

GPUMemSort: A High Performance Graphics Co-processors Sorting Algorithm
for Large Scale In-Memory Data

Yin Ye1, Zhihui Du1+, David A. Bader2 , Quan Yang 1 and Weiwei Huo3

1 National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

2 College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
3 School of Information and Communication Engineering, Beijing University of Posts

and Telecommunications, China
+Corresponding Author’s Email: duzh@tsinghua.edu.cn

Abstract
In this paper, we present a GPU-based sorting algorithm,

GPUMemSort, which achieves high performance in
sorting large-scale in-memory data by take advantage of
GPU processors. It consists of two algorithms: an in-core
algorithm, which is responsible for sorting data in GPU
global memory efficiently, and an out-of-core algorithm,
which is responsible for dividing large-scale data into
multiple chunks that fit GPU global memory.
GPUMemSort is implemented based on NVIDIA’s CUDA
framework and some critical and detailed optimization
methods are also presented. The tests of different
algorithms have been run on multiple data sets. The
experimental results show that our in-core sorting can
outperform other comparison-based algorithms and
GPUMemSort is highly effective in sorting large-scale in-
memory data.

Keywords: Parallel Sorting Algorithm, GPU, CUDA

1. Introduction

With the improvement of CPU performance and multi-

core CPUs, bandwidth between CPU and memory be-

comes the bottleneck of large-scale computing. Many hard-

ware vendors, such as AMD, IBM, and NVIDIA integrate

co-processors to offload tasks from the CPU, and this can

alleviate the effects of low CPU-memory bandwidth.

Meanwhile, high performance computers have ever-increasing

amounts of memory, so it is very important to develop efficient

co-processor algorithms to deal with large-scale in-memory

data.

Recently, GPUs (Graphics Processing Units) have become

the best-known co-processor. They have been utilized in many

different sorts of general purpose applications. GPUs are

suitable for highly parallel, compute-intensive workloads

because of higher memory bandwidth and thousands of

hardware thread contexts with hundreds of parallel compute

pipelines executing programs in a SIMD (single instruction

multiple data) fashion. The peak performance of GPUs has

been increasing at the rate of 2.5–3.0 times a year, much faster

than the performance of CPUs.

Several GPGPU (General Purpose computing on GPUs)

languages, such as OpenCL [2] and NVIDIA CUDA [1] are

proposed for developers to use GPUs with extended C

programming language, instead of graphics API. In CUDA,

threads are organized in a hierarchy of grids, blocks, and

threads executed in a SIMT (single-instruction, multiple-

thread) manner; threads are virtually mapped to an arbitrary

number of streaming multiprocessors (SMs) through warps.

There exist several types of memory, such as register, local

memory, shared memory, global memory, constant memory,

etc. Different types of memory have different

characteristics. Therefore, how to organize the memory

access hierarchy is very important for improving programs’

performance. In this paper, the GPU part of our algorithm

is implemented with CUDA and we will show how we

design and optimize memory access pattern in details.

Main Contribution: We propose a novel graphics

co-processor sorting algorithm to sort large-scale in-

memory data. Our idea is to split a large-scale sorting task

into a number of disjoint ones which can fit GPU memory.

In general, our contributions are as follows:

(1) We provide a method which can efficiently divide

the large-scale in-memory data into disjointed subsets so

that they can be sorted by GPU quickly.

(2) We improve the performance of GPU Sample Sort

[12] algorithm and the enhanced algorithm outperforms the

existing GPU sorting algorithms.

Table 1 summarizes this paper’s notation. The paper is

organized as follows. Sections 2 will introduce the

background and the related work. In section 3, the

proposed algorithm is introduced. Detailed implementation

and optimization will be presented in section 4. Our

experimental results are shown in section 5. In section 6,

we will give the conclusion and future work.

