
1

Identifying Potential Security Flaws using

Loophole Analysis and the SECREt

Curtis Busby-Earle

Department of Computing

The University of the West Indies

Mona, Jamaica

Email: curtis.busbyearle@uwimona.edu.jm

Ezra K. Mugisa

Department of Computing

the University of the West Indies

Mona, Jamaica

Email: ezra.mugisa@uwimona.edu.jm

Abstract—In contemporary software development there

are a number of methods that attempt to ensure the security

of a system. Many of these methods are however introduced

in the latter stages of development or try to address the

issues of securing a software system by envisioning possible

threats to that system, knowledge that is usually both

subjective and esoteric.

In this paper we introduce the concept of path fixation

and discuss how contradictory paths or loopholes, discov-

ered during requirements engineering and using only a

requirements specification document, can lead to potential

security flaws in a proposed system.

The SECREt is a proof-of-concept prototype tool devel-

oped to demonstrate the effectiveness of loophole analysis.

We discuss how the tool performs a loophole analysis

and present the results of tests conducted on an actual

specification document. We conclude that loophole analysis

is an effective, objective method for the discovery of

potential vulnerabilitites that exist in proposed systems and

that the SECREt can be successfully incorporated into the

requirements engineering process.

Index Terms—Security, Loopholes, Requirements Engi-

neering, SECREt.

I. INTRODUCTION

Cross-cutting concerns are those parts of a system

whose functionality spans multiple system modules. Se-

curity is typically represented as one such cross-cutting

concern. The security of systems and the information

these systems are designed and built to manage is

primary among the issues considered when developing

these systems [1]–[3]. To address the issues related to

the security of systems, many methods and approaches

have been incorporated into software development pro-

cesses. These include UMLSec [4], abuse cases [5],

misuse cases [6] and the SQUARE method [7]. Many

approaches and methods are however threat specific,

reactive and subjective [8].

Anti-malware applications are dependent on the de-

tection of what is known i.e. specific threats. In essence

this is accomplished by the identification of a piece of

malware’s signature, actions, heuristics or a combination

of these [9]. Intrusion detection systems, stateful inspec-

tion and packet analyzing firewalls investigate incoming

and outgoing packets (e.g. TCP and IP) for violations

against rules contained within their configuration files.

Again these rules are based on specific threats. Examples

include various forms of hijacking and port scanning,

SYN flooding and amplification attacks. When infil-

trated, knowledge specific to the attack is built to prevent

PDF processed with CutePDF evaluation edition www.CutePDF.com

user
DOI: 10.5176_2010-2283_1.2.40

2

it in the future.

On the other hand, approaches that are used to incor-

porate security during the early stages of software devel-

opment attempt to determine potential threats. The tasks

associated with the identification of potential security

threats are to select the assets to be protected, identify

vulnerabilities in the context of potential threats and

specify countermeasures [10]. The associated methods

are however, highly subjective. For example, the guide-

lines for the incorporation of misuse cases during the

engineering process involves the introduction of “threats

that are reasonably likely” to a set of use cases. UMLsec

models attackers by representing possible capabilities

(e.g. the default attacker described as one with “modest

capability”). The SQUARE method suggests the use of

misuse cases, abuse cases and threat scenarios among

others to elicit security requirements.

Interestingly, the source of many an attack can be

traced to stages of development as early as the require-

ments engineering phase. The Common Weakness Enu-

meration listed the top twenty-five sources of software

vulnerabilities [11]. The number one source was the

improper validation of inputs, a function that can be

designed into a system as early as the requirements engi-

neering phase of development. Attacks such as cross-site

scripting, SQL and command injection take advantage

of improper input validation. To extend coetaneous ap-

proaches and methods to securing software systems we

determined that a more proactive, objective approach is

needed.

The remainder of the paper is as follows. In section

two we introduce and discuss the concepts of path

fixation and loopholes, in section three we describe the

methods involved in the approach, section four presents

the Secure Requirements Writer (SECREt) and demon-

strates the effectiveness of the loophole analysis. We

conclude and discuss our future work in section five.

