can fit GPU memory. 

In general, our contributions are as follows: 

(1) We provide a method which can efficiently divide 

the large-scale in-memory data into disjointed subsets so 

that they can be sorted by GPU quickly. 

(2) We improve the performance of GPU Sample Sort 

[12] algorithm and the enhanced algorithm outperforms the 

existing GPU sorting algorithms. 

Table 1 summarizes this paper’s notation. The paper is 

organized as follows. Sections 2 will introduce the 

background and the related work. In section 3, the 

proposed algorithm is introduced. Detailed implementation 

and optimization will be presented in section 4. Our 

experimental results are shown in section 5. In section 6, 

we will give the conclusion and future work. 

Table1. NOTATION 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Background and Related Work 
 

2.1. Parallel Sorting Algorithm 
Parallel sorting has been studied extensively during the 

past 30 years. Generally, parallel sorting algorithms can be 

NOTATION DESCRIPTION 

N number of elements in the input 

data set 

n size of elements which can fit into  
the global memory 

d number of chunks 

s number of sample points 

s[i] the ith  sample point 

e[i] the ith  input element 

list[i] the ith  sorted list 
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divided into two categories [3]: 

• Partition-based Sorting:  First, use partition keys to 

split the data into disjoint buckets. Second, sort each bucket 

independently, and then concatenate the sorted buckets. 

• Merge-based Sorting:  First, partition the input data 

into data chunks of approximately equal size and sort these 

data chunks in different processors. Second, merge the data 

across all of the processors. 

Each category has its own potential bottleneck. 

Partition-based algorithms have to deal with problem of 

how to keep load balanced across all the processors. 

Merge-based sorting algorithms perform well only for a 

small number of processors. 

To solve the load balance problem, Parallel Sorting by 

Regular Sample (PSRS) [5] guarantees that the size of data 

chunk assigned to processor is less 

than )1//2( 2  ppnpn . A newer approach [4] can 

guarantee that each processor will have at 

most )//( psnpn  elements, where 2/ pnsp  and s 

is a parameter. 

 

2.2. GPU Programming with CUDA 

The NVIDIA CUDA programming model is created for 

developing applications on GPUs. Some major principles 

[6] on this platform are: (1) Leverage zero-overhead thread 

scheduling to hide memory latency. (2) Optimize the use of 

on-chip memory to reduce bandwidth usage and redundant 

execution. (3) Group threads to avoid SIMD penalties and 

memory port/bank conflicts. (4) Threads within a thread 

block can communicate via synchronization, but there is no 

built-in global communication mechanism for all threads. 

 

2.3. Parallel Sorting Algorithm based on GPU 

Since most sorting algorithms are bound by memory 

bandwidth, sorting on the high-bandwidth GPUs becomes a 

popular topic. Purcell [7] introduced bitonic merge sort, 

while Kipfer and Westermann [8] improved it to odd-even 

merge sort.  Greß and Zachmann [9] introduced the 

GPUABiSort based on adaptive bitonic sorting. Naga K. 

Govindaraju [3] presented a GPUTeraSort algorithm to sort 

billion record wide-key databases. Also, some CUDA-

based sorting algorithms have been proposed recently. Erik 

Sintorn [10] introduced a hybrid algorithm combining 

bucket sort and merge sort, but can only sort floats as it 

uses a float4 in merge sort.  Cederman [11] proposed 

Quicksort in CUDA, which is sensitive to the distribution 

of the input data. The comparison-based Thrust Merge 

method by Nadathur Satish, et al. combines odd-even 

merge and two-way merge to balance the load. Satish et 

al.[13] presented GPU radix sort for integers.  [12] is a 

randomized sample sort that significantly outperforms 

Thrust Merge. Because of its random selection, the load 

balancing does not perform well. 

However, most of these algorithms are designed for 

small-scale data sorting and are ineffective when data size 

is larger than the global memory size. 

 

3. GPUMemSort Algorithm 
In this section, we will present GPUMemSort which 

consists of two major parts, the out-of-core algorithm and 

the in-core algorithm. The aim of the algorithm is to sort 

large-scale data on the CUDA platform to achieve parallel 

sorting, and to find new ways to solve the loading 

balancing problem. Specifically, the out-of-core sorting 

can divide large-scale data into multiple disjointed subsets 

and assign them to GPU. The In-core sorting aims at 

sorting the subsets efficiently.  Two aspects that will 

influence the performance of GPUMemSort algorithm. 