Table1. NOTATION

2. Background and Related Work

2.1. Parallel Sorting Algorithm
Parallel sorting has been studied extensively during the

past 30 years. Generally, parallel sorting algorithms can be

NOTATION DESCRIPTION

N number of elements in the input

data set

n size of elements which can fit into
the global memory

d number of chunks

s number of sample points

s[i] the ith sample point

e[i] the ith input element

list[i] the ith sorted list

DOI: 10.5176_2010-2283_1.2.34

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

23

mailto:duzh@tsinghua.edu.cn

divided into two categories [3]:

• Partition-based Sorting: First, use partition keys to

split the data into disjoint buckets. Second, sort each bucket

independently, and then concatenate the sorted buckets.

• Merge-based Sorting: First, partition the input data

into data chunks of approximately equal size and sort these

data chunks in different processors. Second, merge the data

across all of the processors.

Each category has its own potential bottleneck.

Partition-based algorithms have to deal with problem of

how to keep load balanced across all the processors.

Merge-based sorting algorithms perform well only for a

small number of processors.

To solve the load balance problem, Parallel Sorting by

Regular Sample (PSRS) [5] guarantees that the size of data

chunk assigned to processor is less

than)1//2(2 ppnpn . A newer approach [4] can

guarantee that each processor will have at

most)//(psnpn elements, where 2/ pnsp and s

is a parameter.

2.2. GPU Programming with CUDA

The NVIDIA CUDA programming model is created for

developing applications on GPUs. Some major principles

[6] on this platform are: (1) Leverage zero-overhead thread

scheduling to hide memory latency. (2) Optimize the use of

on-chip memory to reduce bandwidth usage and redundant

execution. (3) Group threads to avoid SIMD penalties and

memory port/bank conflicts. (4) Threads within a thread

block can communicate via synchronization, but there is no

built-in global communication mechanism for all threads.

2.3. Parallel Sorting Algorithm based on GPU

Since most sorting algorithms are bound by memory

bandwidth, sorting on the high-bandwidth GPUs becomes a

popular topic. Purcell [7] introduced bitonic merge sort,

while Kipfer and Westermann [8] improved it to odd-even

merge sort. Greß and Zachmann [9] introduced the

GPUABiSort based on adaptive bitonic sorting. Naga K.

Govindaraju [3] presented a GPUTeraSort algorithm to sort

billion record wide-key databases. Also, some CUDA-

based sorting algorithms have been proposed recently. Erik

Sintorn [10] introduced a hybrid algorithm combining

bucket sort and merge sort, but can only sort floats as it

uses a float4 in merge sort. Cederman [11] proposed

Quicksort in CUDA, which is sensitive to the distribution

of the input data. The comparison-based Thrust Merge

method by Nadathur Satish, et al. combines odd-even

merge and two-way merge to balance the load. Satish et

al.[13] presented GPU radix sort for integers. [12] is a

randomized sample sort that significantly outperforms

Thrust Merge. Because of its random selection, the load

balancing does not perform well.

However, most of these algorithms are designed for

small-scale data sorting and are ineffective when data size

is larger than the global memory size.

3. GPUMemSort Algorithm
In this section, we will present GPUMemSort which

consists of two major parts, the out-of-core algorithm and

the in-core algorithm. The aim of the algorithm is to sort

large-scale data on the CUDA platform to achieve parallel

sorting, and to find new ways to solve the loading

balancing problem. Specifically, the out-of-core sorting

can divide large-scale data into multiple disjointed subsets

and assign them to GPU. The In-core sorting aims at

sorting the subsets efficiently. Two aspects that will

influence the performance of GPUMemSort algorithm.

One is how to implement coalesced Memory Access in the

share memory, which can be an important factor in

deciding the sorting time. The other is the tradeoff between

the splitters-finding algorithm and the bucket sorting

algorithm, which will be discussed in the following

statements. We make efforts on these aspects and the

results show that our algorithm has significant

improvement on the original Sample Sort.