II. PATH FIXATION AND LOOPHOLES

Functional fixation is the inability to see uses for

something beyond the use commonly presented for it

[12], in other words, it is the belief that something can

only be used for its default or intended purpose. We

transpose the notion of functional fixation to the analysis

of requirements, by considering possibilities for using

a system being designed in ways other than those that

are intended. To investigate such possibilities we analyse

paths.

We define paths to be the sequences of desired system

or application functions and their pre- and post condi-

tions, as they are defined in a software requirements

specification (SRS) document. Analogously then, we

define path fixation as the belief that the paths described

in an SRS are the only ones that will exist in the

proposed system. The discovery of paths that contradict

such beliefs is the basis of our loophole analysis.

Loopholes are potential paths that will result in a user

or system capability that contradicts a user or system

constraint, as specified in the requirements document.

We will demonstrate, using the SECREt, that loopholes

can lead to potential security flaws in a system or

application.

III. THE METHODS OF THE APPROACH

The fundamental aspect of our approach is that it is

based on a security policy. A security policy is the spec-

ification of the allowed interactions of a system’s users

and objects [8]. For the purpose of the approach we must

also select an appropriate definition of a vulnerability,

one that is also based on a security policy. Piessens

defines a vulnerability as any aspect of a computer

system that allows for breaches in its security policy

[13]. A loophole (see definition in section II above) is

3

therefore a vulnerability. We adopt Piessens’ definition,

as our concept of a loophole coincides with his notion

of a vulnerability. The steps involved in our loophole

analysis are summarised below:

1) Convert the SRS into a more concise format.

2) Develop a more complete specification document,

with respect to security.

3) Discover potential vulnerabilities by analysing the

amended specification document for loopholes.

4) Improve the security of the intended system by

rectifying any discovered loopholes.

A. Derived Requirements

To convert an SRS into a more concise format we

employ the use of derived requirements. A derived

requirement (DR) is a policy-based expression: it de-

scribes the action a subject performs on an object as

either a capability or a constraint [8]. For example, the

requirement,

2.1.5 The accountant shall be able to read the expenses

file

would be expressed in the derived requirement format

as,

2.1.5[user accountant : access read : file expenses]cap

where the subject is the ’useraccountant’, the action

is ’accessread’ and the object is ’fileexpenses’. In the

derived requirement format, accountant, read and ex-

penses are called clarifiers. These clarifiers and the other

variables subject, action and object are the elements of a

derived requirement expression. By representing an SRS

as a set of derived requirements we are able to reduce

its size, on average, by over 90%, and still maintain

the essence of the description of the intended system

functionality.

B. Imposed Security Dependence

To appropriately analyse the specification document

for loopholes, based on the description of the functions

of a system contained in a specification document, the

document itself must be suitably complete. In particular,

it must be suitably completed with respect to its security

requirements, as these are usually major cross-cutting

concerns in the development of a system. The primary

issue however, with incorporating aspects related to the

security of a system during the requirements engineer-

ing process is that these aspects are typically included

implicitly [14]. We address this by defining the imposed

security dependency.

Elements of derived requirements such as actions and

objects may have imposed security dependencies [15].

We define an imposed security dependence as follows:

Boilerplate placement value (BPV) α has an imposed

security dependence (ISD) on BPV β when the use of α

in a derived requirement dictates the use of β in at least

one related derived requirement.

Boilerplates are templates that are used to express

requirements in a consistent manner [16]. We incorporate

boilerplates in developing derived requirement expres-

sions. The placement values are the items of data used to

complete the requirement template and are then extracted

into a derived requirement. ISD relationships are neither

reflexive nor symmetrical but can be transitive. To reduce

possible ambiguity of meaning and due to the implicit

nature of security requirements, placement values can

be standardized in an ISD table that defines them, their

attributes and their imposed security dependencies.

4

C. The Loophole Algorithm

Having converted a specification document into a

more concise form using derived requirements, and

developed a more complete set of requirements using

the derived format and imposed security dependencies,

we can now begin the analysis for loopholes.