One is how to implement coalesced Memory Access in the 

share memory, which can be an important factor in 

deciding the sorting time. The other is the tradeoff between 

the splitters-finding algorithm and the bucket sorting 

algorithm, which will be discussed in the following 

statements.  We make efforts on these aspects and the 

results show that our algorithm has significant 

improvement on the original Sample Sort. 

 

3.1 Out-of - core algorithm 
In this section, we introduce the out-of-core algorithm 

to tackle with large-scale data on the platform of multi-

core GPUs. The main idea behind the algorithm is to cut 

the huge task into a number of subtasks, whose sizes do not 

have significant differences. This will guarantee the data 

will be put into the global memory, and minimize the 

balancing problem as well. This is the first step of the 

GPUMemSort and lays an ideal foundation for the in-core 

sort.  

 We adopt the ideas of Deterministic Sample-based 

Parallel Sorting (DSPS) in our out-of-core sorting 

algorithm. The idea behind DSPS algorithm is to find s-1 

samples as splitters to partition the input data set into 

several data chunks. Elements in the (i+1)th
  chunk are no 

smaller than those in the ith
  chunk. The sizes of these 

chunks have a deterministic upper bound in order to avoid 

the loads of streams differ greatly and causing the load 

balancing problem. The chunks can be put into GPU global 

memory by adjusting a parameter in the algorithm 

according to the value of the whole data size.  

The out-of-core algorithm can be described as follows:  

Step1:  Divide the input data set into d chunks, each 
contains (n/d) elements, assuming that d divides n evenly. 

Step 2: Copy the chunks to the GPU’s global memory 
one by one, and sort them by in-core algorithm. Then split 
each chunk into d buckets. The xth

  element in chunk i will 

be put into bucket Bin[i][x/d]. Copy the sorted chunks 
back to main memory one by one. 

Step 3: Swap buckets among chunks in main memory, for 
i ∈  [0,d−1], j∈ (i,d−1], switch Bin[i][j] and Bin[j][i]. So that 
new chunk i consists of {Bin[0][i],Bin[1][i],...,Bin[d-1][i]}. 

Step 4: In the (d-1)
th

 chunk, selects the ((x+1)n/(d2
s))

th
 

element as a sample candidate from Bin[i][d-1], for 
x∈ [0,s−1] and  i∈ [0,d−1].  

Step 5: Sort the sample candidate, pick the (k+1)·s sample 
point as s[k], k ∈  [0,d−2], let s[d−1] be the largest. Copy 
the sample array from main memory to GPU global 
memory. 

Step 6: Copy each chunk to GPU global memory again 
and split the chunk into d buckets based on d sample points. 
The bucket j of chunk i is called NS[i][j], for 0≤j≤d−1. After 
splitting, all the elements in NS[i][j] should be no larger than 
s[j]. At last, copy these buckets back to main memory. 

Step 7: Swap buckets among chunks again in main 
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memory, new chunk i consists of {NS[0][i], 
NS[1][i],...,NS[d-1][i]}. i∈ [0, d−1]. All the elements in 
chunk i are no larger than s[i]. 

Step 8:  i∈ [0,d−1], calculate the total length of chunk i.  
If the length is less than the threshold Θ, copy the whole 
chunk to GPU global memory and sort it using our in-core 
sorting algorithm. Otherwise, copy NS[0][i], 
NS[1][i],...,NS[d-1][i] to the GPU one by one. For NS[j][i], 
split it into two parts, part[j][i][0] and part[j][i][1], where 
part[j][i][0] contains elements equal to s[i] while 
part[j][i][1] contains the rest. Copy back the part[j][i][1] to 
the main memory, then merge all the part[j][i][1], 0≤j≤d−1 
into one array. Finally, sort this array on the GPU and write 
it back to the result set. Fill out the rest part of result set 
using s[i]. 

According to the condition in [5], we can easily get 

 )//( dsndn ,so 

 )4/)/()2/(2//( nsnsnnd   .This means that 

if every chunk’s size is guaranteed to be less than Θ, the 

number of chunks split in Step 1 must be larger than 

 )4/)/()2/(2//( nsnsnn   . 