3.1 Out-of - core algorithm
In this section, we introduce the out-of-core algorithm

to tackle with large-scale data on the platform of multi-

core GPUs. The main idea behind the algorithm is to cut

the huge task into a number of subtasks, whose sizes do not

have significant differences. This will guarantee the data

will be put into the global memory, and minimize the

balancing problem as well. This is the first step of the

GPUMemSort and lays an ideal foundation for the in-core

sort.

 We adopt the ideas of Deterministic Sample-based

Parallel Sorting (DSPS) in our out-of-core sorting

algorithm. The idea behind DSPS algorithm is to find s-1

samples as splitters to partition the input data set into

several data chunks. Elements in the (i+1)th
 chunk are no

smaller than those in the ith
 chunk. The sizes of these

chunks have a deterministic upper bound in order to avoid

the loads of streams differ greatly and causing the load

balancing problem. The chunks can be put into GPU global

memory by adjusting a parameter in the algorithm

according to the value of the whole data size.

The out-of-core algorithm can be described as follows:

Step1: Divide the input data set into d chunks, each
contains (n/d) elements, assuming that d divides n evenly.

Step 2: Copy the chunks to the GPU’s global memory
one by one, and sort them by in-core algorithm. Then split
each chunk into d buckets. The xth

 element in chunk i will

be put into bucket Bin[i][x/d]. Copy the sorted chunks
back to main memory one by one.

Step 3: Swap buckets among chunks in main memory, for
i ∈ [0,d−1], j∈ (i,d−1], switch Bin[i][j] and Bin[j][i]. So that
new chunk i consists of {Bin[0][i],Bin[1][i],...,Bin[d-1][i]}.

Step 4: In the (d-1)
th

 chunk, selects the ((x+1)n/(d2
s))

th

element as a sample candidate from Bin[i][d-1], for
x∈ [0,s−1] and i∈ [0,d−1].

Step 5: Sort the sample candidate, pick the (k+1)·s sample
point as s[k], k ∈ [0,d−2], let s[d−1] be the largest. Copy
the sample array from main memory to GPU global
memory.

Step 6: Copy each chunk to GPU global memory again
and split the chunk into d buckets based on d sample points.
The bucket j of chunk i is called NS[i][j], for 0≤j≤d−1. After
splitting, all the elements in NS[i][j] should be no larger than
s[j]. At last, copy these buckets back to main memory.

Step 7: Swap buckets among chunks again in main

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

24

memory, new chunk i consists of {NS[0][i],
NS[1][i],...,NS[d-1][i]}. i∈ [0, d−1]. All the elements in
chunk i are no larger than s[i].

Step 8: i∈ [0,d−1], calculate the total length of chunk i.
If the length is less than the threshold Θ, copy the whole
chunk to GPU global memory and sort it using our in-core
sorting algorithm. Otherwise, copy NS[0][i],
NS[1][i],...,NS[d-1][i] to the GPU one by one. For NS[j][i],
split it into two parts, part[j][i][0] and part[j][i][1], where
part[j][i][0] contains elements equal to s[i] while
part[j][i][1] contains the rest. Copy back the part[j][i][1] to
the main memory, then merge all the part[j][i][1], 0≤j≤d−1
into one array. Finally, sort this array on the GPU and write
it back to the result set. Fill out the rest part of result set
using s[i].

According to the condition in [5], we can easily get

)//(dsndn ,so

)4/)/()2/(2//(nsnsnnd .This means that

if every chunk’s size is guaranteed to be less than Θ, the

number of chunks split in Step 1 must be larger than

)4/)/()2/(2//(nsnsnn .

Suppose that GPU is able to store and sort a 128MB data

set, then the sample number s=64, the N = 1 GB, according

to the approach above, d ≥ 8.47, so that d must be larger

than or equal to 9.