Let D be the set of all derived requirements that

are obtained from a particular requirements document,

and R be a relation that maps an element of D to

its successor element(s). A requirement’s successors are

those requirements (0..n) that describe the functions or

processes that shall be available or reachable directly

from it. Successors are obtained from the post conditions

of each requirement in a specification document. As we

wish to represent the possible transitions from function

to function within the proposed system, the properties of

R are listed below.

R : D ↔ D (1)

∀r : D • r 7→ r /∈ R (2)

∀r, q : D • r 7→ q ∈ R⇒ q 7→ r ∈ R (3)

∀r, q, s : D • r 7→ q ∈ R ∧ q 7→ s ∈ R⇒ r 7→ s ∈ R

(4)

Using these properties of R, a hierarchy of derived

requirements and their successors is created, and this

hierarchy is then used to construct the mappings of

R. The hierarchy is depicted as a simple digraph. The

requirement references (nodes) and directed edges are

used to represent the relationships among requirements

and their successors. By utilizing R we want to iden-

tify policy breaches. The policy is described by the

allowed interactions of the intended system’s users and

objects i.e. the members of D. To identify breaches,

we analyse the potential transitions (paths) by analysing

the mappings contained in R. For this purpose R is

incomplete as the intended transitions from process to

process have been defined in the requirements document,

but intrinsically these are not all that are possible. We

therefore complete the “description” of the set of all

possible paths by finding the transitive closure of R. The

steps of the loophole analysis are as follows:

1) Represent the relation R as a binary matrix M.

2) Find the transitive closure of R, using the Floyd-

Warshall algorithm. Call this new relation R*.

3) Represent R* as a binary matrix M′.

4) Perform the bit-wise XOR of corresponding ele-

ments of M and M′. This will identify maplets

created as a result of step 2.

5) Where a 1 exists in M′ but not M, excluding

any that exist along its diagonal (as we are not

interested in reflexivity by statement 2), create a

temporary derived requirement by combining the

subject of the head derived requirement of the

path (head endpoint) with the action and object of

the tail derived requirement (tail endpoint) of the

path. In a two dimensional matrix representation

of M′ the head endpoint will correspond to a row

identifier and the tail endpoint a column identifier.

6) Compare each temporary derived requirement with

every derived requirement in D expressed as a

constraint.

7) A loophole (i.e. a vulnerability) exists when there

is a match.

IV. LOOPHOLE ANALYSIS WITH THE SECRET

The SECREt is a proof-of-concept prototype written

in Javascript, HTML and SQLite. It was designed to

be used by a requirements engineer to augment existing

approaches to developing requirements for more secure

software systems. It is to be incorporated at the end of the

requirements engineering phase: having created a set of

5

requirements using traditional methods of elicitation and

incorporating methods such as misuse cases and attack

trees, the engineer would then use the SECREt to further

“harden” the intended system by identifying omissions

and inconsistencies among requirements, creating a more

suitably complete set of requirements with respect to

security, and searching for and addressing any loopholes.

Its main features include the ability to:

• format derived requirements.

• identify security related deficiencies in requirements

(first stage analysis or 1SA). These deficiencies are

oversights, omissions, weak authentication (pass-

words and phrases) and potential disclosures.

• generate derived requirements based on imposed

security dependencies using an ISD table (second

stage analysis or 2SA). As discussed earlier, we

are striving for completeness with respect to the

security aspects of the requirements specification.

• identify policy breaches using the algorithm previ-

ously discussed (third stage analysis or 3SA).

• generate a skeletal requirements document using

a derived requirement set, the Volere requirements

shell [17] and boilerplates [16].

Sets of DRs can also be saved to or loaded from a file,

printed and sorted. ISD tables are also managed using

the SECREt. The 1SA is described in [8]. The 2SA is

governed by the function analyzeISD(). This function

identifies omitted security related requirements based on

an ISD table stored in one of the tool’s SQLite databases.