Suppose that GPU is able to store and sort a 128MB data 

set, then the sample number s=64, the N = 1 GB, according 

to the approach above, d ≥ 8.47, so that d must be larger 

than or equal to 9.  

 

3.2 In-core algorithm 

Our in-core algorithm is based on GPU Sample Sort, 

which is currently the fastest comparison-based sorting 

algorithm. However, it has a load balancing problem. The 

key to make subsets well-balanced in a sample sorting 

algorithm is to find appropriate splitters, like in as PSRS 

(Parallel Sorting by Regular Sample) and DSPS. However, 

if they are directly ported to GPU, the overhead of 

generating splitters to get balanced subsets will be much 

larger than that of directly sorting on imbalanced subsets. So 

it is important to find the tradeoff point between them. Let 

us review the procedure of PSRS. Suppose that the size of 

data set is n. First, split the data set into p subsets. Then, for 

each subset, select (s−1) equidistant points as sample 

candidate points. Finally, merge the (s−1) ·p sample 

candidate points, sort them and select (s − 1) equidistant 

points as splitters. The overhead of splitter generation in 

PSRS is splitting the whole data set and sorting all the 

subsets, and it is proportional to the data size. 

Our in-core sorting algorithm uses a novel strategy to 
select sample points.  First pick up a subset from the whole 
data set randomly. The size of this subset is equal to (s− 
1)·k·M, (k ≤ p), where M is the maximum size of array that 
can be sorted in share memory of one SM. Then, split the set 
into k subsets and assign k blocks to sort these subsets in 
parallel. Afterward, for each subset, select (s−1) equidistant 
points as sample candidate points. At last, merge the (s− 1)·k 
samples, sort them and select (s−1) equidistant points as 
splitters.  The parameter k should be assigned at runtime 
depending on data size. 

 

4. Key Optimization Methods 
Here we present the detailed implementation and 

optimization of GPUMemSort. First, we describe the task 
execution engine, which can overlap data transfer with GPU 
computation based on pipelining. Second, we indicate how 
to swap buckets in chunks. Finally, we show the 
compensation algorithm based on optimistic mechanism. 

 

4.1 Task Execution Engine based on Pipeline 

The data transfer between CPUs and GPUs is a 

significant overhead in our GPUMemSort algorithm. 

Without optimization, more than 30% of the time 

would be spent on transferring data between CPUs 

and GPUs. But the GPU may remain idle when data 

transfer operations are doing. Also, the bandwidth 

between CPU and GPU is fully-duplex, so only 50% 

of the total bandwidth resource can be used if only 

one way is used to transfer data between CPUs and 

GPUs. So overlapping data transfer from CPU to 

GPU, GPU computation, and data transfer from GPU 

to CPU will bring remarkable performance 

improvement. Thus a task execution engine is 

implemented based on pipeline mechanism. First, 

divide a sorting task into three subtasks: CPU-GPU 

data transfer, kernel sorting, and GPU-CPU data 

transfer. Then, pipeline these three types of subtasks 

based on streaming with CUDA’s asynchronous 

memory copy. Streaming maintains the 

dependencies, while the asynchronous memory copy 

parallelizes data transfer operations and sorting 

operation.  Fig. 1 shows the comparison between the 

GPU classic computation pattern and our pipeline-

based one.  

 
Figure1. Comparison between the GPU 
classic   computation pattern   and   our   
pipeline based computation pattern 

 
4.2 Implementation of Buckets Swap 

In the implementation of DSPS, different buckets are 

swapped through network communication because different 

chunks are scattered in distributed memory.  Pointers are 

used to avoid hard memory copy. 

In Algorithm 1, we present our data structure of pointer 

arrays to swap buckets, and the procedure of transferring 

data from main memory to GPU global memory. Assign to 

each data chunks a TransposeChunk structure, including a 

vector of TransposeBlock to record the start address and the 
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size of a bucket.  Then swap the start address and size in 

the corresponding TransposeBlock structures.  In the 

coming data transfer, traverse the buckets and copy them 

from main memory to GPU global memory, avoiding a 

copy on the host. 
 