3.2 In-core algorithm

Our in-core algorithm is based on GPU Sample Sort,

which is currently the fastest comparison-based sorting

algorithm. However, it has a load balancing problem. The

key to make subsets well-balanced in a sample sorting

algorithm is to find appropriate splitters, like in as PSRS

(Parallel Sorting by Regular Sample) and DSPS. However,

if they are directly ported to GPU, the overhead of

generating splitters to get balanced subsets will be much

larger than that of directly sorting on imbalanced subsets. So

it is important to find the tradeoff point between them. Let

us review the procedure of PSRS. Suppose that the size of

data set is n. First, split the data set into p subsets. Then, for

each subset, select (s−1) equidistant points as sample

candidate points. Finally, merge the (s−1) ·p sample

candidate points, sort them and select (s − 1) equidistant

points as splitters. The overhead of splitter generation in

PSRS is splitting the whole data set and sorting all the

subsets, and it is proportional to the data size.

Our in-core sorting algorithm uses a novel strategy to
select sample points. First pick up a subset from the whole
data set randomly. The size of this subset is equal to (s−
1)·k·M, (k ≤ p), where M is the maximum size of array that
can be sorted in share memory of one SM. Then, split the set
into k subsets and assign k blocks to sort these subsets in
parallel. Afterward, for each subset, select (s−1) equidistant
points as sample candidate points. At last, merge the (s− 1)·k
samples, sort them and select (s−1) equidistant points as
splitters. The parameter k should be assigned at runtime
depending on data size.

4. Key Optimization Methods
Here we present the detailed implementation and

optimization of GPUMemSort. First, we describe the task
execution engine, which can overlap data transfer with GPU
computation based on pipelining. Second, we indicate how
to swap buckets in chunks. Finally, we show the
compensation algorithm based on optimistic mechanism.

4.1 Task Execution Engine based on Pipeline

The data transfer between CPUs and GPUs is a

significant overhead in our GPUMemSort algorithm.

Without optimization, more than 30% of the time

would be spent on transferring data between CPUs

and GPUs. But the GPU may remain idle when data

transfer operations are doing. Also, the bandwidth

between CPU and GPU is fully-duplex, so only 50%

of the total bandwidth resource can be used if only

one way is used to transfer data between CPUs and

GPUs. So overlapping data transfer from CPU to

GPU, GPU computation, and data transfer from GPU

to CPU will bring remarkable performance

improvement. Thus a task execution engine is

implemented based on pipeline mechanism. First,

divide a sorting task into three subtasks: CPU-GPU

data transfer, kernel sorting, and GPU-CPU data

transfer. Then, pipeline these three types of subtasks

based on streaming with CUDA’s asynchronous

memory copy. Streaming maintains the

dependencies, while the asynchronous memory copy

parallelizes data transfer operations and sorting

operation. Fig. 1 shows the comparison between the

GPU classic computation pattern and our pipeline-

based one.

Figure1. Comparison between the GPU
classic computation pattern and our
pipeline based computation pattern

4.2 Implementation of Buckets Swap

In the implementation of DSPS, different buckets are

swapped through network communication because different

chunks are scattered in distributed memory. Pointers are

used to avoid hard memory copy.

In Algorithm 1, we present our data structure of pointer

arrays to swap buckets, and the procedure of transferring

data from main memory to GPU global memory. Assign to

each data chunks a TransposeChunk structure, including a

vector of TransposeBlock to record the start address and the

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

25

·

·

size of a bucket. Then swap the start address and size in

the corresponding TransposeBlock structures. In the

coming data transfer, traverse the buckets and copy them

from main memory to GPU global memory, avoiding a

copy on the host.

Algorithm 1 Data Structure for buckets swap and coming
data transfer algorithm

Struct TransposeBlock{

int* block ptr;

long size;

};

Struct TransposeChunk{

TransposeBlock blocks[d];

};

procedure memcpyFromHostToDevice(Transpose

Chunk& chunk, int* dvalue)

offset 0;

for q = 0 to d do

TransposeBlock& tmpBlock chunk.blocks[q];

cudaMemcpyHostToDevice (dvalue + offset,

tmpBlock.block ptr, sizeof(int) * tmpBlock.size);

offset offset + tmpBlock.size;

end for

4.3 Optimistic Mechanism based Compensation

Algorithm
In the Step 4 of DSPS, Est[i] is calculated to record the

size of elements equal to s[i] in sample candidate list. In the

following splitting operation for chunks, it should be

guaranteed that in NS[i], the number of elements equal to

s[i] is smaller than Est[i]n/(p2s). If not, we should try to

shift this element to the adjacent buckets when splitting.