It incorporates the use of four sub-functions that each

loop through the set of derived requirements and check

for omissions related to actions, objects, action and

object clarifiers. The 2SA successfully completes when

no new derived requirements have been added to the

set. The function findLoopHoles() governs the 3SA by

executing the following processes:

a) sorts the set D by object.

b) verifies that all successor requirement entries

are valid. A successor is deemed invalid if a

corresponding derived requirement does not

exist. findLoopHoles() cannot continue until

all successor requirement entries have been

validated.

c) builds the binary, n x n matrix M (where

n=|D|) using multi-dimensional arrays, and

makes a copy of M. This copy is used to

complete the transitive closure of M, M′.

d) performs the Floyd-Warshall algorithm to

complete the transitive closure of R.

findLoopHoles() then compares the arrays used to rep-

resent M and M′. If there is no difference between

the two, the function raises an alert that indicates no

loopholes were discovered. If there is a difference then

the bit-wise XOR is performed on the arrays, temporary

derived requirements are built, and the function then

loops through an array of derived requirements expressed

as constraints. The function then compares the temporary

derived requirements with these constraints and displays

any matches that are found as potential flaws. These

matches correspond to loopholes or vulnerabilitites that

exist in the system’s design.

Fig. 1 displays a screen capture of the results of a 3SA

on an actual specification document [18]. In the results

pane we see that the SECREt has identified flaws. It

indicates that an ordinary user can execute a process that

allows him/her to become the application’s administrator

and perform such tasks as creating user accounts. How-

ever, the specification document prohibits an ordinary

user from carrying out such tasks as R.4.2.1.2, (see fig. 1)

is expressed as a constraint. This is a violation of policy

6

and therefore a vulnerability. Our multi-stage loophole

analysis, embodied in the SECREt, is summarised in Fig.

2.

V. CONCLUSION AND FUTURE WORK

We have demonstrated that the SECREt can identify

potential vulnerabilities in systems based on a system’s

requirements specification document. The identification

is based on the discovery of loopholes. These are un-

known paths that would exist if the system were to be

developed in accordance with the specification document

in the form prior to the loophole analysis. Further,

the analysis did not include nor require the motives,

resources and skills of an attacker or possible threats to

the system to be postulated. Its foundation is based on the

statement of policy, expressed as a derived requirement.

We conclude that the loophole analysis is an objective

approach to the identification of potential vulnerabilities

in systems.

We are pursuing a number of enhancements to the

SECREt. It is to be re-written in a stricter language

and a less ’volatile’ environment since keeping abreast

with changes in browser functionality has been an un-

necessary development requirement for the tool. Once re-

written we intend to improve the interface and features of

the tool and make it freely available via the Internet. Fea-

ture enhancements include the ability to automatically

transform a requirements document from formats such as

the Volere requirements shell or the IEEE 830 standard,

into that of the derived requirement. The tool will also

provide the ability to step through loopholes to visualize

the points along the paths that raise concerns. This will

provide an engineer the ability to develop appropriate

countermeasures with minimal effect on the intended

system’s features.

Perhaps the most important feature to be included will

be the SECREt’s security assurance rating of proposed

systems. This rating will assert that the requirements

engineers of a proposed system have satisfactorily con-

sidered and addressed particular classes of vulnerabilities

during the design process. The rating, however, will

only be applicable if the system is developed in strict

accordance with the specification, after the SECREt’s

analyses and modifications have been performed and

made to the specification.

The SECREt, although tested using small to medium

sized documents, has not been tested with documents

that detail large and very large systems. This is primarily

due to the unavailability of such documents for our re-

search due to the reluctance of organizations to disclose

such information.

Finally, our research has raised a few questions that

are primarily statistical in nature. Do loopholes exist in

every specification document? What is the average num-

ber of loopholes that can be expected in documents that

specify small, medium, large and very large systems? Is

the number of loopholes that are discovered proportional

to the size of the intended system? How can the process

of requirements engineering be improved to reduce the

number of loopholes that are introduced? The SECREt

will be utilized to investigate the answers.

REFERENCES

[1] K. Beznosov and B. Chess, “Security for the rest of us: An

industry perspective on the secure-software challenge,” IEEE

Software, vol. 25, pp. 10–12, 2008.

[2] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy require-

ments analysis within a social setting,” in RE ’03: Proceedings

of the 11th IEEE international conference on requirements engi-

neering. Washington, DC, USA: IEEE Computer Society, 2003,

p. 151.