Algorithm 1 Data Structure for buckets swap and coming 
data transfer algorithm 

Struct TransposeBlock{ 

int* block ptr; 

long size; 

}; 

Struct TransposeChunk{ 

TransposeBlock blocks[d]; 

}; 

procedure memcpyFromHostToDevice(Transpose 

Chunk& chunk, int* dvalue) 

offset  0; 

for q = 0 to d do 

TransposeBlock& tmpBlock  chunk.blocks[q]; 

cudaMemcpyHostToDevice (dvalue + offset, 

tmpBlock.block ptr, sizeof(int) * tmpBlock.size); 

offset  offset + tmpBlock.size; 

end for 
 

4.3 Optimistic Mechanism based Compensation 

Algorithm 
In the Step 4 of DSPS, Est[i] is calculated to record the 

size of elements equal to s[i] in sample candidate list.  In the 

following splitting operation for chunks, it should be 

guaranteed that in NS[i], the number of elements equal to 

s[i] is smaller than Est[i]n/(p2s). If not, we should try to 

shift this element to the adjacent buckets when splitting. 

To add the comparison logic above into chunks splitting 

module, a global variable should be maintained for each 

bucket to record the number of elements equal to 

corresponding splitter.  Atomic FAA (Fetch and Add) 

method will be called a few times to keep consistency, thus 

decreasing the performance. Otherwise, the size of the 

chunks in the last step may exceed the threshold θ. 
In order to solve this problem, we propose a novel 

compensation algorithm based on optimistic mechanism.  

Assume that ∀i [0,d−1], the number of elements in 

NS[i] equal to s[i] exceeding Est[i]n/(p2s) is a low-

probability event. We add logic to Step 8 to compensate 

for exceptions. First, decide whether the size of each 

chunk is no larger than the given θ. If yes, copy this 

chunk to GPU global memory and sort it with our in-

core algorithm. Otherwise, copy 

NS[0][i],NS[1][i],...,NS[d-1][i] to the GPU one by one.   

For NS[j][i], split it into two parts: part[j][i][0] and 

part[j][i][1], the former contains elements equal to s[i] 
while the latter contains the rest. Copy back the 

part[j][i][1] to the main memory, merge all the 

part[j][i][1], 0 ≤ j≤ d−1 into one array, then sort this 

array on the GPU and write it back to the result set. Finally, 

fill the rest part of result set with s[i]. Algorithm 2 presents 

the pseudo code of our compensation algorithm. 

 

 

Algorithm 2 Compensation algorithm on the CPU 

 

# chunk: [input] TransposeChunk of chunk which will be 

processed, 

# splitter: [input] the corresponding splitter value 

# outputBlock: [output] the pointer where results will be 

written back 

# splitterSize: [output] the number of elements which 

equal to splitter in the chunk 

procedure handleLongArrayException(const 

TransposeChunk& chunk, const int splitter, int* & 

outputBlock, int& splitterSize) 

int boundary[d]; // splitter of each bucket 

struct TransposeChunk m chunk; 

alloc memory whose size equal to d in dBoundary  

and copy boundary to dBoundary; 

for q = 0 to d do 

// handle blocks in chunk one by one. 

int* dBucketValue = NULL; 

int* dBucketOutputValue = NULL; 

const TransposeBlock& tmpBlock =  

 chunk.blocks[q]; 

alloc memory whose size equal to tmpBlock.size in 

dBucketValue and copy tmpBlock.block ptr to 

device memory; 

malloc tmpBlock.size length array to  

dBucketOutputValue; 

splitEquality kernel 

<<<BLOCK NUM,THREADS NUM>>> 

(dBucketValue, tmpBlock.size, splitter,  

dBoundary); 

boundary[q] ΣdBoundary[i];  
i[0, BLOCK N U M); 
prefixSum(dBoundary); 

divide kernel 

<<<BLOCK NUM,THREADS NUM>>> 

(dBucketValue, tmpBlock.size, splitter,  

dBoundary); 

copy dBucketOutputValue back to outputBlock in 

main memory; 

end for 
copy all buckets in m chunk to global memory; 

employ in-core sorting algorithm to sort them; 

copy sorted buckets back to outputBlock; 

pad the rest of outputBlock using splitter; 

free memory in device and main memory; 

 

5. Experimental Results 
In this section, we introduce our hardware environment 

and compare our in-core sorting with GPU Sample Sort, 

GPU Quick Sort and Thrust Merge Sort based on six 

different data sets and show the performance and scalability 

of GPUMemSort. 