To add the comparison logic above into chunks splitting

module, a global variable should be maintained for each

bucket to record the number of elements equal to

corresponding splitter. Atomic FAA (Fetch and Add)

method will be called a few times to keep consistency, thus

decreasing the performance. Otherwise, the size of the

chunks in the last step may exceed the threshold θ.
In order to solve this problem, we propose a novel

compensation algorithm based on optimistic mechanism.

Assume that ∀i [0,d−1], the number of elements in

NS[i] equal to s[i] exceeding Est[i]n/(p2s) is a low-

probability event. We add logic to Step 8 to compensate

for exceptions. First, decide whether the size of each

chunk is no larger than the given θ. If yes, copy this

chunk to GPU global memory and sort it with our in-

core algorithm. Otherwise, copy

NS[0][i],NS[1][i],...,NS[d-1][i] to the GPU one by one.

For NS[j][i], split it into two parts: part[j][i][0] and

part[j][i][1], the former contains elements equal to s[i]
while the latter contains the rest. Copy back the

part[j][i][1] to the main memory, merge all the

part[j][i][1], 0 ≤ j≤ d−1 into one array, then sort this

array on the GPU and write it back to the result set. Finally,

fill the rest part of result set with s[i]. Algorithm 2 presents

the pseudo code of our compensation algorithm.

Algorithm 2 Compensation algorithm on the CPU

chunk: [input] TransposeChunk of chunk which will be

processed,

splitter: [input] the corresponding splitter value

outputBlock: [output] the pointer where results will be

written back

splitterSize: [output] the number of elements which

equal to splitter in the chunk

procedure handleLongArrayException(const

TransposeChunk& chunk, const int splitter, int* &

outputBlock, int& splitterSize)

int boundary[d]; // splitter of each bucket

struct TransposeChunk m chunk;

alloc memory whose size equal to d in dBoundary

and copy boundary to dBoundary;

for q = 0 to d do

// handle blocks in chunk one by one.

int* dBucketValue = NULL;

int* dBucketOutputValue = NULL;

const TransposeBlock& tmpBlock =

 chunk.blocks[q];

alloc memory whose size equal to tmpBlock.size in

dBucketValue and copy tmpBlock.block ptr to

device memory;

malloc tmpBlock.size length array to

dBucketOutputValue;

splitEquality kernel

<<<BLOCK NUM,THREADS NUM>>>

(dBucketValue, tmpBlock.size, splitter,

dBoundary);

boundary[q] ΣdBoundary[i];
i[0, BLOCK N U M);
prefixSum(dBoundary);

divide kernel

<<<BLOCK NUM,THREADS NUM>>>

(dBucketValue, tmpBlock.size, splitter,

dBoundary);

copy dBucketOutputValue back to outputBlock in

main memory;

end for
copy all buckets in m chunk to global memory;

employ in-core sorting algorithm to sort them;

copy sorted buckets back to outputBlock;

pad the rest of outputBlock using splitter;

free memory in device and main memory;

5. Experimental Results
In this section, we introduce our hardware environment

and compare our in-core sorting with GPU Sample Sort,

GPU Quick Sort and Thrust Merge Sort based on six

different data sets and show the performance and scalability

of GPUMemSort.

5.1 Hardware Environment
Our system consists of two NVIDIA GPU GTX 260 co-

processors, 16GB DDR3 main memory and an Intel Quad

Core i5-750 CPU. Each GPU connects to the main

memory through exclusive PCIe 16X data bus, providing

4GB/s bandwidth with full duplex. Experiments have

shown that data transmissions between each GPU and

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

26

main memory will not be affected too much. Also, time

consumed by data transmission between GPU and main

memory can be almost overlapped by GPU computation.