[3] R. De Landtsheer and A. van Lamsweerde, “Reasoning about

confidentiality at requirements engineering time,” in ESEC/FSE-

13: Proceedings of the 10th european software engineering

conference held jointly with 13th ACM SIGSOFT international

7

Fig. 1. Results of a 3SA performed by the SECREt

8

Fig. 2. Multi-stage SRS loophole analysis

symposium on foundations of software engineering. New York,

NY, USA: ACM, 2005, pp. 41–49.

[4] J. Jurjens, “Umlsec: extending uml for secure systems develop-

ment,” in Proc. of the 5th international conference on the unified

modeling language. London, UK: Springer-Verlag, 2002, pp.

412–425.

[5] J. McDermott and C. Fox, “Using abuse case models for security

requirements analysis,” in Proceedings of Computer security

applications conference. IEEE Computer Society, 1999, pp.

55–64.

[6] G. Sindre and A. Opdahl, “Eliciting security requirements by

misuse cases,” in Proc. of technology of object oriented languages

and systems. IEEE, 2000, pp. 120–131.

[7] N. Mead, “Identifying security requirements using the security

quality requirements engineering (square) method,” in Integrating

security and software engineering: advances and future vision,

H. Mouratidis and P. Giorgini, Eds. IGI Global, 2007, ch. 3,

pp. 44–69.

[8] C. Busby-Earle and E. K. Mugisa, “Towards writing secure soft-

ware requirements,” in Proceedings of the IASTED international

conference on software engineering (SE 2009). CA, USA: ACTA

Press, 2009, pp. 101–105.

[9] W. Stallings and L. Brown, Computer security:principles and

practice, 1st ed. Pearson Prentice Hall, 2008.

[10] B. H. C. Cheng and J. M. Atlee, “Research directions in

requirements engineering,” in FOSE ’07: Future of Software

Engineering. Washington, DC, USA: IEEE Computer Society,

2007, pp. 285–303.

[11] “Common weakness enumeration,” 2008, [Accessed January

2009]. [Online]. Available: http://cwe.mitre.org

[12] P. Zatko, “Psychological security,” in Beautiful security:leading

security experts explain how they think, 1st ed., A. Oram and

J. Viega, Eds. O’Reilly Media, 2009, ch. 1, pp. 1–20.

[13] F. Piessens, “A taxonomy (with examples) of cases of software

vulnerabilities in internet software,” Katholieke Universiteit Leu-

ven, Belgium, Tech. Rep. CW346, 2002.

[14] J. Routh, “Forcing firms to focus: is secure software in your

future?” in Beautiful security:leading security experts explain

how they think, 1st ed., A. Oram and J. Viega, Eds. O’Reilly

Media, 2009, ch. 11, pp. 183–197.

[15] C. Busby-Earle and E. K. Mugisa, “Metadata for boilerplate

placement values for secure software development using derived

requirements,” in Proceedings of the 13th IASTED international

conference on software engineering and applications (SEA 2009).

USA: ACTA Press, 2009, pp. 196–201.

[16] E. Hull, K. Jackson, and J. Dick, Requirements engineering,

2nd ed. Springer, 2005.

[17] “Volere requirements specification template,” 2010,

[Accessed February 2010]. [Online]. Available:

http://www.volere.co.uk/template.htm

[18] “A free ’real world’ software requirements spec-

ification,” 2010, [Accessed January 2010]. [Online].

Available: http://www.devdaily.com/uml/software-requirements-

specification-example-use-case

Curtis Busby-Earle is a member of the

Faculty of the Department of Computing,

University of the West Indies (Mona). He

has a BSc General in Computer Science

(Major) and Mathemathics (Minor); an MSc

in Computer Based Management Information

Systems, and is a certified ethical hacker.

His primary research interest is in the area of security requirements

engineering. He also has interests in web development and computer

networks.

Ezra K. Mugisa is a member of the Faculty

of the Department of Computing, University

of the West Indies (Mona). He received a

PhD from Imperial College, London; an MSc

from the University of Sheffield and a Dipl.

Ing. from the University of Ljubljana - all in

Computer Science. His research interests lie

primarily in component-based software engineering with a growing

interest in IT for development.