5.1 Hardware Environment 
Our system consists of two NVIDIA GPU GTX 260 co- 

processors, 16GB DDR3 main memory and an Intel Quad 

Core i5-750 CPU. Each GPU connects to the main 

memory through exclusive PCIe 16X data bus, providing 

4GB/s bandwidth with full duplex. Experiments have 

shown that data transmissions between each GPU and 
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main memory will not be affected too much. Also, time 

consumed by data transmission between GPU and main 

memory can be almost overlapped by GPU computation.  

Table 2 shows the bandwidth measurement results in 

different scenarios. 

Table2 .  GPU to host bandwidth   measurement 
 
 
 
 
 
 
The GTX 260 with consists of 16 SMs (Streaming 

Multiprocessor), each having 8 processors executing the 

same instruction on different data. In CUDA, each SM 

supports up to 768 threads, owns 16KB of share memory, 

and has 8192 available registers. Threads are logically 

divided into blocks and are assigned to a specific SM. 

Depending on how many registers and how much local 

memory the block of threads requires, there could be 

multiple blocks assigned to a SM. GPU Data is stored in 

512MB of global memory. Each block can use share 

memory as cache. Hardware can coalesce several read or 

write operations into a big operation, so it is necessary to 

keep threads visiting consecutive memory locations. 

 

5.2 Performance Evaluation 
In this section, we first compare the performance of in- 

core sort, GPU Sample Sort, GPU Quick Sort and Thrust 

Merge Sort based on different data sets of unsigned integers. 

Six different types of data sets include Uniform, Sorted 

Zero, Bucket, Gaussian, and Staggered [11]. Fig. 2 shows 

the result on data of different array sizes: our in-core sort- 

ing outperforms the others because it can achieve good load 

balancing with little cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
Figure2. Performance comparison between 
in-core sort  and other existing sorting   
algorithms 

 
The performance evaluation of our out-of-core 

algorithm on a single GPU is shown in Fig. 3, 

indicating that our out-of-core algorithm is robust and 

is capable of handling data efficiently with different 

distributions and sizes. 

 

 
Figure3. Performances of out-of-core algorithm 
on different data  distributions  

 

Finally, the scalability of our out-of-core algorithm 

from one GPU to two GPUs is shown in Fig. 4.  It is 

clear that our out-of-core sorting algorithm can reach 

near-linear speedup in two GPUs, showing that our out-

of-core algorithm has good scalability when the 

bandwidth between main memory and GPU memory is 

not a bottleneck. 

 

 
Figure 4. Performance comparison of our out-of-

core scaling from one GPU to two GPUs 
 

6. Conclusion and Future Work 
In this paper, we present GPUMemSort: a high 

performance graphics co-processor sorting framework for 

large-scale in-memory data by exploiting high-parallel 

GPU processors. We test the performance of the algorithm 

based on multiple data sets and it shows that GPUMemSort 

sorting algorithm outperforms other multi-core based 

parallel sorting algorithms. A significant conclusion drawn 

from this work is that our GPUMemSort can break through 

the limitation of GPU global memory and can sort large-

scale in-memory data efficiently. 

We have found that for some special distributed inputs, 

some special sorting method can be developed by taking 

advantage of the special data distribution information. We 

will include this optimization method into our in-core 

sorting algorithm. The values of different parameters in our 

sorting method now are set based on intuition and some 

simple tests. But we know that those value have significant 

Test Cases Single GPU Two GPUs 

Device to Host 3038.5MB/s 2785.1MB/s 

Host to Device 3285.5MB/s 2802.1MB/s 

Device to Device 106481.5MB/s 106377.1MB/s 
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impact on the performance and we will develop method to 

find suitable values for those parameters automatically. The 

scalability of our out-of-core algorithm only tested on two 

GPUs, we will do more experiments on more GPUS in the 

next steps to verify our algorithm. Now we use double 

buffers in main memory and this method will occupy more 

memory. We will further optimize our implementation 

method which needs less memory in the future. 

Furthermore, we will try to extend our algorithm to a GPU 

cluster system and optimize our  algorithm on this kind of 

distributed heterogeneous architecture.  
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http://developer.nvidia.com/object/cuda.html
http://www.khronos.org/opencl/