Table 2 shows the bandwidth measurement results in

different scenarios.

Table2 . GPU to host bandwidth measurement

The GTX 260 with consists of 16 SMs (Streaming

Multiprocessor), each having 8 processors executing the

same instruction on different data. In CUDA, each SM

supports up to 768 threads, owns 16KB of share memory,

and has 8192 available registers. Threads are logically

divided into blocks and are assigned to a specific SM.

Depending on how many registers and how much local

memory the block of threads requires, there could be

multiple blocks assigned to a SM. GPU Data is stored in

512MB of global memory. Each block can use share

memory as cache. Hardware can coalesce several read or

write operations into a big operation, so it is necessary to

keep threads visiting consecutive memory locations.

5.2 Performance Evaluation
In this section, we first compare the performance of in-

core sort, GPU Sample Sort, GPU Quick Sort and Thrust

Merge Sort based on different data sets of unsigned integers.

Six different types of data sets include Uniform, Sorted

Zero, Bucket, Gaussian, and Staggered [11]. Fig. 2 shows

the result on data of different array sizes: our in-core sort-

ing outperforms the others because it can achieve good load

balancing with little cost.

Figure2. Performance comparison between
in-core sort and other existing sorting
algorithms

The performance evaluation of our out-of-core

algorithm on a single GPU is shown in Fig. 3,

indicating that our out-of-core algorithm is robust and

is capable of handling data efficiently with different

distributions and sizes.

Figure3. Performances of out-of-core algorithm
on different data distributions

Finally, the scalability of our out-of-core algorithm

from one GPU to two GPUs is shown in Fig. 4. It is

clear that our out-of-core sorting algorithm can reach

near-linear speedup in two GPUs, showing that our out-

of-core algorithm has good scalability when the

bandwidth between main memory and GPU memory is

not a bottleneck.

Figure 4. Performance comparison of our out-of-

core scaling from one GPU to two GPUs

6. Conclusion and Future Work
In this paper, we present GPUMemSort: a high

performance graphics co-processor sorting framework for

large-scale in-memory data by exploiting high-parallel

GPU processors. We test the performance of the algorithm

based on multiple data sets and it shows that GPUMemSort

sorting algorithm outperforms other multi-core based

parallel sorting algorithms. A significant conclusion drawn

from this work is that our GPUMemSort can break through

the limitation of GPU global memory and can sort large-

scale in-memory data efficiently.

We have found that for some special distributed inputs,

some special sorting method can be developed by taking

advantage of the special data distribution information. We

will include this optimization method into our in-core

sorting algorithm. The values of different parameters in our

sorting method now are set based on intuition and some

simple tests. But we know that those value have significant

Test Cases Single GPU Two GPUs

Device to Host 3038.5MB/s 2785.1MB/s

Host to Device 3285.5MB/s 2802.1MB/s

Device to Device 106481.5MB/s 106377.1MB/s

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

27

impact on the performance and we will develop method to

find suitable values for those parameters automatically. The

scalability of our out-of-core algorithm only tested on two

GPUs, we will do more experiments on more GPUS in the

next steps to verify our algorithm. Now we use double

buffers in main memory and this method will occupy more

memory. We will further optimize our implementation

method which needs less memory in the future.

Furthermore, we will try to extend our algorithm to a GPU

cluster system and optimize our algorithm on this kind of

distributed heterogeneous architecture.

ACKNOWLEGEMENT

This research is supported in part by National Natural

Science Foundation of China ((No. 61073008, 60773148

and No.60503039), Beijing Natural Science Foundation

(No. 4082016), NSF Grants CNS-0708307, IIP-0934114,

OCI-090446 (Bader), and the Center for Adaptive

Supercomputing Software for Multithreaded Architectures

(CASS-MT)

References

[1] NVIDIA CUDA (Compute Unified Device Architecture)

http://developer.NVIDIA.com/object/cuda.html

[2] OPENCL, http://www.khronos.org/opencl/

[3] N. Govindaraju, J. Gray, R. Kumar and D. Manocha.

GPUTeraSort: high performance graphics coprocessor sorting for

large database management. SIGMOD , pp325-336, 2006

[4] D. R. Helman, J. JaJa, D. A. Bader. ”A New Deterministic Parallel

Sorting Algorithm with an Experimental Evaluation”. ACM Journal

of Experimental Algorithmics (JEA), September 1998, Volume 3.

[5] H. Shi and J. Schaeffer, Parallel Sorting by Regular sampling,

Journal of Parallel and Distributed Computing 14, pp361–372, 1992

[6] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.

Kirk, W-m. W. Hwu: Optimization principles and application

performance evaluation of a multithreaded GPU using CUDA.

PPoPP 2008: pp73–82

[7] T.Purcell, C.Donner, M.Cammarano, H.Jensen, and P. Hanrahan.

Photon mapping on programmable graphics hardware.

ACMSIGGRAPH/Eurographics Conference on Graphics Hardware,

pp41–50,2003

[8] P.Kipfer, M.Segal,and R.Westermann. Uberflow: A GPU-based

particle engine. SIGGRAPH/Euro graphics Workshop on Graphics

Hardware, 2004.

[9] A. Greß, and G. Zachmann, GPU-ABiSort: Optimal Parallel

Sorting on Stream Architectures, The 20th IEEE International Parallel

and Distributed Processing Symposium, Rhodes Island, Greece, 2006,

pp1–10.

[10] E. Sintorn, and U. Assarsson, Fast Parallel GPU- Sorting

Using a Hybrid Algorithm, Journal of Parallel and Distributed

Computing, Volume 68, Issue 10, pp1381–1388.

[11] D. Cederman, and P. Tsigas, A Practical Quicksort Algorithm for

Graphics Processors, Technical Report, Gothenburg, Sweden, pp

246–258.

[12] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In

IEEE International Parallel and Distributed Processing Symposium,

Atlanta, GA, 2010

[13] N. Satish, M. Harris, and M. Garland. Designing efficient sorting

algorithms for many-core GPUs. In IEEE International Parallel and

Distributed Processing Symposium, Rome, Italy, 2009.

Yin Ye got his Master degree from the

Department of Computer Science and

Technology at Tsinghua University, China.

He received his Bachelor Degree in 2003 and

then joined the High Performance Computing

Institute at Tsinghua University. His research

interests include Parallel and Distributed

Computing, GPU Computing.

Zhihui Du is an associate professor in the

Department of Computer Science and

Technology at Tsinghua University, China.

He received his BE degree in Computer

Science from Tianjin University in 1992 and

his MS and Ph.D. degrees in Computer

Science from Peking University in 1995 and 1998,

respectively. His research interests cover high performance

computing and grid computing.

David A. Bader received his PhD degree in

1996 from the University of Maryland.

From 1998- 2005, he served on the faculty

at the University of New Mexico. He is a

professor in computational science and

engineering, a division within the College

of Computing, at the Georgia Institute of Technology. His

main areas of research are in parallel algorithms,

combinatorial optimization, and computational biology and

genomics.

Quan Yang is a senior student in the

Department of Computer Science and

Technology at Tsinghua University, China.

He is doing research in the High Performance

Computing Institute at Tsinghua University.

His research interests include parallel sorting

algorithm on muti-core GPU.

Weiwei Huo is an undergraduate student in

the Information and Communication

Engineering School at Beijing University of

Posts and Telecommunications, China. She

joined the High Performance Computing

Institute at Tsinghua University as an intern

student. Her research interests include

Parallel and Distributed Computing on GPU, Parallel

Algorithms and Optimizations.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

28

http://developer.nvidia.com/object/cuda.html
http://www.khronos.org/opencl/

